Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
RNA Biol ; 12(4): 389-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25806564

RESUMEN

APOBEC1 is the catalytic subunit of the complex that edits ApolipoproteinB (ApoB) mRNA, which specifically deaminates cytidine 6666 to uracil in the human transcript. The editing leads to the generation of a stop codon, resulting in the synthesis of a truncated form of ApoB. We have developed a method to quantitatively assay ApoB RNA editing in live cells by using a double fluorescent mCherry-EGFP chimera containing a ∼ 300 bp fragment encompassing the region of ApoB subject to RNA editing. Coexpression of APOBEC1 together with this chimera causes specific RNA editing of the ApoB fragment. The insertion of a stop codon between the mCherry and EGFP thus induces the loss of EGFP fluorescence. Using this method we analyze the dynamics of APOBEC1-dependent RNA editing under various conditions. Namely we show the interplay of APOBEC1 with known interactors (ACF, hnRNP-C1, GRY-RBP) in cells that are RNA editing-proficient (HuH-7) or -deficient (HEK-293T), and the effects of restricted cellular localization of APOBEC1 on the efficiency of the editing. Furthermore, our approach is effective in assaying the induction of RNA editing in Caco-2, a cellular model physiologically capable of ApoB RNA editing.


Asunto(s)
Citosina/metabolismo , Edición de ARN , ARN Mensajero/metabolismo , Uracilo/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citometría de Flujo/métodos , Humanos , Ratas
2.
Transl Res ; 255: 119-127, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36528340

RESUMEN

Genetic diagnosis of familial hypercholesterolemia (FH) remains unexplained in 30 to 70% of patients after exclusion of monogenic disease. There is now a growing evidence that a polygenic burden significantly modulates LDL-cholesterol (LDL-c) concentrations. Several LDL-c polygenic risk scores (PRS) have been set up. However, the balance between their diagnosis performance and their practical use in routine practice is not clearly established. Consequently, we set up new PRS based on our routine panel for sequencing and compared their diagnostic performance with previously-published PRS. After a meta-analysis, four new PRS including 165 to 1633 SNP were setup using different softwares. They were established using two French control cohorts (MONA LISA n=1082 and FranceGenRef n=856). Then the explained LDL-c variance and the ability of each PRS to discriminate monogenic negative FH patients (M-) versus healthy controls were compared with 4 previously-described PRS in 785 unrelated FH patients. Between all PRS, the 165-SNP PRS developed with PLINK showed the best LDL-c explained variance (adjusted R²=0.19) and the best diagnosis abilities (AUROC=0.77, 95%CI=0.74-0.79): it significantly outperformed all the previously-published PRS (p<1 × 10-4). By using a cut-off at the 75th percentile, 61% of M- patients exhibited a polygenic hypercholesterolemia with the 165-SNP PRS versus 48% with the previously published 12-SNP PRS (p =3.3 × 10-6). These results were replicated using the UK biobank. This new 165-SNP PRS, usable in routine diagnosis, exhibits better diagnosis abilities for a polygenic hypercholesterolemia diagnosis. It would be a valuable tool to optimize referral for whole genome sequencing.


Asunto(s)
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , LDL-Colesterol/genética , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Proproteína Convertasa 9/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Factores de Riesgo , Receptores de LDL/genética , Mutación
3.
JHEP Rep ; 5(4): 100692, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36937991

RESUMEN

Background & Aims: Lean patients with non-alcoholic fatty liver disease (NAFLD) represent 10-20% of the affected population and may have heterogeneous drivers of disease. We have recently proposed the evaluation of patients with lean NAFLD without visceral adiposity for rare monogenic drivers of disease. Here, we aimed to validate this framework in a well-characterised cohort of patients with biopsy-proven NAFLD by performing whole exome sequencing. Methods: This prospective study included 124 patients with biopsy-proven NAFLD and paired liver biopsies who underwent standardised research visits including advanced magnetic resonance imaging (MRI) assessment of liver fat and stiffness. Results: Six patients with lean NAFLD were identified and underwent whole exome sequencing. Two lean patients (33%) were identified to have monogenic disorders. The lean patients with monogenic disorders had similar age, and anthropometric and MRI characteristics to lean patients without a monogenic disorder. Patient 1 harbours a rare homozygous pathogenic mutation in ALDOB (aldolase B) and was diagnosed with hereditary fructose intolerance. Patient 2 harbours a rare heterozygous mutation in apolipoprotein B (APOB). The pathogenicity of this APOB variant (p.Val1856CysfsTer2) was further validated in the UK Biobank and associated with lower circulating APOB levels (beta = -0.51 g/L, 95% CI -0.65 to -0.36 g/L, p = 1.4 × 10-11) and higher liver fat on MRI (beta = +10.4%, 95% CI 4.3-16.5%, p = 8.8 × 10-4). Hence, patient 2 was diagnosed with heterozygous familial hypobetalipoproteinaemia. Conclusions: In this cohort of well-characterised patients with lean NAFLD without visceral adiposity, 33% (2/6) had rare monogenic drivers of disease, highlighting the importance of genomic analysis in this NAFLD subtype. Impact and Implications: Although most people with non-alcoholic fatty liver disease (NAFLD) are overweight or obese, a subset are lean and may have unique genetic mutations that cause their fatty liver disease. We show that 33% of study participants with NAFLD who were lean harboured unique mutations that cause their fatty liver, and that these mutations had effects beyond the liver. This study demonstrates the value of genetic assessment of NAFLD in lean individuals to identify distinct subtypes of disease.

4.
Atheroscler Plus ; 49: 42-46, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36644201

RESUMEN

Background and aims: Genetic testing is still rarely used for the diagnosis of dyslipidemia, even though gene variants determining plasma lipids levels are not uncommon. Methods: Starting from a a pilot-analysis of targeted Next Generation Sequencing (NGS) of 5 genes related to familial hypercholesterolemia (LDLR, APOB, PCSK9, HMGCR, APOE) within a cardiovascular cohort in subjects with extreme plasma concentrations of low-density lipoprotein (LDL) cholesterol, we discovered and characterized a novel point mutation in the APOB gene, which was associated with very low levels of apolipoprotein B (ApoB) and LDL cholesterol. Results: APOB c.6943 G > T induces a premature stop codon at the level of exon 26 in the APOB gene and generates a protein which has the 51% of the mass of the wild type ApoB-100 (ApoB-51), with a truncation at the level of residue 2315. The premature stop codon occurs after the one needed for the synthesis of ApoB-48, allowing chylomicron production at intestinal level and thus avoiding potential nutritional impairments. The heterozygous carrier of APOB c.6943G > T, despite a very high-risk profile encompassing all the traditional risk factors except for dyslipidemia, had normal coronary arteries by angiography and did not report any major adverse cardiovascular event during a 20-years follow-up, thereby obtaining advantage from the gene variant as regards protection against atherosclerosis, apparently without any metabolic retaliation. Conclusions: Our data support the use of targeted NGS in well-characterized clinical settings, as well as they indicate that.a partial block of ApoB production may be well tolerated and improve cardiovascular outcomes.

5.
JACC Case Rep ; 4(11): 690-693, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35677796

RESUMEN

LpX is a lipoprotein formed in cholestatic conditions and often erroneously reported as LDL-C. A low ApoB level can support the diagnosis of LpX. Treatment should not automatically focus on lowering serum lipid levels, but primarily on resolving the cause of cholestasis. (Level of Difficulty: Advanced.).

6.
Am J Prev Cardiol ; 12: 100371, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36124049

RESUMEN

Atherosclerotic cardiovascular disease (ASCVD) is epidemic throughout the world and is etiologic for such acute cardiovascular events as myocardial infarction, ischemic stroke, unstable angina, and death. ASCVD also impacts risk for dementia, chronic kidney disease peripheral arterial disease and mobility, impaired sexual response, and a host of other visceral impairments that adversely impact the quality and rate of progression of aging. The relationship between low-density lipoprotein cholesterol (LDL-C) and risk for ASCVD is one of the most highly established and investigated issues in the entirety of modern medicine. Elevated LDL-C is a necessary condition for atherogenesis induction. Basic scientific investigation, prospective longitudinal cohorts, and randomized clinical trials have all validated this association. Yet despite the enormous number of clinical trials which support the need for reducing the burden of atherogenic lipoprotein in blood, the percentage of high and very high-risk patients who achieve risk stratified LDL-C target reductions is low and has remained low for the last thirty years. Atherosclerosis is a preventable disease. As clinicians, the time has come for us to take primordial and primary prevention more serously. Despite a plethora of therapeutic approaches, the large majority of patients at risk for ASCVD are poorly or inadequately treated, leaving them vulnerable to disease progression, acute cardiovascular events, and poor aging due to loss of function in multiple visceral organs. Herein we discuss the need to greatly intensify efforts to reduce risk, decrease disease burden, and provide more comprehensive and earlier risk assessment to optimally prevent ASCVD and its complications. Evidence is presented to support that treatment should aim for far lower goals in cholesterol management, should take into account many more factors than commonly employed today and should begin significantly earlier in life.

7.
JACC Asia ; 1(1): 82-89, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36338372

RESUMEN

Background: The deeper understanding of the complex hereditary basis of familial hypercholesterolemia (FH) has raised the rationale of genetic testing, which has been underutilized in clinical practice. Objectives: The present study aimed to explore the variant spectrum of FH in an expanding manner and compare its diagnostic performance. Methods: A total of 169 Chinese individuals (124 index cases and 45 relatives) with clinical definite/probable FH were consecutively enrolled. Next-generation sequencing was performed for genetic analysis of 9 genes associated with hypercholesterolemia (major genes: LDLR, APOB, and PCSK9; minor genes: LDLRAP1, LIPA, STAP1, APOE, ABCG5, and ABCG8) including the evaluations of small-scale variants and large-scale copy number variants (CNVs). Results: Among the 169 clinical FH patients included, 98 (58.0%) were men. A total of 85 (68.5%) index cases carried FH-associated variants. The proportion of FH caused by small-scale variants in LDLR, APOB, and PCSK9 genes was 62.1% and then increased by 6.5% when other genes and CNVs were further included. Furthermore, the variants in LDLR, APOB, and PCSK9 genes occupied 75% of all FH-associated variants. Of note, there were 8 non-LDLR CNVs detected in the present study. Conclusions: LDLR, APOB, and PCSK9 genes should be tested in the initial genetic screening, although variants in minor genes also could explain phenotypic FH, suggesting that an expanding genetic testing may be considered to further explain phenotypic FH.

8.
JACC Case Rep ; 2(5): 775-779, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-34317346

RESUMEN

A novel frameshift variant was identified in APOB that segregates in a dominant manner with low levels of low-density lipoprotein cholesterol. Affected family members show no apparent clinical complications. There is no consensus regarding clinical management, and the long-term consequences of low levels of low-density lipoprotein cholesterol remain unknown. (Level of Difficulty: Advanced.).

9.
JACC Basic Transl Sci ; 5(4): 360-373, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32368695

RESUMEN

This study showed that treatment with a therapeutic monoclonal immunoglobulin-G1 antibody against phosphorylcholine on oxidized phospholipids preserves coronary flow reserve and attenuates atherosclerotic inflammation as determined by the uptake of 18F-fluorodeoxyglucose in atherosclerotic mice. The noninvasive imaging techniques represent translational tools to assess the efficacy of phosphorylcholine-targeted therapy on coronary artery function and atherosclerosis in clinical studies.

10.
JACC Basic Transl Sci ; 5(9): 888-897, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33015412

RESUMEN

Our objectives were to determine whether autotaxin (ATX) is transported by lipoprotein(a) [Lp(a)] in human plasma and if could be used as a biomarker of calcific aortic valve stenosis (CAVS). We first found that ATX activity was higher in Lp(a) compared to low-density lipoprotein fractions in isolated fractions of 10 healthy participants. We developed a specific assay to measure ATX-Lp(a) in 88 patients with CAVS and 144 controls without CAVS. In a multivariable model corrected for CAVS risk factors, ATX-Lp(a) was associated with CAVS (p = 0.003). We concluded that ATX is preferentially transported by Lp(a) and might represent a novel biomarker for CAVS.

11.
JACC Basic Transl Sci ; 5(7): 649-661, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32760854

RESUMEN

The authors investigated whether PCSK9 inhibition could represent a therapeutic strategy in calcific aortic valve stenosis (CAVS). A meta-analysis of 10 studies was performed to determine the impact of the PCSK9 R46L variant on CAVS, and the authors found that CAVS was less prevalent in carriers of this variant (odds ratio: 0.80 [95% confidence interval: 0.70 to 0.91]; p = 0.0011) compared with noncarriers. PCSK9 expression was higher in the aortic valves of patients CAVS compared with control patients. In human valve interstitials cells submitted to a pro-osteogenic medium, PCSK9 levels increased and a PCSK9 neutralizing antibody significantly reduced calcium accumulation.

12.
Acta Pharm Sin B ; 10(11): 2075-2109, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33304780

RESUMEN

In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.

13.
J Trace Elem Med Biol ; 61: 126508, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32305626

RESUMEN

BACKGROUND: Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE: This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS: Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.


Asunto(s)
Compuestos Organometálicos/farmacología , Vanadio/farmacología , Animales , Antiinfecciosos/efectos adversos , Antiinfecciosos/farmacología , Anticolesterolemiantes/efectos adversos , Anticolesterolemiantes/farmacología , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Cardiotónicos/efectos adversos , Cardiotónicos/farmacología , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/farmacología , Fármacos Neuroprotectores/efectos adversos , Fármacos Neuroprotectores/farmacología , Compuestos Organometálicos/efectos adversos , Vanadio/efectos adversos
14.
Acta Pharm Sin B ; 9(4): 702-710, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31384531

RESUMEN

Since metabolic process differs between humans and mice, studies were performed in hamsters, which are generally considered to be a more appropriate animal model for studies of obesity-related metabolic disorders. The modulation of gut microbiota, bile acids and the farnesoid X receptor (FXR) axis is correlated with obesity-induced insulin resistance and hepatic steatosis in mice. However, the interactions among the gut microbiota, bile acids and FXR in metabolic disorders remained largely unexplored in hamsters. In the current study, hamsters fed a 60% high-fat diet (HFD) were administered vehicle or an antibiotic cocktail by gavage twice a week for four weeks. Antibiotic treatment alleviated HFD-induced glucose intolerance, hepatic steatosis and inflammation accompanied with decreased hepatic lipogenesis and elevated thermogenesis in subcutaneous white adipose tissue (sWAT). In the livers of antibiotic-treated hamsters, cytochrome P450 family 7 subfamily B member 1 (CYP7B1) in the alternative bile acid synthesis pathway was upregulated, contributing to a more hydrophilic bile acid profile with increased tauro-ß-muricholic acid (TßMCA). The intestinal FXR signaling was suppressed but remained unchanged in the liver. This study is of potential translational significance in determining the role of gut microbiota-mediated bile acid metabolism in modulating diet-induced glucose intolerance and hepatic steatosis in the hamster.

15.
Cell Mol Gastroenterol Hepatol ; 5(3): 367-398, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29552625

RESUMEN

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. METHODS: Nrf2+/+ and Nrf2-/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. RESULTS: TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. CONCLUSIONS: Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.

16.
JACC Basic Transl Sci ; 2(5): 591-600, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30062172

RESUMEN

Deficiency of apolipoprotein E (APOE) causes familial dysbetalipoproteinemia in humans resulting in a higher risk of atherosclerotic disease. In mice, APOE deficiency results in a severe atherosclerosis phenotype, but it is unknown to what extent this is unique to mice. In this study, APOE was targeted in Yucatan minipigs. APOE-/- minipigs displayed increased plasma cholesterol and accumulation of apolipoprotein B-48-containing chylomicron remnants on low-fat diet, which was significantly accentuated upon feeding a high-fat, high-cholesterol diet. APOE-/- minipigs displayed accelerated progressive atherosclerosis but not xanthoma formation. This indicates that remnant lipoproteinemia does not induce early lesions but is atherogenic in pre-existing atherosclerosis.

17.
Paediatr Int Child Health ; 36(4): 243-247, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27967828

RESUMEN

Homozygous familial hypercholesterolaemia (HoFH) is an inherited disease causing an approximately fourfold increase in blood low-density lipoprotein cholesterol (LDLC) from birth compared with the age-matched normal population owing to reduced low-density lipoprotein receptor (LDLR) activity. Such elevated cholesterol is associated with accelerated atheromatous disease, particularly of the aortic root and coronary arteries. However, HoFH is clinically heterogeneous, reflecting residual low-density lipoprotein receptor (LDLR) activity. The main objective in treating children may be stated to be the avoidance of irreversible cardiac damage requiring heart transplantation by sufficient lowering of blood cholesterol. Lipoprotein apheresis or plasmapheresis are safe means of lowering cholesterol but may be insufficient on their own. Statin drugs, PCSK9 inhibitors ezetimibe and bile acid sequestrants are relatively ineffective if LDLR activity is lacking, but should be used if effective. Two new drugs, lomitapide and mipomersen, have been licensed specifically for HoFH by some regulatory authorities. They work by reducing LDL production rate. They have been associated with fatty liver in adults. Evidence of safety in children is lacking. An alternative is liver transplantation, which replaces the missing LDLR and normalises cholesterol. Clinicians are faced with a dilemma in choosing between these options or deferring such treatment associated with potential harm. Individual case descriptions are an important means of informing clinical judgement. Management of the two cases described in this issue is discussed in the light of modern developments in transplantation and pharmacotherapy.


Asunto(s)
Aterosclerosis/etiología , Aterosclerosis/terapia , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/terapia , Anticolesterolemiantes/uso terapéutico , Humanos , Hiperlipoproteinemia Tipo II/complicaciones , Trasplante de Órganos
18.
BBA Clin ; 5: 54-65, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27051590

RESUMEN

BACKGROUND & AIMS: To study the origin of fat excess in the livers of morbidly obese (MO) individuals, we analysed lipids and lipases in both plasma and liver and genes involved in lipid transport, or related with, in that organ. METHODS: Thirty-two MO patients were grouped according to the absence (healthy: DM - DL -) or presence of comorbidities (dyslipidemic: DM - DL +; or dyslipidemic with type 2 diabetes: DM + DL +) before and one year after gastric bypass. RESULTS: The livers of healthy, DL and DM patients contained more lipids (9.8, 9.5 and 13.7 times, respectively) than those of control subjects. The genes implicated in liver lipid uptake, including HL, LPL, VLDLr, and FAT/CD36, showed increased expression compared with the controls. The expression of genes involved in lipid-related processes outside of the liver, such as apoB, PPARα and PGC1α, CYP7a1 and HMGCR, was reduced in these patients compared with the controls. PAI1 and TNFα gene expression in the diabetic livers was increased compared with the other obese groups and control group. Increased steatosis and fibrosis were also noted in the MO individuals. CONCLUSIONS: Hepatic lipid parameters in MO patients change based on their comorbidities. The gene expression and lipid levels after bariatric surgery were less prominent in the diabetic patients. Lipid receptor overexpression could enable the liver to capture circulating lipids, thus favouring the steatosis typically observed in diabetic and dyslipidaemic MO individuals.

19.
Acta Pharmaceutica Sinica B ; (6): 2075-2109, 2020.
Artículo en Inglés | WPRIM | ID: wpr-881100

RESUMEN

In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.

20.
Mol Metab ; 4(3): 210-21, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25737956

RESUMEN

OBJECTIVE: Elevated very low-density lipoprotein (VLDL)-triglyceride (TG) secretion from the liver contributes to an atherogenic dyslipidemia that is associated with obesity, diabetes and the metabolic syndrome. Numerous models of obesity and diabetes are characterized by increased central nervous system (CNS) neuropeptide Y (NPY); in fact, a single intracerebroventricular (icv) administration of NPY in lean fasted rats elevates hepatic VLDL-TG secretion and does so, in large part, via signaling through the CNS NPY Y1 receptor. Thus, our overarching hypothesis is that elevated CNS NPY action contributes to dyslipidemia by activating central circuits that modulate liver lipid metabolism. METHODS: Chow-fed Zucker fatty (ZF) rats were pair-fed by matching their caloric intake to that of lean controls and effects on body weight, plasma TG, and liver content of TG and phospholipid (PL) were compared to ad-libitum (ad-lib) fed ZF rats. Additionally, lean 4-h fasted rats with intact or disrupted hepatic sympathetic innervation were treated with icv NPY or NPY Y1 receptor agonist to identify novel hepatic mechanisms by which NPY promotes VLDL particle maturation and secretion. RESULTS: Manipulation of plasma TG levels in obese ZF rats, through pair-feeding had no effect on liver TG content; however, hepatic PL content was substantially reduced and was tightly correlated with plasma TG levels. Treatment with icv NPY or a selective NPY Y1 receptor agonist in lean fasted rats robustly activated key hepatic regulatory proteins, stearoyl-CoA desaturase-1 (SCD-1), ADP-ribosylation factor-1 (ARF-1), and lipin-1, known to be involved in remodeling liver PL into TG for VLDL maturation and secretion. Lastly, we show that the effects of CNS NPY on key liporegulatory proteins are attenuated by hepatic sympathetic denervation. CONCLUSIONS: These data support a model in which CNS NPY modulates mediators of hepatic PL remodeling and VLDL maturation to stimulate VLDL-TG secretion that is dependent on the Y1 receptor and sympathetic signaling to the liver.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA