Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 151: 109725, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925448

RESUMEN

The Asian seabass, Lates calcarifer, is a key species in Asian aquaculture due to its nutritional value and adaptability. However, disease outbreaks, particularly viral and bacterial infections, pose significant challenges to its production. Immunostimulants offer promising solutions but raise safety concerns. Paraprobiotics and postbiotics (CPP) emerge as safer alternatives, exerting health benefits without live microorganisms. This study investigated the potential of probiotic paraprobiotic and postbiotic supplements derived from Bacillus subtilis to enhance the immune response and antioxidant capacity of Asian seabass and improve their resistance to Streptococcus iniae infection. Analysis of antioxidant activity and lipid peroxidation revealed significant improvements in fish supplemented with CPP, indicating their effectiveness in mitigating oxidative stress. Immunological assays demonstrated enhanced growth performance and serum immunity, including increased alternative complement activity, immunoglobulin levels, and phagocytic activity, in supplemented fish. Furthermore, upregulated expression of proinflammatory cytokines (TNF-α, IL-6, IL-1ß) and pattern recognition receptors (NLRC3, TLR22, MDA5) in immune tissues. Fish supplemented with CPP exhibited higher resistance and survival rates against S. iniae infection challenge compared to control groups. The study elucidates the mechanisms underlying the immunomodulatory effects of CPP, shedding light on their potential applications in aquaculture.


Asunto(s)
Alimentación Animal , Bacillus subtilis , Dieta , Enfermedades de los Peces , Inmunidad Innata , Probióticos , Infecciones Estreptocócicas , Streptococcus iniae , Animales , Enfermedades de los Peces/inmunología , Probióticos/farmacología , Probióticos/administración & dosificación , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/inmunología , Alimentación Animal/análisis , Inmunidad Innata/efectos de los fármacos , Bacillus subtilis/química , Dieta/veterinaria , Streptococcus iniae/fisiología , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/genética , Suplementos Dietéticos/análisis , Transducción de Señal , Perciformes/inmunología , Lubina/inmunología
2.
Fish Shellfish Immunol ; 144: 109269, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056579

RESUMEN

Streptococcosis and columnaris caused by Streptococcus spp. and Flavobacterium spp. have been recognized as critical problems in Asian seabass aquaculture development because they cause severe mortality. In this study, we identified various isolates of S. iniae and F. covae from diseased Asian seabass farmed in Thailand for use as candidates for vaccine development. The efficacy of the vaccines was evaluated by challenge tests and immune parameter analyses in fish that received whole-cell-based monovalent and bivalent vaccines containing S. iniae (Sin) and F. covae (Fco) delivered by top-dressed feed (TD) and intraperitoneal injection (IP). The results showed that all vaccinated groups exhibited increased antibody titers compared with control fish that peaked on day 28 after booster administration with high detection levels in the Sin-IP and Fco-IP groups. Moreover, the immune responses to the injected monovalent vaccines (Sin-IP and Fco-IP) were better than the responses in the other vaccinated groups. The hematological and innate immunological parameters were significantly increased by Sin-IP and Fco-IP, particularly lysozyme activity, nitroblue tetrazolium (NBT) activity, bactericidal activity, and white blood cell numbers, and immune-related genes, including IgM, MHC-IIα, TCRß and CD4, were significantly upregulated in the head kidney, whole blood and spleen (P < 0.05). After experimental challenge, survival in the Sin-IP and Fco-IP groups was significantly higher than that in the Sin-TD, Fco-TD, Sin + Fco-TD, and Sin + Fco-IP groups, with 80.0 % and 60.0 % survival after S. iniae and F. covae infection, respectively. In contrast, survival after bacterial challenge in the control groups was 10 % in each group. Histopathological analysis revealed that Sin-IP- and Fco-IP-vaccinated fish exhibited significantly more goblet cells in the intestines and melanomacrophage centers (MMCs) in the head kidney and spleen than those in the other groups (P < 0.05). Overall, the results of our study indicated that the monovalent vaccines Sin-IP and Fco-IP provoked better vaccine efficacy and immune responses than their orally administered counterparts, and these results are consistent with those from the immunological assays that showed significantly increased responses after immunization.


Asunto(s)
Enfermedades de los Peces , Perciformes , Infecciones Estreptocócicas , Animales , Streptococcus iniae , Flavobacterium , Vacunas Combinadas , Streptococcus , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/veterinaria , Vacunas Bacterianas
3.
Fish Shellfish Immunol ; 149: 109557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608847

RESUMEN

Immersion vaccination, albeit easier to administer than immunization by injection, sometimes has challenges with antigen uptake, resulting in sub-optimal protection. In this research, a new strategy to enhance antigen uptake of a heat-inactivated Vibrio harveyi vaccine in Asian seabass (Lates calcarifer) using oxygen nanobubble-enriched water (ONB) and positively charged chitosan (CS) was explored. Antigen uptake in fish gills was assessed, as was the antibody response and vaccine efficacy of four different combinations of vaccine with ONB and CS, and two control groups. Pre-mixing of ONB and CS before introducing the vaccine, referred to as (ONB + CS) + Vac, resulted in superior antigen uptake and anti-V. harveyi antibody (IgM) production in both serum and mucus compared to other formulas. The integration of an oral booster (4.22 × 108 CFU/g, at day 21-25) within a vaccine trial experiment set out to further evaluate how survival rates post exposure to V. harveyi might be improved. Antibody responses were measured over 42 days, and vaccine efficacy was assessed through an experimental challenge with V. harveyi. The expression of immune-related genes IL1ß, TNFα, CD4, CD8, IgT and antibody levels were assessed at 1, 3, and 7-day(s) post challenge (dpc). The results revealed that antibody levels in the group (ONB + CS) + Vac were consistently higher than the other groups post immersion immunization and oral booster, along with elevated expression of immune-related genes after challenge with V. harveyi. Ultimately, this group demonstrated a significantly higher relative percent survival (RPS) of 63 % ± 10.5 %, showcasing the potential of the ONB-CS-Vac complex as a promising immersion vaccination strategy for enhancing antigen uptake, stimulating immunological responses, and improving survival of Asian seabass against vibriosis.


Asunto(s)
Vacunas Bacterianas , Quitosano , Enfermedades de los Peces , Vacunación , Vibriosis , Vibrio , Animales , Vibrio/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Quitosano/administración & dosificación , Vibriosis/veterinaria , Vibriosis/prevención & control , Vibriosis/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunación/veterinaria , Oxígeno , Lubina/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación
4.
Fish Shellfish Immunol ; 144: 109293, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104696

RESUMEN

Asian seabass (Lates calcarifer) holds significant economic value in fish farming in the Asia-Pacific region. Vibriosis caused by Vibrio harveyi (Vh) is a severe infectious disease affecting intensive farming of this species, for which prevention strategies by vaccination have been developed. This study investigated an alternative approach to injectable vaccination to prevent vibriosis in Asian seabass juveniles. The strategy begins with an immersion prime vaccination with a heat-inactivated Vh vaccine, followed by two oral booster doses administered at 14- and 28-days post-vaccination (dpv). Expression of five immune genes TNFα, IL1ß, CD4, CD8, and IgM in the head kidney and spleen, along with investigation of anti-Vh antibody response (IgM) in both systemic and mucosal systems, was conducted on a weekly basis. The efficacy of the vaccines was assessed by a laboratory challenge test at 43 dpv. The results showed that the immunized fish displayed higher levels of mRNA transcripts of the immune genes after the immersion prime and the first oral booster dose compared to the control group. The expression levels peaked at 14 and 28 dpv and then declined to baseline at 35 and 42 dpv. Serum specific IgM antibodies were detected as early as 7 dpv (the first time point investigated) and exhibited a steady increase, reaching the first peak at 21 dpv, and a second peak at 35 dpv. Although the antibody levels gradually declined over subsequent weeks, they remained significantly higher than the control group throughout the experiment. A similar antibody response pattern was also observed in the mucosal compartment. The laboratory challenge test demonstrated high protection by injection with 1.65 × 104 CFU/fish, with a relative percent of survival (RPS) of 72.22 ± 7.86 %. In conclusion, our findings highlight the potential of an immersion prime-oral booster vaccination strategy as a promising approach for preventing vibriosis in Asian seabass.


Asunto(s)
Vacunas Bacterianas , Lubina , Enfermedades de los Peces , Perciformes , Vibriosis , Animales , Enfermedades de los Peces/prevención & control , Inmersión , Inmunidad , Inmunoglobulina M , Vacunación/métodos , Vacunación/veterinaria , Vacunas de Productos Inactivados , Vibriosis/prevención & control , Vibriosis/veterinaria , Vacunas Bacterianas/administración & dosificación
5.
Fish Shellfish Immunol ; : 109823, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122096

RESUMEN

The Asian seabass (Lates calcarifer) faces significant disease threats, which are exacerbated by intensive farming practices and environmental changes. Therefore, understanding its immune system is crucial. The current study presents a comprehensive analysis of immune-related genes in Asian seabass peripheral blood leukocytes (PBLs) using Iso-seq technology, identifying 16 key pathways associated with 7,857 immune-related genes, comprising 634 unique immune-related genes. The research marks the first comprehensive report on the entire immunoglobulin repertoire in Asian seabass, revealing specific characteristics of immunoglobulin heavy chain constant region transcripts, including IgM (Cµ, ighm), IgT (Cτ, ight), and IgD (Cδ, ighd). The study confirms the presence of membrane-bound form, ighmmb, ightmb, ighdmb of IgM, IgT and IgD and secreted form, ighmsc and ightsc of IgM and IgT, respectively, with similar structural patterns and conserved features in amino acids across immunoglobulin molecules, including cysteine residues crucial for structural integrity observed in other teleost species. In response to bacterial infections by Flavobacterium covae (formerly F. columnare genomovar II) and Streptococcus iniae, both secreted and membrane-bound forms of IgM (ighmmb and ighmsc) and IgT (ightmb and ightsc) show significant expression, indicating their roles in systemic and mucosal immunity. The expression of membrane-bound form IgD gene, ighdmb, predominantly exhibits targeted upregulation in PBLs, suggesting a regulatory role in B cell-mediated immunity. The findings underscore the dynamic and tissue-specific expression of immunoglobulin repertoires, ighmmb, ighmsc, ightmb, ightsc and ighdmb in Asian seabass, indicating a sophisticated immune response to bacterial pathogens. These findings have practical implications for fish aquaculture, and disease control strategies, serving as a valuable resource for advancing research in Asian seabass immunology.

6.
BMC Vet Res ; 20(1): 89, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459562

RESUMEN

BACKGROUND: In this study, the protective immunity and immunogenicity of the monovalent and bivalent Streptococcus iniae and Vibrio harveyi vaccine were evaluated in Asian seabass. To analyze immune responses, 1200 Asian seabass with an average weight of 132.6 ± 25.4 g were divided into eight treatments in triplicates (50 fish per tank) as follows: S. iniae immunized by injection (SI), V. harveyi immunized by injection (VI), bivalent S. iniae and V. harveyi (SVI) immunized by injection, S. iniae immunized by immersion (SIM), V. harveyi (VIM) immunized by immersion, bivalent S. iniae and V. harvei (SVIM) immunized by immersion, phosphate-buffered saline (PBS) by injection (PBSI) and control group without vaccine administration (CTRL). Blood and serum samples were taken at the end of the 30th and 60th days. Then the vaccinated groups were challenged with two bacteria (S. iniae) and (V. harveyi) separately and mortality was recorded for 14 days. RESULTS: This study reveals that there is no significant difference in the hematological parameters on the 30th and 60th days of the experiment in the vaccine-immunized groups compared to the CTRL group (P > 0.05). Meanwhile, there was no significant difference in the amount of serum albumin level, respiratory burst activity, and serum bactericidal activity in the vaccine-immunized groups compared to the CTRL group on the 30th and 60th days of the experiment (P > 0.05). Total protein on the 60th day (in the VI and SVI groups), globulin on the 30th day (in the VI and SVI groups) and the 60th day (in the VI group) compared to the CTRL and PBSI groups had a significant increase (P < 0.05). Complement activity (in the VI and SVI groups) and lysozyme (in the SI and SVI groups) increased significantly compared to the control group (P < 0.05). Serum antibody titer against S. iniae had a significant increase in the SI, VI, SVI and SVIM groups compared to the CTRL and PBSI groups (P < 0.05). Serum antibody titer against V. harveyi had a significant increase in the groups immunized with the vaccine compared to the CTRL and PBSI groups (P < 0.05). A significant increase in the relative percentage survival (RPS) following challenge with S. iniae in the SVI (86.6%), SI (83.3%,) and VI (73.3%) groups were observed compared to the CTRL (43.3%) and PBSI (40%) groups (P < 0.05). Also, a significant increase in the RPS after challenge with V. harveyi in the SVI group, VI 86.6%, SVI 83.3%, VIM 80% and SVIM 76.6% were observed compared to the CTRL (46.6%) and PBSI (50%) groups (P < 0.05). CONCLUSION: Overall, the results demonstrated that the bivalent vaccine of S. iniae and V. harveywas able to produce significant immunogenicity and RPS in Asian seabass.


Asunto(s)
Enfermedades de los Peces , Vibriosis , Vibrio , Animales , Streptococcus iniae , Vacunas de Productos Inactivados , Vibriosis/prevención & control , Vibriosis/veterinaria , Vacunas Bacterianas , Enfermedades de los Peces/microbiología
7.
BMC Vet Res ; 20(1): 267, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902724

RESUMEN

BACKGROUND: Scale drop disease virus (SDDV) threatens Asian seabass (Lates calcarifer) aquaculture production by causing scale drop disease (SDD) in Asian seabass. Research on the development of SDDV vaccines is missing an in-depth examination of long-term immunity and the immune reactions it provokes. This study investigated the long-term immune protection and responses elicited by an SDDV vaccine. The research evaluated the effectiveness of a formalin-inactivated SDDV vaccine (SDDV-FIV) using both prime and prime-booster vaccination strategies in Asian seabass. Three groups were used: control (unvaccinated), single-vaccination (prime only), and booster (prime and booster). SDDV-FIV was administered via intraperitoneal route, with a booster dose given 28 days post-initial vaccination. RESULTS: The immune responses in vaccinated fish (single and booster groups) showed that SDDV-FIV triggered both SDDV-specific IgM and total IgM production. SDDV-specific IgM levels were evident until 28 days post-vaccination (dpv) in the single vaccination group, while an elevated antibody response was maintained in the booster group until 70 dpv. The expression of immune-related genes (dcst, mhc2a1, cd4, ighm, cd8, il8, ifng, and mx) in the head kidney and peripheral blood lymphocytes (PBLs) of vaccinated and challenged fish were significantly upregulated within 1-3 dpv and post-SDDV challenge. Fish were challenged with SDDV at 42 dpv (challenge 1) and 70 dpv (challenge 2). In the first challenge, the group that received booster vaccinations demonstrated notably higher survival rates than the control group (60% versus 20%, P < 0.05). However, in the second challenge, while there was an observable trend towards improved survival rates for the booster group compared to controls (42% versus 25%), these differences did not reach statistical significance (P > 0.05). These findings suggest that the SDDV-FIV vaccine effectively stimulates both humoral and cellular immune responses against SDDV. Booster vaccination enhances this response and improves survival rates up to 42 dpv. CONCLUSIONS: This research provides valuable insights into the development of efficient SDDV vaccines and aids in advancing strategies for immune modulation to enhance disease management in the aquaculture of Asian seabass.


Asunto(s)
Enfermedades de los Peces , Inmunización Secundaria , Vacunas de Productos Inactivados , Vacunas Virales , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Inmunización Secundaria/veterinaria , Iridoviridae/inmunología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/prevención & control , Infecciones por Virus ADN/inmunología , Formaldehído , Anticuerpos Antivirales/sangre , Vacunación/veterinaria , Inmunoglobulina M/sangre , Perciformes/inmunología , Lubina/inmunología
8.
J Fish Dis ; 47(8): e13964, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38798108

RESUMEN

Asian seabass, Lates calcarifer, is an important aquatic species in mariculture. Intensive farming of this species has faced episodes of bacterial diseases, including those due to vibriosis, scale drop, and muscle necrosis disease, big belly disease, photobacteriosis, columnaris, streptococcosis, aeromoniasis, and tenacibaculosis. Vaccination is one of the most efficient, non-antibiotic, and eco-friendly strategies for protecting fish against bacterial diseases, contributing to aquaculture expansion and ensuring food security. As of now, although numerous vaccines have undergone laboratory research, only one commercially available inactivated vaccine, suitable for both immersion and injection administration, is accessible for preventing Streptococcus iniae. Several key challenges in developing vaccines for Asian seabass must be addressed, such as the current limited understanding of immunological responses to vaccines, the costs associated with vaccine production, forms, and routes of vaccine application, and how to increase the adoption of vaccines by farmers. The future of vaccine development for the Asian seabass industry, therefore, is discussed with these key critical issues in mind. The focus is on improving our understanding of Asian seabass immunity, including maternal immunity, immunocompetence, and immune responses post-vaccination, as well as developing tools to assess vaccine effectiveness. The need for an alignment of fish vaccines with state-of-the-art vaccine technologies employed in human and terrestrial animal healthcare is also discussed. This review also discusses the necessity of providing locally-produced autogenous vaccines, especially for immersion and oral vaccines, to benefit small-scale fish farmers, and the potential benefits that might be extended through changes to current husbandry practices such as the vaccination of broodstock and earlier life stages of their off-spring.


Asunto(s)
Vacunas Bacterianas , Enfermedades de los Peces , Vacunación , Animales , Enfermedades de los Peces/prevención & control , Vacunación/veterinaria , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Acuicultura/métodos , Infecciones Bacterianas/prevención & control , Infecciones Bacterianas/veterinaria , Lubina/inmunología
9.
J Fish Dis ; 47(9): e13982, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38899543

RESUMEN

Edwardsiella anguillarum, a highly virulent species within the Edwardsiella genus, causes significant mortality in milkfish farms in Taiwan. This study aimed to investigate the comparison of milkfish susceptibility, a newly identified host species in Taiwanese aquaculture, with other species Nile tilapia (Oreochromis niloticus) and Asian seabass (Lates calcarifer), to E. anguillarum, elucidating its pathogenicity across both seawater and freshwater aquaculture environments. The results showed milkfish exhibited the highest mortality rate of 85% within 48 h of infection, whereas Nile tilapia exhibited a mortality rate of 70% between the second- and tenth-day post challenge, and seabass exhibited a mortality rate of 25% between the second- and sixth-day post challenge. Gross lesions observed in milkfish included splenomegaly and haemorrhage, whereas Nile tilapia exhibited signs of ascites, exophthalmia and brain haemorrhage. Seabass displayed spleen granulomas and haemorrhage at the injection site. Histopathological analysis revealed common features across all three species, including multifocal necrosis, bacterial presence in the necrotic areas, serositis and oedema. Asian seabass also exhibited chronic lesions in the form of splenic granulomas. This study highlights the high susceptibility of milkfish and Nile tilapia to E. anguillarum, emphasizing the urgent need for further investigation into targeted vaccine development for these fish species. These results not only deepen our understanding of the differing levels of pathogenicity among the three species but also offer valuable insights for improving disease prevention and management strategies in aquaculture, including those applied within polyculture systems and for the maintenance of aquaculture water environments.


Asunto(s)
Cíclidos , Edwardsiella , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/patología , Enfermedades de los Peces/prevención & control , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/patología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/prevención & control , Edwardsiella/patogenicidad , Virulencia , Acuicultura , Taiwán , Peces
10.
J Fish Dis ; : e13987, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39072799

RESUMEN

Asian seabass (Lates calcarifer) is an economically important fish species that is widely cultivated in Thailand. However, aquaculture of Asian seabass is limited by infectious diseases. One of the most serious diseases is photobacteriosis, caused by Photobacterium damselae. Vaccination is recognized as an efficient disease prevention and pathogen control method for strengthening the aquaculture industry. To promote vaccine development, the characterization of pathogenic bacteria and their pathogenesis is required. In this study, isolates of P. damselae were obtained from commercial aquaculture farms in Thailand during 2019-2021. Analyses of 16S rRNA and the urease subunit alpha genes identified the isolates as P. damselae subsp. damselae (Phdd). Antibiotic susceptibility analyses showed that all Phdd isolates were resistant to amoxicillin (10 µg). Haemolysis and phospholipase activities were used to categorize P. damselae into three groups based on their biological activities. The pathogenicity of four candidates (SK136, PD001, PD002 and T11L) was tested in Asian seabass. Isolate SK136 showed the highest virulence, with a lethal dose (LD50) of 1.47 × 105 CFU/fish, whereas isolate PD001 did not show any virulence. Genotypic characterization, based on multi-locus sequence typing analysis, demonstrated that all candidates were novel strains with new sequence types (64, 65, 66 and 67). Preliminary vaccination using formalin-killed cells (FKCs) protected Asian seabass from artificial challenges. Taken together, these results provide fundamental knowledge for vaccine development against Phdd infection in Asian seabass.

11.
J Fish Dis ; 47(7): e13947, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523361

RESUMEN

Nocardiosis, caused by Nocardia seriolae, has been a prominent disease in Southeast Asian aquaculture in the last three decades. This granulomatous disease reported in various fish species is responsible for significant economic losses. This study investigated the pathogenicity of N. seriolae in three cultured species in Taiwan: Nile tilapia (omnivore), milkfish (herbivore) and Asian seabass (carnivore). Administration of an infective dose of 1 × 106 CFU/ fish in tilapia, seabass and milkfish demonstrated mortalities of 100%, 90% and 75%, respectively. Additionally, clinical signs namely, granuloma and lesions displayed varying intensities between the groups and pathological scores. Polymerase chain reaction (PCR) amplification specific for N. seriolae was confirmed to be positive (432 bp) using NS1/NG1 primers. Post-mortem lesions revealed the absence of granulomas in tilapia and milkfish and their presence in the seabass. Interestingly, the gut in tilapia showed an influx of eosinophils suggesting its role during the acute stages of infection. However, post-challenge, surviving milkfish exhibited granulomatous formations, while surviving seabass progressed toward healing and tissue repair within sampled tissues. Overall, in conclusion, these results demonstrate the versatility in the immunological ability of individual Perciformes to contain this pathogen as a crucial factor that influences its degree of susceptibility.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Nocardiosis , Nocardia , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/patología , Nocardia/patogenicidad , Nocardia/genética , Nocardia/aislamiento & purificación , Nocardiosis/veterinaria , Nocardiosis/microbiología , Taiwán , Acuicultura , Granuloma/veterinaria , Granuloma/microbiología , Granuloma/patología
12.
J Fish Biol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090072

RESUMEN

The barramundi (Lates calcarifer), a significant aquaculture species, typically displays silver to bronze coloration. However, attention is now drawn to rare variants like the "panda" phenotype, characterized by blotch-like patterns of black (PB) and golden (PG) patches. This phenotype presents an opportunity to explore the molecular mechanisms underlying color variations in teleosts. Unlike stable color patterns in many fish, the "panda" variant demonstrates phenotypic plasticity, responding dynamically to unknown cues. We propose a complex interplay of genetic factors and epigenetic modifications, focusing on DNA methylation. Through a multiomics approach, we analyze transcriptomic and methylation patterns between PB and PG patches. Our study reveals differential gene expression related to melanosome trafficking and chromatophore differentiation. Although the specific gene responsible for the PB-PG difference remains elusive, candidate genes like asip1, asip2, mlph, and mreg have been identified. Methylation emerges as a potential contributor to the "panda" phenotype, with changes in gene promoters like hand2 and dynamin possibly influencing coloration. This research lays the groundwork for further exploration into rare barramundi color patterns, enhancing our understanding of color diversity in teleosts. Additionally, it underscores the "panda" phenotype's potential as a model for studying adult skin coloration.

13.
BMC Genomics ; 24(1): 449, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37558985

RESUMEN

BACKGROUND: For Asian seabass (Lates calcarifer, Bloch 1790) cultured at sea cages various aquatic pathogens, complex environmental and stress factors are considered as leading causes of disease, causing tens of millions of dollars of annual economic losses. Over the years, we conducted farm-based challenges by exposing Asian seabass juveniles to complex natural environmental conditions. In one of these challenges, we collected a total of 1,250 fish classified as either 'sensitive' or 'robust' individuals during the 28-day observation period. RESULTS: We constructed a high-resolution linkage map with 3,089 SNPs for Asian seabass using the double digest Restriction-site Associated DNA (ddRAD) technology and a performed a search for Quantitative Trait Loci (QTL) associated with robustness. The search detected a major genome-wide significant QTL for increased robustness in pathogen-infected marine environment on linkage group 11 (ASB_LG11; 88.9 cM to 93.6 cM) with phenotypic variation explained of 81.0%. The QTL was positioned within a > 800 kb genomic region located at the tip of chromosome ASB_LG11 with two Single Nucleotide Polymorphism markers, R1-38468 and R1-61252, located near to the two ends of the QTL. When the R1-61252 marker was validated experimentally in a different mass cross population, it showed a statistically significant association with increased robustness. The majority of thirty-six potential candidate genes located within the QTL have known functions related to innate immunity, stress response or disease. By utilizing this ddRAD-based map, we detected five mis-assemblies corresponding to four chromosomes, namely ASB_LG8, ASB_LG9, ASB_LG15 and ASB_LG20, in the current Asian seabass reference genome assembly. CONCLUSION: According to our knowledge, the QTL associated with increased robustness is the first such finding from a tropical fish species. Depending on further validation in other stocks and populations, it might be potentially useful for selecting robust Asian seabass lines in selection programs.


Asunto(s)
Perciformes , Sitios de Carácter Cuantitativo , Animales , Mapeo Cromosómico , Perciformes/genética , Cromosomas , Genómica , Polimorfismo de Nucleótido Simple , Ligamiento Genético
14.
Fish Shellfish Immunol ; 139: 108854, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37253409

RESUMEN

Nervous necrosis virus (NNV) has spread throughout the world, affecting more than 120 freshwater and marine fish species. While vaccination effectively prevents disease outbreaks, the difficulty of producing sufficient viruses using cell lines continues to be a significant disadvantage for producing inactivated vaccines. This study, therefore, explored the application of synthetic peptides as potential vaccine candidates for the prevention of NNV in Asian seabass (Lates calcarifer). Using the epitope prediction tool and molecular docking, three predicted immunogenic B cell epitopes (30-32 aa) derived from NNV coat protein were selected and synthesised, corresponding to amino acid positions 5 to 34 (P1), 133 to 162 (P2) and 181 to 212 (P3). All the predicted peptides interact with Asian sea bass's MHC class II by docking. The antigenicity of these peptides was determined through ELISA and all peptides were able to react with NNV-specific antibodies. Subsequently, the immunogenicity of these synthetic peptides was investigated by immunisation of Asian seabass with individual peptides (30 µg/fish) and a peptide cocktail (P1+P2+P3, 10 µg each/fish) by intraperitoneal injection, followed by a booster dose at day 28 post-primary immunisation. There was a subset of immunised fish that were able to induce upregulation of immune genes (IL-1ß, TNFα, MHCI, MHCII ß, CD4, CD8, and IgM-like) in the head kidney and spleen post immunization. Importantly, antibodies derived from fish immunised with synthetic peptides reacted with whole NNV virions, and sera from P1 group could neutralise NNV in an in vitro assay. Taken together, these findings indicate that synthetic linear peptides based on predicted B cell epitopes exhibited both antigenic and immunogenic properties, suggesting that they could be potential vaccine candidates for the prevention of NNV in fish.


Asunto(s)
Enfermedades de los Peces , Perciformes , Animales , Epítopos de Linfocito B , Simulación del Acoplamiento Molecular , Péptidos , Peces , Necrosis
15.
Fish Shellfish Immunol ; 140: 108983, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37541637

RESUMEN

In aquaculture, due to the requirements for high-density culture, the diseases caused by bacterial pathogens have become a serious issue. To solve this problem, we performed synbiotic application of RNA and Bacillus subtilis as a sustainable and eco-friendly approach to improve the health and immunity of Asian seabass (Lates calcarifer) during cultivation without using any harmful antibiotics or chemicals. Among various forms of nucleic acids, such as mononucleotides and DNA, RNA was found to be most effective in promoting the growth performance of probiotic B. subtilis in all the tested minimal medium conditions. Accordingly, we used the synbiotic combination of B. subtilis and RNA for Asian seabass cultivation. After feed supplementation for fourteen days, the fish that received the combination treatment exhibited a significant increase in innate cellular and humoral immune parameters, including phagocytic activity, phagocytic index, respiratory burst, serum lysozyme and bactericidal activities, as well as upregulated expression of immune-related genes, including HEPC1, A2M, C3, CC, CLEC, LYS, HSP70, and HSP90. Furthermore, significant increases were observed in the ileal villus height and goblet cell numbers in the intestinal villi in all fish treatment groups. The combination treatment did not cause histopathological abnormalities in the intestine and liver, suggesting that the synbiotic treatment is safe for use in fish. The treated Asian seabass also exhibited a significantly increased survival rate after Aeromonas hydrophila challenge. These results indicate that the synbiotic mixture of B. subtilis and RNA can be considered a beneficial feed additive and immunostimulant for Asian seabass cultivation.


Asunto(s)
Enfermedades de los Peces , Perciformes , Probióticos , Animales , Bacillus subtilis/genética , Resistencia a la Enfermedad , Probióticos/farmacología , ARN , Alimentación Animal/análisis
16.
Fish Shellfish Immunol ; 138: 108802, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178986

RESUMEN

Early disease prevention by vaccination requires understanding when fry fish develop specific immunity to a given pathogen. In this research, we explored the immune responses of Asian seabass (Lates calcarifer) at the stages of 35- and 42- days post-hatching (dph) to an immersive heat-killed Streptococcus iniae (Si) vaccine to determine whether fish can produce specific antibodies against the pathogen. The vaccinated fish of each stage (V35 and V42) were immersed with the Si vaccine at 107 CFU/ml for 3 h, whereas the control groups (C35 and C42) were immersed with tryptic soy broth (TSB) in the same manner. Specific antibodies were measured by enzyme-linked immunosorbent assay (ELISA) before and post-immunization (i.e., 0, 7, and 14 days post-immunization, dpi). Expression of innate (TNFα and IL-1ß) and adaptive (MHCI, MHCII, CD4, CD8, IgM-like, IgT-like, and IgD-like) immune-related genes were evaluated at the same time points with the addition of 1 dpi. The results showed that a subset of immunized fish from both V35 and V42 fry could elicit specific antibodies (IgM) against Si at 14 dpi. All tested innate and adaptive immune genes upregulated at 7 dpi among fish in V35 group. Interestingly, 42 dph fish appeared to respond to the Si vaccine faster than that of 35 dph, as a significant increase in transcripts was observed in CD4, IL-1ß, IgM-like, and IgD-like at 1 dpi; and specific antibody titers of some fish, although not all, were higher than a threshold (p = 0.05) since 7 dpi. In conclusion, this study reveals that 35-42 dph Asian seabass fry can elicit specific immunity to Si immersion vaccine, suggesting that early vaccination of 35 dph fry Asian seabass is feasible.


Asunto(s)
Enfermedades de los Peces , Perciformes , Animales , Streptococcus iniae , Vacunas de Productos Inactivados , Calor , Inmersión , Inmunización , Vacunación/veterinaria , Vacunas Bacterianas , Inmunoglobulina M , Enfermedades de los Peces/prevención & control
17.
J Vet Pharmacol Ther ; 46(2): 136-143, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36691109

RESUMEN

Starvation has influence on physiology and pharmacokinetic (PK) characteristics of many drugs in land animals. However, similar PK information in fish is lacking. The current study examined the effects of starvation on fish PK, taking florfenicol (FF) in Asian seabass as an example. FF was orally administered at a single dose of 10 mg/kg into 35-day starved fish reared at 25 and 30°C and the serum FF concentration was analyzed by HPLC-FLD. At 30°C, the absorption and elimination half-lives of the starved fish were increased by 30% (from 0.44 to 0.57 h) and 55% (from 7.2 to 11.18 h), respectively. The volume of distribution, clearance, and area under the curve were changed from 1.25 to 0.71 L/kg, 0.120 to 0.044 L/kg/h, and 88 to 228 h·µg/ml, respectively. Similar starvation-induced PK changes were also observed at 25°C. The serum biochemical parameters, mainly the alanine aminotransferase, aspartate aminotransferase, and glucose levels, were significantly reduced in the starvation group. Overall, FF absorption, distribution, and elimination rates were reduced by starvation, resulting in four to five times lower optimal dosage than the non-starved fish. Drug treatment in starved fish should be treated with caution as overdosing and/or tissue residues could perceivably occur.


Asunto(s)
Peces , Inanición , Tianfenicol , Animales , Tianfenicol/administración & dosificación , Tianfenicol/farmacocinética , Peces/sangre
18.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142628

RESUMEN

The Asian seabass is of importance both as a farmed and wild animal. With the emergence of infectious diseases, there is a need to understand and characterize the immune system. In humans, the highly polymorphic MHC class I (MHC-I) molecules play an important role in antigen presentation for the adaptive immune system. In the present study, we characterized a single MHC-I gene in Asian seabass (Lates calcarifer) by amplifying and sequencing the MHC-I alpha 1 and alpha 2 domains, followed by multi-sequence alignment analyses. The results indicated that the Asian seabass MHC-I α1 and α2 domain sequences showed an overall similarity within Asian seabass and retained the majority of the conserved binding residues of human leukocyte antigen-A2 (HLA-A2). Phylogenetic tree analysis revealed that the sequences belonged to the U lineage. Mapping the conserved binding residue positions on human HLA-A2 and grass carp crystal structure showed a high degree of similarity. In conclusion, the availability of MHC-I α1 and α2 sequences enhances the quality of MHC class I genetic information in Asian seabass, providing new tools to analyze fish immune responses to pathogen infections, and will be applicable in the study of the phylogeny and the evolution of antigen-specific receptors.


Asunto(s)
Lubina , Perciformes , Animales , Lubina/genética , Peces , Antígeno HLA-A2/genética , Humanos , Perciformes/genética , Filogenia
19.
Fish Shellfish Immunol ; 108: 7-13, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33217566

RESUMEN

Asian seabass, Lates calcarifer farming in Southeast Asia, encounters serious disease challenges caused by Streptococcus agalactiae and Streptococcus iniae. However, a vaccine for disease prevention is not yet available. In this study, we investigated the mucosal and systemic antibody (IgM) response kinetics of the Asian seabass following primary immunization with oil-based formalin-killed vaccines (FKVs) prepared from S. agalactiae and S. iniae (monovalent Sa, monovalent Si, and bivalent Sa-Si) and secondary booster with the respective water-based FKVs. The efficacy of vaccines was subsequently evaluated by an experimental challenge. The results revealed similar antibody response kinetics in both systemic and mucosal systems. However, the immune response in the fish vaccinated with the monovalent vaccines was superior to those fish received the bivalent vaccine in terms of specific antibody titer. The fish that received monovalent vaccines required 1-2 weeks to raise a significant level of specific antibody titer in both systemic and mucosal systems while those vaccinated with bivalent vaccine required three weeks. Following booster at day 21, both systemic and mucosal antibody titers in all vaccinated groups had reached the peak at day 28 and gradually declined in the following weeks but remained significantly higher than control until the end of the experiment (day 63). In the challenge test, both monovalent and bivalent vaccines were found to be highly efficacious, with the relative percentage survival (RPS) ranging from 75 to 85%. In summary, this study explored the 63-days antibody response kinetics (both mucosal and systemic systems) of Asian seabass to monovalent and bivalent inactivated vaccines and confirmed that the combination of S. agalactiae and S. iniae in a single injectable vaccine is possible.


Asunto(s)
Lubina , Enfermedades de los Peces/inmunología , Inmunidad Innata , Inmunidad Mucosa , Infecciones Estreptocócicas/veterinaria , Vacunas Estreptocócicas/inmunología , Streptococcus agalactiae/inmunología , Streptococcus iniae/inmunología , Animales , Formación de Anticuerpos , Infecciones Estreptocócicas/inmunología , Vacunas Combinadas/inmunología
20.
J Fish Dis ; 44(12): 1985-1992, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34411310

RESUMEN

'Big belly' disease is a chronic, granulomatous bacterial enteritis and peritonitis, first reported in 3- to 4-week-old Asian seabass or barramundi, Lates calcarifer Bloch fry. Affected fry are emaciated and have a swollen abdomen, and the condition is referred to as 'skinny pot-belly' or 'big belly' disease. In this study, histopathological examinations of diseased fish from a batch of 2-month-old, 6- to 8-cm L. calcarifer fingerlings, kept in seawater recirculating aquaculture systems, showed pathology resembling 'big belly' disease. Ethanol-fixed tissues were tested positive using specific PCR primers based on 16S rRNA genes. In situ hybridization using dioxygenin-labelled positive PCR products on formalin-fixed paraffin-embedded tissues showed positive reactions with intralesional, clusters of the large, 'big belly' coccobacilli. A phylogenetic tree constructed based on analyses of these 16S rRNA gene PCR products from five positive fish suggests that the 'big belly' bacterium is most likely a novel Vibrio species.


Asunto(s)
Enfermedades de los Peces/microbiología , Vibriosis/veterinaria , Vibrio/aislamiento & purificación , Animales , Acuicultura , Hibridación in Situ , Perciformes , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S , Vibrio/clasificación , Vibrio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA