Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(6): 1263-1278.e20, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36868218

RESUMEN

A major challenge in understanding SARS-CoV-2 evolution is interpreting the antigenic and functional effects of emerging mutations in the viral spike protein. Here, we describe a deep mutational scanning platform based on non-replicative pseudotyped lentiviruses that directly quantifies how large numbers of spike mutations impact antibody neutralization and pseudovirus infection. We apply this platform to produce libraries of the Omicron BA.1 and Delta spikes. These libraries each contain ∼7,000 distinct amino acid mutations in the context of up to ∼135,000 unique mutation combinations. We use these libraries to map escape mutations from neutralizing antibodies targeting the receptor-binding domain, N-terminal domain, and S2 subunit of spike. Overall, this work establishes a high-throughput and safe approach to measure how ∼105 combinations of mutations affect antibody neutralization and spike-mediated infection. Notably, the platform described here can be extended to the entry proteins of many other viruses.


Asunto(s)
COVID-19 , Virus ARN , Humanos , SARS-CoV-2/genética , Mutación , Anticuerpos Neutralizantes , Anticuerpos Antivirales
2.
Cell ; 185(12): 2116-2131.e18, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35662412

RESUMEN

Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.


Asunto(s)
Anticuerpos Monoclonales , Vacunas contra la COVID-19/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Antivirales , COVID-19 , Vacunas contra la COVID-19/administración & dosificación , Epítopos , Humanos , Pruebas de Neutralización , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
3.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35568035

RESUMEN

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , COVID-19/virología , Cricetinae , Células Epiteliales , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética
4.
Immunity ; 56(9): 2137-2151.e7, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37543032

RESUMEN

How infection by a viral variant showing antigenic drift impacts a preformed mature human memory B cell (MBC) repertoire remains an open question. Here, we studied the MBC response up to 6 months after SARS-CoV-2 Omicron BA.1 breakthrough infection in individuals previously vaccinated with three doses of the COVID-19 mRNA vaccine. Longitudinal analysis, using single-cell multi-omics and functional analysis of monoclonal antibodies from RBD-specific MBCs, revealed that a BA.1 breakthrough infection mostly recruited pre-existing cross-reactive MBCs with limited de novo response against BA.1-restricted epitopes. Reorganization of clonal hierarchy and new rounds of germinal center reactions, however, combined to maintain diversity and induce progressive maturation of the MBC repertoire against common Hu-1 and BA.1, but not BA.5-restricted, SARS-CoV-2 Spike RBD epitopes. Such remodeling was further associated with a marked improvement in overall neutralizing breadth and potency. These findings have fundamental implications for the design of future vaccination booster strategies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Células B de Memoria , Infección Irruptiva , Epítopos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
5.
Immunity ; 55(8): 1501-1514.e3, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35777362

RESUMEN

SARS-CoV-2 Omicron variant has presented significant challenges to current antibodies and vaccines. Herein, we systematically compared the efficacy of 50 human monoclonal antibodies (mAbs), covering the seven identified epitope classes of the SARS-CoV-2 RBD, against Omicron sub-variants BA.1, BA.1.1, BA.2, and BA.3. Binding and pseudovirus-based neutralizing assays revealed that 37 of the 50 mAbs lost neutralizing activities, whereas the others displayed variably decreased activities against the four Omicron sub-variants. BA.2 was found to be more sensitive to RBD-5 antibodies than the other sub-variants. Furthermore, a quaternary complex structure of BA.1 RBD with three mAbs showing different neutralizing potencies against Omicron provided a basis for understanding the immune evasion of Omicron sub-variants and revealed the lack of G446S mutation accounting for the sensitivity of BA.2 to RBD-5 mAbs. Our results may guide the application of the available mAbs and facilitate the development of universal therapeutic antibodies and vaccines against COVID-19.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Anticuerpos Monoclonales , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Glicoproteínas de Membrana , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral
6.
J Virol ; 98(3): e0190223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421180

RESUMEN

The role of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.1 Spike (S) on disease pathogenesis was investigated. For this, we generated recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 S gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 strain genome. The recombinant viruses were characterized in vitro and in vivo. Viral entry, cell-cell fusion, plaque size, and the replication kinetics of the rWA1-Omi-S virus were markedly impaired when compared to the rWA1-D614G virus, demonstrating a lower fusogenicity and ability to spread cell-to-cell of rWA1-Omi-S. To assess the contribution of the Omicron BA.1 S protein to SARS-CoV-2 pathogenesis, the pathogenicity of rWA1-D614G and rWA1-Omi-S viruses was compared in a feline model. While the rWA1-D614G-inoculated cats were lethargic and showed increased body temperatures on days 2 and 3 post-infection (pi), rWA1-Omi-S-inoculated cats remained subclinical and gained weight throughout the 14-day experimental period. Animals inoculated with rWA1-D614G presented higher infectious virus shedding in nasal secretions, when compared to rWA1-Omi-S-inoculated animals. In addition, tissue replication of the rWA1-Omi-S was markedly reduced compared to the rWA1-D614G, as evidenced by lower viral load in tissues on days 3 and 5 pi. Histologic examination of the nasal turbinate and lungs revealed intense inflammatory infiltration in rWA1-D614G-inoculated animals, whereas rWA1-Omi-S-inoculated cats presented only mild to modest inflammation. Together, these results demonstrate that the S protein is a major virulence determinant for SARS-CoV-2 playing a major role for the attenuated phenotype of the Omicron virus. IMPORTANCE: We have demonstrated that the Omicron BA.1.1 variant presents lower pathogenicity when compared to D614G (B.1) lineage in a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are over 50 mutations across the Omicron genome, of which more than two-thirds are present in the Spike (S) protein. To assess the role of the Omicron BA.1 S on virus pathogenesis, recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 Spike gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 were generated. While the Omicron BA.1 S promoted early entry into cells, it led to impaired fusogenic activity and cell-cell spread. Infection studies with the recombinant viruses in a relevant naturally susceptible feline model of SARS-CoV-2 infection here revealed an attenuated phenotype of rWA1-Omi-S, demonstrating that the Omi-S is a major determinant of the attenuated disease phenotype of Omicron strains.


Asunto(s)
COVID-19 , Orthopoxvirus , SARS-CoV-2 , Animales , Gatos , COVID-19/virología , Fenotipo , SARS-CoV-2/clasificación , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virulencia , Factores de Virulencia/genética
7.
J Virol ; 98(7): e0067824, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38953380

RESUMEN

SARS-CoV-2 variants of concern (VOCs) differentially trigger neutralizing and antibody-dependent cellular cytotoxic (ADCC) antibodies with variable cross-reactivity. Omicron BA.4/5 was approved for inclusion in bivalent vaccination boosters, and therefore the antigenic profile of antibodies elicited by this variant is critical to understand. Here, we investigate the ability of BA.4/5-elicited antibodies following the first documented (primary) infection (n = 13) or breakthrough infection after vaccination (n = 9) to mediate neutralization and FcγRIIIa signaling across multiple SARS-CoV-2 variants including XBB.1.5 and BQ.1. Using a pseudovirus neutralization assay and a FcγRIIIa crosslinking assay to measure ADCC potential, we show that unlike SARS-CoV-2 Omicron BA.1, BA.4/5 infection triggers highly cross-reactive functional antibodies. Cross-reactivity was observed both in the absence of prior vaccination and in breakthrough infections following vaccination. However, BQ.1 and XBB.1.5 neutralization and FcγRIIIa signaling were significantly compromised compared to other VOCs, regardless of prior vaccination status. BA.4/5 triggered FcγRIIIa signaling was significantly more resilient against VOCs (<10-fold decrease in magnitude) compared to neutralization (10- to 100-fold decrease). Overall, this study shows that BA.4/5 triggered antibodies are highly cross-reactive compared to those triggered by other variants. Although this is consistent with enhanced neutralization and FcγRIIIa signaling breadth of BA.4/5 vaccine boosters, the reduced activity against XBB.1.5 supports the need to update vaccines with XBB sublineage immunogens to provide adequate coverage of these highly antibody evasive variants. IMPORTANCE: The continued evolution of SARS-CoV-2 has resulted in a number of variants of concern. Of these, the Omicron sublineage is the most immune evasive. Within Omicron, the BA.4/5 sublineage drove the fifth wave of infection in South Africa prior to becoming the dominant variant globally. As a result this spike sequence was approved as part of a bivalent vaccine booster, and rolled out worldwide. We aimed to understand the cross-reactivity of neutralizing and Fc mediated cytotoxic functions elicited by BA.4/5 infection following infection or breakthrough infection. We find that, in contrast to BA.1 which triggered fairly strain-specific antibodies, BA.4/5 triggered antibodies that are highly cross-reactive for neutralization and antibody-dependent cellular cytotoxicity potential. Despite this cross-reactivity, these antibodies are compromised against highly resistant variants such as XBB.1.5 and BQ.1. This suggests that next-generation vaccines will require XBB sublineage immunogens in order to protect against these evasive variants.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Citotoxicidad Celular Dependiente de Anticuerpos , COVID-19 , Reacciones Cruzadas , Receptores de IgG , SARS-CoV-2 , Transducción de Señal , Receptores de IgG/inmunología , Humanos , Anticuerpos Neutralizantes/inmunología , Reacciones Cruzadas/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Transducción de Señal/inmunología , Pruebas de Neutralización , Vacunas contra la COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
8.
J Infect Dis ; 230(1): e4-e16, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052718

RESUMEN

BACKGROUND: Mutations present in emerging SARS-CoV-2 variants permit evasion of neutralization with prototype vaccines. A novel Omicron BA.1 subvariant-specific vaccine (NVX-CoV2515) was tested alone or as a bivalent preparation with the prototype vaccine (NVX-CoV2373) to assess antibody responses to SARS-CoV-2. METHODS: Participants aged 18 to 64 years immunized with 3 doses of prototype mRNA vaccines were randomized 1:1:1 to receive a single dose of NVX-CoV2515, NVX-CoV2373, or the bivalent mixture in a phase 3 study investigating heterologous boosting with SARS-CoV-2 recombinant spike protein vaccines. Immunogenicity was measured 14 and 28 days after vaccination for the SARS-CoV-2 Omicron BA.1 sublineage and ancestral strain. Safety profiles of vaccines were assessed. RESULTS: Of participants who received trial vaccine (N = 829), those administered NVX-CoV2515 (n = 286) demonstrated a superior neutralizing antibody response to BA.1 vs NVX-CoV2373 (n = 274) at day 14 (geometric mean titer ratio, 1.6; 95% CI, 1.33-2.03). Seroresponse rates were 73.4% (91/124; 95% CI, 64.7-80.9) for NVX-CoV2515 vs 50.9% (59/116; 95% CI, 41.4-60.3) for NVX-CoV2373. All formulations were similarly well tolerated. CONCLUSIONS: NVX-CoV2515 elicited a superior neutralizing antibody response against the Omicron BA.1 subvariant as compared with NVX-CoV2373 when administered as a fourth dose. Safety data were consistent with the established safety profile of NVX-CoV2373. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov (NCT05372588).


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Adulto , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Masculino , Femenino , COVID-19/prevención & control , COVID-19/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Adulto Joven , Persona de Mediana Edad , Adolescente , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos
9.
J Virol ; 97(10): e0101123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796123

RESUMEN

IMPORTANCE: Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.


Asunto(s)
Genoma Viral , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Genoma Viral/genética
10.
Rev Med Virol ; 33(1): e2398, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150052

RESUMEN

The emergence of the SARS-CoV-2 Omicron variant (B.1.1.529) has created great global distress. This variant of concern shows multiple sublineages, importantly B.1.1.529.1 (BA.1), BA.1 + R346K (BA.1.1), and B.1.1.529.2 (BA.2), each with unique properties. However, little is known about this new variant, specifically its sub-variants. A narrative review was conducted to summarise the latest findings on transmissibility, clinical manifestations, diagnosis, and efficacy of current vaccines and treatments. Omicron has shown two times higher transmission rates than Delta and above ten times more infectious than other variants over a similar period. With more than 30 mutations in the spike protein's receptor-binding domain, there is reduced detection by conventional RT-PCR and rapid antigen tests. Moreover, the two-dose vaccine effectiveness against Delta and Omicron variants was found to be approximately 21%, suggesting an urgent need for a booster dose to prevent the possibility of breakthrough infections. However, the current vaccines remain highly efficacious against severe disease, hospitalisation, and mortality. Japanese preliminary lab data elucidated that the Omicron sublineage BA.2 shows a higher illness severity than BA.1. To date, the clinical management of Omicron remains unchanged, except for monoclonal antibodies. Thus far, only Bebtelovimab could sufficiently treat all three sub-variants of Omicron. Further studies are warranted to understand the complexity of Omicron and its sub-variants. Such research is necessary to improve the management and prevention of Omicron infection.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Anticuerpos Monoclonales , Infección Irruptiva , Anticuerpos Antivirales , Anticuerpos Neutralizantes
11.
BMC Infect Dis ; 24(1): 294, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448822

RESUMEN

BACKGROUND: The latent and incubation periods characterize the transmission of infectious viruses and are the basis for the development of outbreak prevention and control strategies. However, systematic studies on the latent period and associated factors with the incubation period for SAS-CoV-2 variants are still lacking. We inferred the two durations of Delta, BA.1, and BA.2 cases and analyzed the associated factors. METHODS: The Delta, BA.1, and BA.2 (and its lineages BA.2.2 and BA.2.76) cases with clear transmission chains and infectors from 10 local SAS-CoV-2 epidemics in China were enrolled. The latent and incubation periods were fitted by the Gamma distribution, and associated factors were analyzed using the accelerated failure time model. RESULTS: The mean latent period for 672 Delta, 208 BA.1, and 677 BA.2 cases was 4.40 (95%CI: 4.24 ~ 4.63), 2.50 (95%CI: 2.27 ~ 2.76), and 2.58 (95%CI: 2.48 ~ 2.69) days, respectively, with 85.65% (95%CI: 83.40 ~ 87.77%), 97.80% (95%CI: 96.35 ~ 98.89%), and 98.87% (95%CI: 98.40 ~ 99.27%) of them starting to shed viruses within 7 days after exposure. In 405 Delta, 75 BA.1, and 345 BA.2 symptomatic cases, the mean latent period was 0.76, 1.07, and 0.79 days shorter than the mean incubation period [5.04 (95%CI: 4.83 ~ 5.33), 3.42 (95%CI: 3.00 ~ 3.89), and 3.39 (95%CI: 3.24 ~ 3.55) days], respectively. No significant difference was observed in the two durations between BA.1 and BA.2 cases. After controlling for the sex, clinical severity, vaccination history, number of infectors, the length of exposure window and shedding window, the latent period [Delta: exp(ß) = 0.81, 95%CI: 0.66 ~ 0.98, p = 0.034; Omicron: exp(ß) = 0.82, 95%CI: 0.71 ~ 0.94, p = 0.004] and incubation period [Delta: exp(ß) = 0.69, 95%CI: 0.55 ~ 0.86, p < 0.001; Omicron: exp(ß) = 0.83, 95%CI: 0.72 ~ 0.96, p = 0.013] were significantly shorter in 18 ~ 49 years but did not change significantly in ≥ 50 years compared with 0 ~ 17 years. CONCLUSION: Pre-symptomatic transmission can occur in Delta, BA.1, and BA.2 cases. The latent and incubation periods between BA.1 and BA.2 were similar but shorter compared with Delta. Age may be associated with the latent and incubation periods of SARS-CoV-2.


Asunto(s)
Epidemias , Periodo de Incubación de Enfermedades Infecciosas , Humanos , Estudios Transversales , China/epidemiología , Brotes de Enfermedades
12.
BMC Infect Dis ; 24(1): 670, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965495

RESUMEN

BACKGROUND: The clinical benefit of coronavirus disease 2019 (COVID-19) treatments against new circulating variants remains unclear. We sought to describe characteristics and clinical outcomes of highest risk patients with COVID-19 receiving early COVID-19 treatments in Scotland. METHODS: Retrospective cohort study of non-hospitalized patients diagnosed with COVID-19 from December 1, 2021-October 25, 2022, using Scottish administrative health data. We included adult patients who met ≥ 1 of the National Health Service highest risk criteria for early COVID-19 treatment and received outpatient treatment with sotrovimab, nirmatrelvir/ritonavir or molnupiravir, or no early COVID-19 treatment. Index date was defined as the earliest of COVID-19 diagnosis or early COVID-19 treatment. Baseline characteristics and acute clinical outcomes in the 28 days following index were reported. Values of ≤ 5 were suppressed. RESULTS: In total, 2548 patients were included (492: sotrovimab, 276: nirmatrelvir/ritonavir, 71: molnupiravir, and 1709: eligible highest risk untreated). Patients aged ≥ 75 years accounted for 6.9% (n = 34/492), 21.0% (n = 58/276), 16.9% (n = 12/71) and 13.2% (n = 225/1709) of the cohorts, respectively. Advanced renal disease was reported in 6.7% (n = 33/492) of sotrovimab-treated and 4.7% (n = 81/1709) of untreated patients, and ≤ 5 nirmatrelvir/ritonavir-treated and molnupiravir-treated patients. All-cause hospitalizations were experienced by 5.3% (n = 25/476) of sotrovimab-treated patients, 6.9% (n = 12/175) of nirmatrelvir/ritonavir-treated patients, ≤ 5 (suppressed number) molnupiravir-treated patients and 13.3% (n = 216/1622) of untreated patients. There were no deaths in the treated cohorts; mortality was 4.3% (n = 70/1622) among untreated patients. CONCLUSIONS: Sotrovimab was often used by patients who were aged < 75 years. Among patients receiving early COVID-19 treatment, proportions of 28-day all-cause hospitalization and death were low.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Progresión de la Enfermedad , SARS-CoV-2 , Humanos , Antivirales/uso terapéutico , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Anciano , SARS-CoV-2/efectos de los fármacos , COVID-19/mortalidad , Adulto , Resultado del Tratamiento , Escocia/epidemiología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Ritonavir/uso terapéutico , Anciano de 80 o más Años , Citidina/análogos & derivados , Hidroxilaminas
13.
Euro Surveill ; 29(13)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38551095

RESUMEN

BackgroundScarce European data in early 2021 suggested lower vaccine effectiveness (VE) against SARS-CoV-2 Omicron lineages than previous variants.AimWe aimed to estimate primary series (PS) and first booster VE against symptomatic BA.1/BA.2 infection and investigate potential biases.MethodsThis European test-negative multicentre study tested primary care patients with acute respiratory symptoms for SARS-CoV-2 in the BA.1/BA.2-dominant period. We estimated PS and booster VE among adults and adolescents (PS only) for all products combined and for Comirnaty alone, by time since vaccination, age and chronic condition. We investigated potential bias due to correlation between COVID-19 and influenza vaccination and explored effect modification and confounding by prior SARS-CoV-2 infection.ResultsAmong adults, PS VE was 37% (95% CI: 24-47%) overall and 60% (95% CI: 44-72%), 43% (95% CI: 26-55%) and 29% (95% CI: 13-43%) < 90, 90-179 and ≥ 180 days post vaccination, respectively. Booster VE was 42% (95% CI: 32-51%) overall and 56% (95% CI: 47-64%), 22% (95% CI: 2-38%) and 3% (95% CI: -78% to 48%), respectively. Primary series VE was similar among adolescents. Restricting analyses to Comirnaty had little impact. Vaccine effectiveness was higher among older adults. There was no signal of bias due to correlation between COVID-19 and influenza vaccination. Confounding by previous infection was low, but sample size precluded definite assessment of effect modification.ConclusionPrimary series and booster VE against symptomatic infection with BA.1/BA.2 ranged from 37% to 42%, with similar waning post vaccination. Comprehensive data on previous SARS-CoV-2 infection would help disentangle vaccine- and infection-induced immunity.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Adolescente , Anciano , Vacunas contra la COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Vacuna BNT162 , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Eficacia de las Vacunas , Europa (Continente)/epidemiología , Atención Primaria de Salud
14.
Euro Surveill ; 29(26)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38940003

RESUMEN

BackgroundSince its emergence in December 2019, over 700 million people worldwide have been infected with SARS-CoV-2 up to May 2024. While early rollout of mRNA vaccines against COVID-19 has saved many lives, there was increasing immune escape of new virus variants. Longitudinal monitoring of population-wide SARS-CoV-2 antibody responses from regular sample collection irrespective of symptoms provides representative data on infection and seroconversion/seroreversion rates.AimTo examine adaptive and cellular immune responses of a German SARS-CoV-2 outbreak cohort through several waves of infection with different virus variants.MethodsUtilising a 31-month longitudinal seroepidemiological study (n = 1,446; mean age: 50 years, range: 2-103) initiated during the first SARS-CoV-2 superspreading event (February 2020) in Heinsberg, Germany, we analysed acute infection, seroconversion and virus neutralisation at five follow-up visits between October 2020 and November 2022; cellular and cross-protective immunity against SARS-CoV-2 Omicron variants were also examined.ResultsSARS-CoV-2 spike (S)-specific IgAs decreased shortly after infection, while IgGs remained stable. Both increased significantly after vaccination. We predict an 18-month half-life of S IgGs upon infection. Nucleocapsid (N)-specific responses declined over 12 months post-infection but increased (p < 0.0001) during Omicron. Frequencies of SARS-CoV-2-specific TNF-alpha+/IFN-gamma+ CD4+ T-cells declined over 12 months after infection (p < 0.01). SARS-CoV-2 S antibodies and neutralisation titres were highest in triple-vaccinated participants infected between April 2021 and November 2022 compared with infections between April 2020 and January 2021. Cross neutralisation against Omicron BQ.1.18 and XBB.1.5 was very low in all groups.ConclusionInfection and/or vaccination did not provide the population with cross-protection against Omicron variants.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Reinfección , SARS-CoV-2 , Seroconversión , Humanos , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/epidemiología , Estudios Longitudinales , Alemania/epidemiología , Anticuerpos Antivirales/sangre , Persona de Mediana Edad , Adulto , Masculino , Anticuerpos Neutralizantes/sangre , Femenino , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anciano , Reinfección/inmunología , Reinfección/virología , Reinfección/prevención & control , Estudios Seroepidemiológicos , Adolescente , Adulto Joven , Niño , Preescolar , Anciano de 80 o más Años , Vacunación
15.
J Infect Dis ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37970668

RESUMEN

BACKGROUND: Mutations present in emerging SARS-CoV-2 variants permit evasion of neutralization with prototype vaccines. A novel Omicron BA.1 subvariant-specific vaccine (NVX-CoV2515) was tested alone, or as a bivalent preparation in combination with the prototype vaccine (NVX-CoV2373), to assess antibody responses to SARS-CoV-2. METHODS: Participants aged 18 to 64 years immunized with 3 doses of prototype mRNA vaccines were randomized 1:1:1 to receive a single dose of NVX-CoV2515, NVX-CoV2373, or bivalent mixture in a phase 3 study investigating heterologous boosting with SARS-CoV-2 recombinant spike protein vaccines. Immunogenicity was measured 14 and 28 days after vaccination for the SARS-CoV-2 Omicron BA.1 sublineage and ancestral strain. Safety profiles of vaccines were assessed. RESULTS: Of participants who received trial vaccine (N = 829), those administered NVX-CoV2515 (n = 286) demonstrated superior neutralizing antibody response to BA.1 versus NVX-CoV2373 (n = 274) at Day 14 (geometric mean titer ratio [95% CI]: 1.6 [1.33, 2.03]). Seroresponse rates [n/N; 95% CI] were 73.4% [91/124; 64.7, 80.9] for NVX-CoV2515 versus 50.9% [59/116; 41.4, 60.3] for NVX-CoV2373. All formulations were similarly well-tolerated. CONCLUSIONS: NVX-CoV2515 elicited a superior neutralizing antibody response against the Omicron BA.1 subvariant compared with NVX-CoV2373 when administered as a fourth dose. Safety data were consistent with the established safety profile of NVX-CoV2373.

16.
J Infect Dis ; 227(4): 528-532, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36315869

RESUMEN

Omicron variants are still the dominant SARS-CoV-2 viruses worldwide, therefore determination of the level of protection from infection and severe disease is essential. Here, we investigated humoral and cellular immunity of individuals immunized by ChAdOx1, BNT162b2, and mRNA-1273 and our results show that IgG and neutralization titers wane over time. However, strongest neutralization against Omicron BA.1 and T-cell responses were detected in ChAdOx1 vaccinees 6 months after the second dose, while no long-lasting neutralization was shown against BA.2 in any cohort. Crucially, our investigation revealed that immunity against variants of concern is heterogenic and dependent on the immunization status.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Vacuna BNT162 , COVID-19/prevención & control , Protocolos Clínicos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Vacunación
17.
Emerg Infect Dis ; 29(1): 184-188, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454718

RESUMEN

Since June 2020, the SARS-CoV-2 Immunity and Reinfection Evaluation (SIREN) study has conducted routine PCR testing in UK healthcare workers and sequenced PCR-positive samples. SIREN detected increases in infections and reinfections and delected Omicron subvariant waves emergence contemporaneous with national surveillance. SIREN's sentinel surveillance methods can be used for variant surveillance.


Asunto(s)
COVID-19 , Humanos , Animales , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2/genética , Reino Unido/epidemiología , Personal de Salud , Reinfección , Urodelos
18.
Curr Issues Mol Biol ; 45(2): 1741-1761, 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36826057

RESUMEN

Since the emergence of SARS-CoV-2 Omicron BA.1 and BA.2, several Omicron sublineages have emerged, supplanting their predecessors. Here we compared the neutralization of Omicron sublineages BA.1, BA.2, BA.4 and BA.5 by human sera collected from individuals who were infected with the ancestral B.1 (D614G) strain, who were vaccinated (3 doses) or with breakthrough infection with pre-Omicron strains (Gamma or Delta). All Omicron sublineages exhibited extensive escape from all sera when compared to the ancestral B.1 strain and to Delta, albeit to different levels depending on the origin of the sera. Convalescent sera were unable to neutralize BA.1, and partly neutralized BA.2, BA.4 and BA.5. Vaccinee sera partly neutralized BA.2, but BA.1, BA.4 and BA.5 evaded neutralizing antibodies (NAb). Some breakthrough infections (BTI) sera were non-neutralizing. Neutralizing BTI sera had similar neutralizing ability against all Omicron sublineages. Despite similar levels of anti-Spike and anti-Receptor Binding Domain (RBD) antibodies in all groups, BTI sera had the highest cross-neutralizing ability against all Omicron sublineages and convalescent sera were the least neutralizing. Antibody avidity inferred from the NT50:antibody titer ratio was highest in sera from BTI patients, underscoring qualitative differences in antibodies elicited by infection or vaccination. Together, these findings highlight the importance of vaccination to trigger highly cross-reactive antibodies that neutralize phylogenetically and antigenically distant strains, and suggest that immune imprinting by first generation vaccines may restrict, but not abolish, cross-neutralization.

19.
J Virol ; 96(6): e0207721, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35225672

RESUMEN

Emerging strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, that show increased transmission fitness and/or immune evasion are classified as "variants of concern" (VOCs). Recently, a SARS-CoV-2 variant first identified in November 2021 in South Africa has been recognized as a fifth VOC, termed "Omicron." What makes this VOC so alarming is the high number of changes, especially in the viral Spike protein, and accumulating evidence for increased transmission efficiency and escape from neutralizing antibodies. In an amazingly short time, the Omicron VOC has outcompeted the previously dominating Delta VOC. However, it seems that the Omicron VOC is overall less pathogenic than other SARS-CoV-2 VOCs. Here, we provide an overview of the mutations in the Omicron genome and the resulting changes in viral proteins compared to other SARS-CoV-2 strains and discuss their potential functional consequences.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/inmunología , COVID-19/virología , Genoma Viral , Humanos , Evasión Inmune , Mutación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo
20.
J Med Virol ; 95(8): e28984, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37503561

RESUMEN

We aimed to evaluate the association between the humoral and cellular immune responses and symptomatic SARS-CoV-2 infection with Delta or Omicron BA.1 variants in fully vaccinated outpatients. Anti-receptor binding domain (RBD) IgG levels and interferon-gamma (IFN-γ) release were evaluated at PCR-diagnosis of SARS-CoV-2 in 636 samples from negative and positive patients during Delta and Omicron BA.1 periods. Median levels of anti-RBD IgG in positive patients were significantly lower than in negative patients for both variants (p < 0.05). The frequency of Omicron BA.1 infection in patients with anti-RBD IgG concentrations ≥1000 binding antibody units (BAU)/mL was 51.0% and decreased to 34.4% in patients with concentrations ≥3000 BAU/mL. For Delta infection, the frequency of infection was significantly lower when applying the same anti-RBD IgG thresholds (13.3% and 5.3% respectively, p < 0.05). In addition, individuals in the hybrid immunity group had a 4.5 times lower risk of Delta infection compared to the homologous vaccination group (aOR = 0.22, 95% CI: [0.05-0.64]. No significant decrease in the risk of Omicron BA.1 infection was observed in the hybrid group compared to the homologous group, but the risk decreased within the hybrid group as anti-RBD IgG titers increased (aOR = 0.08, 95% CI: [0.01-0.41], p = 0.008). IFN-γ release post-SARS-CoV-2 peptide stimulation was not different between samples from patients infected (either with Delta or Omicron BA.1 variant) or not (p > 0.05). Our results show that high circulating levels of anti-RBD IgG and hybrid immunity were independently associated with a lower risk of symptomatic SARS-CoV-2 infection in outpatients with differences according to the infecting variant (www.clinicaltrials.gov; ID NCT05060939).


Asunto(s)
COVID-19 , Hepatitis D , Humanos , Pacientes Ambulatorios , SARS-CoV-2 , COVID-19/prevención & control , Interferón gamma , Inmunoglobulina G , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA