Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 889
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 54, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212678

RESUMEN

BACKGROUND: Feeding costs represent the largest expenditures in beef production. Therefore, the animal efficiency in converting feed in high-quality protein for human consumption plays a major role in the environmental impact of the beef industry and in the beef producers' profitability. In this context, breeding animals for improved feed efficiency through genomic selection has been considered as a strategic practice in modern breeding programs around the world. Copy number variation (CNV) is a less-studied source of genetic variation that can contribute to phenotypic variability in complex traits. In this context, this study aimed to: (1) identify CNV and CNV regions (CNVRs) in the genome of Nellore cattle (Bos taurus indicus); (2) assess potential associations between the identified CNVR and weaning weight (W210), body weight measured at the time of selection (WSel), average daily gain (ADG), dry matter intake (DMI), residual feed intake (RFI), time spent at the feed bunk (TF), and frequency of visits to the feed bunk (FF); and, (3) perform functional enrichment analyses of the significant CNVR identified for each of the traits evaluated. RESULTS: A total of 3,161 CNVs and 561 CNVRs ranging from 4,973 bp to 3,215,394 bp were identified. The CNVRs covered up to 99,221,894 bp (3.99%) of the Nellore autosomal genome. Seventeen CNVR were significantly associated with dry matter intake and feeding frequency (number of daily visits to the feed bunk). The functional annotation of the associated CNVRs revealed important candidate genes related to metabolism that may be associated with the phenotypic expression of the evaluated traits. Furthermore, Gene Ontology (GO) analyses revealed 19 enrichment processes associated with FF. CONCLUSIONS: A total of 3,161 CNVs and 561 CNVRs were identified and characterized in a Nellore cattle population. Various CNVRs were significantly associated with DMI and FF, indicating that CNVs play an important role in key biological pathways and in the phenotypic expression of feeding behavior and growth traits in Nellore cattle.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Humanos , Bovinos/genética , Animales , Fenotipo , Ingestión de Alimentos/genética , Conducta Alimentaria , Alimentación Animal/análisis
2.
BMC Genomics ; 25(1): 738, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080557

RESUMEN

BACKGROUND: The selection of individuals based on their predicted breeding values and mating of related individuals can increase the proportion of identical-by-descent alleles. In this context, the objectives of this study were to estimate inbreeding coefficients based on alternative metrics and data sources such as pedigree (FPED), hybrid genomic relationship matrix H (FH), and ROH of different length (FROH); and calculate Pearson correlations between the different metrics in a closed Nellore cattle population selected for body weight adjusted to 378 days of age (W378). In addition to total FROH (all classes) coefficients were also estimated based on the size class of the ROH segments: FROH1 (1-2 Mb), FROH2 (2-4 Mb), FROH3 (4-8 Mb), FROH4 (8-16 Mb), and FROH5 (> 16 Mb), and for each chromosome (FROH_CHR). Furthermore, we assessed the effect of each inbreeding metric on birth weight (BW), body weights adjusted to 210 (W210) and W378, scrotal circumference (SC), and residual feed intake (RFI). We also evaluated the chromosome-specific effects of inbreeding on growth traits. RESULTS: The correlation between FPED and FROH was 0.60 while between FH and FROH and FH and FPED were 0.69 and 0.61, respectively. The annual rate of inbreeding was 0.16% for FPED, 0.02% for FH, and 0.16% for FROH. A 1% increase in FROH5 resulted in a reduction of up to -1.327 ± 0.495 kg in W210 and W378. Four inbreeding coefficients (FPED, FH, FROH2, and FROH5) had a significant effect on W378, with reductions of up to -3.810 ± 1.753 kg per 1% increase in FROH2. There was an unfavorable effect of FPED on RFI (0.01 ± 0.0002 kg dry matter/day) and of FROH on SC (-0.056 ± 0.022 cm). The FROH_CHR coefficients calculated for BTA3, BTA5, and BTA8 significantly affected the growth traits. CONCLUSIONS: Inbreeding depression was observed for all traits evaluated. However, these effects were greater for the criterion used for selection of the animals (i.e., W378). The increase in the genomic inbreeding was associated with a higher inbreeding depression on the traits evaluated when compared to pedigree-based inbreeding. Genomic information should be used as a tool during mating to optimize control of inbreeding and, consequently, minimize inbreeding depression in Nellore cattle.


Asunto(s)
Fertilidad , Endogamia , Linaje , Animales , Bovinos/genética , Bovinos/crecimiento & desarrollo , Fertilidad/genética , Genómica/métodos , Femenino , Masculino , Fenotipo , Carácter Cuantitativo Heredable , Peso Corporal/genética
3.
BMC Genomics ; 25(1): 520, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802796

RESUMEN

BACKGROUND: Increasing evidence points to an active role of oviductal extracellular vesicles (oEVs) in the early embryo-maternal dialogue. However, it remains unclear whether oEVs contribute to the recognition of the presence of embryos and their quality in the oviduct. Hence, we examined whether the molecular cargo of oEVs secreted by bovine oviduct epithelial cells (BOEC) differs depending on the presence of good (≥ 8 cells, G) or poor (< 8 cells, P) quality embryos. In addition, differences in RNA profiles between G and P embryos were analyzed in attempt to distinguish oEVs and embryonic EVs cargos. METHODS: For this purpose, primary BOEC were co-cultured with in vitro produced embryos (IVP) 53 h post fertilization as follows: BOEC with G embryos (BGE); BOEC with P embryos (BPE); G embryos alone (GE); P embryos alone (PE); BOEC alone (B) and medium control (M). After 24 h of co-culture, conditioned media were collected from all groups and EVs were isolated and characterized. MicroRNA profiling of EVs and embryos was performed by small RNA-sequencing. RESULTS: In EVs, 84 miRNAs were identified, with 8 differentially abundant (DA) miRNAs for BGE vs. B and 4 for BPE vs. B (P-value < 0.01). In embryos, 187 miRNAs were identified, with 12 DA miRNAs for BGE vs. BPE, 3 for G vs. P, 8 for BGE vs. GE, and 11 for BPE vs. PE (P-value < 0.01). CONCLUSIONS: These results indicated that oEVs are involved in the oviductal-embryo recognition and pointed to specific miRNAs with signaling and supporting roles during early embryo development.


Asunto(s)
Embrión de Mamíferos , Vesículas Extracelulares , MicroARNs , Oviductos , Animales , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Bovinos , Embrión de Mamíferos/metabolismo , Oviductos/metabolismo , Oviductos/citología , Células Epiteliales/metabolismo , Técnicas de Cocultivo , Trompas Uterinas/metabolismo , Trompas Uterinas/citología
4.
BMC Genomics ; 25(1): 417, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678201

RESUMEN

BACKGROUND: Between 2020 and 2022, eight calves in a Nebraska herd (composite Simmental, Red Angus, Gelbvieh) displayed exercise intolerance during forced activity. In some cases, the calves collapsed and did not recover. Available sire pedigrees contained a paternal ancestor within 2-4 generations in all affected calves. Pedigrees of the calves' dams were unavailable, however, the cows were ranch-raised and retained from prior breeding seasons, where bulls used for breeding occasionally had a common ancestor. Therefore, it was hypothesized that a de novo autosomal recessive variant was causative of exercise intolerance in these calves. RESULTS: A genome-wide association analysis utilizing SNP data from 6 affected calves and 715 herd mates, followed by whole-genome sequencing of 2 affected calves led to the identification of a variant in the gene PYGM (BTA29:g.42989581G > A). The variant, confirmed to be present in the skeletal muscle transcriptome, was predicted to produce a premature stop codon (p.Arg650*). The protein product of PYGM, myophosphorylase, breaks down glycogen in skeletal muscle. Glycogen concentrations were fluorometrically assayed as glucose residues demonstrating significantly elevated glycogen concentrations in affected calves compared to cattle carrying the variant and to wild-type controls. The absence of the PYGM protein product in skeletal muscle was confirmed by immunohistochemistry and label-free quantitative proteomics analysis; muscle degeneration was confirmed in biopsy and necropsy samples. Elevated skeletal muscle glycogen persisted after harvest, resulting in a high pH and dark-cutting beef, which is negatively perceived by consumers and results in an economic loss to the industry. Carriers of the variant did not exhibit differences in meat quality or any measures of animal well-being. CONCLUSIONS: Myophosphorylase deficiency poses welfare concerns for affected animals and negatively impacts the final product. The association of the recessive genotype with dark-cutting beef further demonstrates the importance of genetics to not only animal health but to the quality of their product. Although cattle heterozygous for the variant may not immediately affect the beef industry, identifying carriers will enable selection and breeding strategies to prevent the production of affected calves.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glucógeno Fosforilasa de Forma Muscular , Animales , Bovinos , Femenino , Masculino , Enfermedades de los Bovinos/genética , Genes Recesivos , Glucógeno Fosforilasa de Forma Muscular/genética , Glucógeno Fosforilasa de Forma Muscular/deficiencia , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Linaje , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
5.
Allergy ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989779

RESUMEN

BACKGROUND: Antigen-specific memory B cells play a key role in the induction of desensitization and remission to food allergens in oral immunotherapy and in the development of natural tolerance (NT). Here, we characterized milk allergen Bos d 9-specific B cells in oral allergen-specific immunotherapy (OIT) and in children spontaneously outgrowing cow's milk allergy (CMA) due to NT. METHODS: Samples from children with CMA who received oral OIT (before, during, and after), children who naturally outgrew CMA (NT), and healthy individuals were received from Stanford biobank. Bos d 9-specific B cells were isolated by flow cytometry and RNA-sequencing was performed. Protein profile of Bos d 9-specific B cells was analyzed by proximity extension assay. RESULTS: Increased frequencies of circulating milk allergen Bos d 9-specific B cells were observed after OIT and NT. Milk-desensitized subjects showed the partial acquisition of phenotypic features of remission, suggesting that desensitization is an earlier stage of remission. Within these most significantly expressed genes, IL10RA and TGFB3 were highly expressed in desensitized OIT patients. In both the remission and desensitized groups, B cell activation-, Breg cells-, BCR-signaling-, and differentiation-related genes were upregulated. In NT, pathways associated with innate immunity characteristics, development of marginal zone B cells, and a more established suppressor function of B cells prevail that may play a role in long-term tolerance. The analyses of immunoglobulin heavy chain genes in specific B cells demonstrated that IgG2 in desensitization, IgG1, IgA1, IgA2, IgG4, and IgD in remission, and IgD in NT were predominating. Secreted proteins from allergen-specific B cells revealed higher levels of regulatory cytokines, IL-10, and TGF-ß after OIT and NT. CONCLUSION: Allergen-specific B cells are essential elements in regulating food allergy towards remission in OIT-received and naturally resolved individuals.

6.
Genome ; 67(7): 233-242, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579337

RESUMEN

Indicine cattle breeds are adapted to the tropical climate, and their coat plays an important role in this process. Coat color influences thermoregulation and the adhesion of ectoparasites and may be associated with productive and reproductive traits. Furthermore, coat color is used for breed qualification, with breeders preferring certain colors. The Gir cattle is characterized by a wide variety of coat colors. Therefore, we performed genome-wide association studies to identify candidate genes for coat color in Gir cattle. Different phenotype scenarios were considered in the analyses and regions were identified on eight chromosomes. Some regions and many candidate genes are influencing coat color in the Gir cattle, which was found to be a polygenic trait. The candidate genes identified have been associated with white spotting patterns and base coat color in cattle and other species. In addition, a possible epistatic effect on coat color determination in the Gir cattle was suggested. This is the first published study that identified genomic regions and listed candidate genes associated with coat color in Gir cattle. The findings provided a better understanding of the genetic architecture of the trait in the breed and will allow to guide future fine-mapping studies for the development of genetic markers for selection.


Asunto(s)
Estudio de Asociación del Genoma Completo , Bovinos/genética , Animales , Fenotipo , Color del Cabello/genética , Polimorfismo de Nucleótido Simple , Pigmentación/genética , Genoma , Cruzamiento , Sitios de Carácter Cuantitativo
7.
J Intensive Care Med ; : 8850666241271431, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109630

RESUMEN

Graft versus host disease (GVHD) in acute and chronic forms is a frequent post-transplant complication and seen in 50% of patients in acute and up to 70% cases in chronic GVHD setting. Patients with multiorgan involvement and those who are steroid refractory, frequently present with complications arising from this post-transplant complication. These GVHD patients are frequently managed in the Intensive care unit for treatment of air leaks, effusions, management of hypoxemia due to lung GVHD or infections. Close coordination between hematologists and Pulmonary medicine specialists is critical for timely management of these complications to improve patient outcomes.

8.
BMC Vet Res ; 20(1): 355, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123170

RESUMEN

Diarrhea is a common issue in domestic yaks (Bos grunniens) that can occur with pasture alterations and significantly impacts growth performance. Previous research has examined the microbiota of diarrhetic yaks; however, the structural changes in gut bacterial community and microbial interactions in yaks with grassland alteration-induced diarrhea remain poorly understood. To explore variations in gut microbiota homeostasis among yaks suffering from diarrhea, fecal microbiota diversity and composition were analyzed using 16 S rRNA amplicon sequencing. Gut fecal microbiota diversity was lower in diarrhetic yaks than in non-diarrhetic yaks. Furthermore, the bacterial community composition (including that of Proteobacteria and Actinobacteria) in the feces of diarrhetic yaks displayed significant alterations. Co-occurrence network analysis further underscored the compromised intestinal flora stability in yaks with diarrhea relative to that in non-diarrhetic yaks. Interestingly, the abundance of beneficial bacteria, such as Lachnospiraceae_AC2044_group and Lachnospiraceae_NK4A136_group, were decreased in yaks with diarrhea, and the reductions were negatively correlated with the fecal water content. Collectively, these findings indicate that diminished microbial stability and increased abundance of certain bacteria in the gut may contribute to diarrhea occurrence in yaks.


Asunto(s)
Enfermedades de los Bovinos , Diarrea , Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Animales , Bovinos , Diarrea/veterinaria , Diarrea/microbiología , Heces/microbiología , Enfermedades de los Bovinos/microbiología , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética
9.
Anim Genet ; 55(3): 344-351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38426585

RESUMEN

Bovine familial convulsions and ataxia (BFCA) is considered an autosomal dominant syndrome with incomplete penetrance. Nine Angus calves from the same herd were diagnosed with BFCA within days of birth. Necropsy revealed cerebellar and spinal cord lesions associated with the condition. Parentage testing confirmed that all affected calves had a common sire. The sire was then bred to 36 cows across two herds using artificial insemination, producing an additional 14 affected calves. The objective of this investigation was to identify hypothesized dominant genetic variation underlying the condition. Whole-genome sequencing was performed on the sire, six affected and seven unaffected paternal half-sibling calves and combined with data from 135 unrelated controls. The sire and five of the six affected calves were heterozygous for a nonsense variant (Chr7 g.12367906C>T, c.5073C>T, p.Arg1681*) in CACNA1A. The other affected calves (N = 8) were heterozygous for the variant but it was absent in the other unaffected calves (N = 7) and parents of the sire. This variant was also absent in sequence data from over 6500 other cattle obtained via public repositories and collaborator projects. The variant in CACNA1A is expressed in the cerebellum of the ataxic calves as detected in the transcriptome and was not differentially expressed compared with controls. The CACNA1A protein is part of a highly expressed cerebellar calcium voltage gated channel. The nonsense variant is proposed to cause haploinsufficiency, preventing proper transmission of neuronal signals through the channel and resulting in BFCA.


Asunto(s)
Ataxia , Canales de Calcio , Enfermedades de los Bovinos , Convulsiones , Animales , Bovinos/genética , Canales de Calcio/genética , Ataxia/veterinaria , Ataxia/genética , Enfermedades de los Bovinos/genética , Convulsiones/veterinaria , Convulsiones/genética , Masculino , Femenino , Secuenciación Completa del Genoma/veterinaria , Genes Dominantes , Mutación
10.
J Dairy Sci ; 107(4): 2512-2523, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37863293

RESUMEN

Anti-Müllerian hormone (AMH) concentration and number of recovered oocytes (ROOC) are phenotypic parameters associated with in vitro embryo production (IVEP). More recently, anogenital distance (AGD) has been proposed as a proxy for fertility in dairy cattle that is easy to collect at a low cost. The aim of this study was to characterize the AGD and its phenotypic and genetic associations with AMH and IVEP in Bos indicus Gyr dairy cattle. The hypothesis was that the number of ROOC, in vitro-produced embryos, and AMH concentration would increase as the AGD decreases. From July to December 2021, a single morphometrical measurement of AGD was collected in 552 donors from 6 herds in Brazil. A subset of donors had AMH assayed on the same day. Only ovum pick-up events that occurred up to 12 mo preceding and 7 mo succeeding the AGD measurement were used to assess the association between AGD, AMH, and IVEP. Thus, 472 donors (1,551 ovum pick-up events and 140 donors with AMH) were considered in the analysis. A raw average was calculated for each individual donor's ROOC, viable oocytes, total produced embryos, viability rate, and embryo rate (defined as total produced embryos/viable oocytes). Comparisons were conducted within the age categories of 3 to <6 yr or 6 to <10 yr. Phenotypic associations were performed in SAS software (SAS Institute Inc., Cary, NC). Genetic correlations were estimated using the BLUPF90 family of programs. The AGD (128.7 mm ± 14; mean ± standard deviation) had a normal distribution and was highly variable (83 to 172 mm) among the Gyr population. Our experimental hypothesis was partially supported by a phenotypic association of a greater number of total produced embryos (R2 = 0.023) as AGD decreased. Our results failed to support an increase in AMH concentration along with a decrease in AGD. In addition, positive and low genetic correlations were observed between AGD and viable oocytes (r = 0.08), and embryo rate (r = 0.20). A greater number of viable oocytes and embryos were observed in donors in the high compared with intermediate and low ROOC categories within both age categories. The age interval of 3 to <6 yr showed a greater number of recovered and viable oocytes for the high AMH compared with the low category, but no differences were observed among the AGD categories. In summary, for the Gyr breed, AGD was phenotypically inversely associated with a quantity-related parameter, such as the total number of produced embryos. In contrast, AGD showed a low genetic correlation with qualitative-related outcomes such as viable oocytes and embryo rate. Further studies should be performed to validate these retrospective analyses and to better understand the association between AGD and IVEP.


Asunto(s)
Hormona Antimülleriana , Embrión de Mamíferos , Bovinos , Animales , Hormona Antimülleriana/genética , Estudios Retrospectivos , Oocitos , Fertilización In Vitro/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA