Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(20): e2318773121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713628

RESUMEN

The current paradigm about the function of T cell immune checkpoints is that these receptors switch on inhibitory signals upon cognate ligand interaction. We here revisit this simple switch model and provide evidence that the T cell lineage protein THEMIS enhances the signaling threshold at which the immune checkpoint BTLA (B- and T-lymphocyte attenuator) represses T cell responses. THEMIS is recruited to the cytoplasmic domain of BTLA and blocks its signaling capacity by promoting/stabilizing the oxidation of the catalytic cysteine of the tyrosine phosphatase SHP-1. In contrast, THEMIS has no detectable effect on signaling pathways regulated by PD-1 (Programmed cell death protein 1), which depend mainly on the tyrosine phosphatase SHP-2. BTLA inhibitory signaling is tuned according to the THEMIS expression level, making CD8+ T cells more resistant to BTLA-mediated inhibition than CD4+ T cells. In the absence of THEMIS, the signaling capacity of BTLA is exacerbated, which results in the attenuation of signals driven by the T cell antigen receptor and by receptors for IL-2 and IL-15, consequently hampering thymocyte positive selection and peripheral CD8+ T cell maintenance. By characterizing the pivotal role of THEMIS in restricting the transmission of BTLA signals, our study suggests that immune checkpoint operability is conditioned by intracellular signal attenuators.


Asunto(s)
Linfocitos T CD8-positivos , Péptidos y Proteínas de Señalización Intercelular , Receptores Inmunológicos , Transducción de Señal , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Receptor de Muerte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores Inmunológicos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
2.
Trends Immunol ; 44(2): 110-118, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599743

RESUMEN

In contrast to conventional dendritic cells (cDCs) that are constantly exposed to microbial signals at anatomical barriers, cDCs in systemic lymphoid organs are sheltered from proinflammatory stimulation in the steady state but respond to inflammatory signals by gaining specific immune functions in a process referred to as maturation. Recent findings show that, during maturation, a population of systemic tolerogenic cDCs undergoes an acute tumor necrosis factor α (TNFα)-mediated cell death, resulting in the loss of tolerance-inducing capacity. This tolerogenic cDC population is restored upon return to the homeostatic baseline. We propose that such a dynamic reshaping of cDC populations becomes the foundation of a novel framework for maintaining tolerance at the steady state while being conducive to unhampered initiation of immune responses under proinflammatory conditions.


Asunto(s)
Células Dendríticas , Tolerancia Inmunológica , Humanos
3.
Immunogenetics ; 76(1): 51-67, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38197898

RESUMEN

The CD28-B7 interaction is required to deliver a second signal necessary for T-cell activation. Additional membrane receptors of the CD28 and B7 families are also involved in immune checkpoints that positively or negatively regulate leukocyte activation, in particular T lymphocytes. BTLA is an inhibitory receptor that belongs to a third receptor family. Fish orthologs exist only for some of these genes, and the potential interactions between the corresponding ligands remain mostly unclear. In this work, we focused on the channel catfish (Ictalurus punctatus), a long-standing model for fish immunology, to analyze these co-stimulatory and co-inhibitory receptors. We identified one copy of cd28, ctla4, cd80/86, b7h1/dc, b7h3, b7h4, b7h5, two btla, and four b7h7 genes. Catfish CD28 contains the highly conserved mammalian cytoplasmic motif for PI3K and GRB2 recruitment, however this motif is absent in cyprinids. Fish CTLA4 share a C-terminal putative GRB2-binding site but lacks the mammalian PI3K/GRB2-binding motif. While critical V-domain residues for human CD80 or CD86 binding to CD28/CTLA4 show low conservation in fish CD80/86, C-domain residues are highly conserved, underscoring their significance. Catfish B7H1/DC had a long intracytoplasmic domain with a P-loop-NTPase domain that is absent in mammalian sequences, while the lack of NLS motif in fish B7H4 suggests this protein may not regulate cell growth when expressed intracellularly. Finally, there is a notable expansion of fish B7H7s, which likely play diverse roles in leukocyte regulation. Overall, our work contributes to a better understanding of fish leukocyte co-stimulatory and co-inhibitory receptors.


Asunto(s)
Antígenos CD28 , Ictaluridae , Animales , Humanos , Antígenos CD28/genética , Antígenos CD28/metabolismo , Antígeno CTLA-4 , Ictaluridae/genética , Ictaluridae/metabolismo , Antígenos CD , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Ligandos , Moléculas de Adhesión Celular , Fosfatidilinositol 3-Quinasas , Mamíferos
4.
World J Urol ; 42(1): 53, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244072

RESUMEN

PURPOSE: Immune checkpoint inhibitors (ICI) are then backbone in the therapy of metastatic renal cell carcinoma (RCC). The aim of this analysis was to explore the different expression of the ICI PD-L1, BTLA, and TIM-3 at the different tumor locations of the invasion front and the tumor center. METHODS: Large-area sections of the tumor center and invasion front of 44 stage pT1-4 clear cell RCCs were examined immunohistochemically using antibodies against BTLA, TIM-3, and PD-L1 and subsequently correlated with clinicopathologic data. RESULTS: TIM-3 was most strongly expressed at the invasion front (mean ± SD: 84.1 ± 46.6, p = 0.094). BTLA expression was highest in normal tissue, with weak staining in the tumor center and at the invasion front [110.2 vs. 18.6 (p < 0.001) vs. 32.2 (p = 0.248)]. PD-L1 was weakly expressed at the tumor center (n = 5/44) and at the invasion front (n = 5/44). Correlation with clinicopathological parameters revealed significantly higher BTLA expression in ≥ T3 tumors compared to T1/2 tumors (tumor center p = 0.009; invasion front p = 0.005). BTLA-positive tumors at the tumor center correlated with worse CSS (median 48.46 vs. 68.91 months, HR 4.43, p = 0.061). PD-L1 expression was associated with worse CSS (median 1.66 vs. 4.5 years, HR 1.63, p = 0.652). For TIM-3, there were no significant associations with clinicopathological parameters and survival. CONCLUSION: The present results show heterogeneous intratumoral and intertumoral expression of the investigated checkpoint receptors PD-L1, BTLA, and TIM-3. In the clinical practice tumor sampling should include different tumor locations, and multiple inhibition of different checkpoint receptors seems reasonable to increase the therapeutic success.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Receptor 2 Celular del Virus de la Hepatitis A , Antígeno B7-H1 , Neoplasias Renales/patología , Biomarcadores de Tumor , Pronóstico , Receptores Inmunológicos/metabolismo
5.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279272

RESUMEN

The CD28 family receptors include the CD28, ICOS (inducible co-stimulator), CTLA-4 (cytotoxic T-lymphocyte antigen-4), PD-1 (programmed cell death protein 1), and BTLA (B- and T-lymphocyte attenuator) molecules. They characterize a group of molecules similar to immunoglobulins that control the immune response through modulating T-cell activity. Among the family members, CD28 and ICOS act as enhancers of T-cell activity, while three others-BTLA, CTLA-4, and PD-1-function as suppressors. The receptors of the CD28 family interact with the B7 family of ligands. The cooperation between these molecules is essential for controlling the course of the adaptive response, but it also significantly impacts the development of immune-related diseases. This review introduces the reader to the molecular basis of the functioning of CD28 family receptors and their impact on T-cell activity.


Asunto(s)
Antígenos CD28 , Linfocitos T , Antígeno CTLA-4 , Receptor de Muerte Celular Programada 1 , Antígenos CD , Inmunidad , Inmunomodulación , Antígenos de Diferenciación de Linfocitos T , Activación de Linfocitos
6.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928307

RESUMEN

In oral squamous cell carcinoma (OSCC) tissues, an immunotolerant situation triggered by immune checkpoints (ICPs) can be observed. Immune checkpoint inhibitors (ICIs) against the PD1/PD-L axis are used with impressive success. However, the response rate is low and the development of acquired resistance to ICI treatment can be observed. Therefore, new treatment strategies especially involving immunological combination therapies need to be developed. The novel negative immune checkpoint BTLA has been suggested as a potential biomarker and target for antibody-based immunotherapy. Moreover, improved response rates could be displayed for tumor patients when antibodies directed against BTLA were used in combination with anti-PD1/PD-L1 therapies. The aim of the study was to check whether the immune checkpoint BTLA is overexpressed in OSCC tissues compared to healthy oral mucosa (NOM) and could be a potential diagnostic biomarker and immunological target in OSCC. In addition, correlation analyses with the expression of other checkpoints should clarify more precisely whether combination therapies are potentially useful for the treatment of OSCC. A total of 207 tissue samples divided into 2 groups were included in the study. The test group comprised 102 tissue samples of OSCC. Oral mucosal tissue from 105 healthy volunteers (NOM) served as the control group. The expression of two isoforms of BTLA (BTLA-1/2), as well as PD1, PD-L1/2 and CD96 was analyzed by RT-qPCR. Additionally, BTLA and CD96 proteins were detected by IHC. Expression levels were compared between the two groups, the relative differences were calculated, and statistical relevance was determined. Furthermore, the expression rates of the immune checkpoints were correlated to each other. BTLA expression was significantly increased in OSCC compared to NOM (pBTLA_1 = 0.003; pBTLA_2 = 0.0001, pIHC = 0.003). The expression of PD1, its ligands PD-L1 and PD-L2, as well as CD96, were also significantly increased in OSCC (p ≤ 0.001). There was a strong positive correlation between BTLA expression and that of the other checkpoints (p < 0.001; ρ ≥ 0.5). BTLA is overexpressed in OSCC and appears to be a relevant local immune checkpoint in OSCC. Thus, antibodies directed against BTLA could be potential candidates for immunotherapies, especially in combination with ICI against the PD1/PD-L axis and CD96.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Boca , Receptores Inmunológicos , Humanos , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Masculino , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Anciano , Adulto , Regulación Neoplásica de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Proteínas de Punto de Control Inmunitario/metabolismo , Proteínas de Punto de Control Inmunitario/genética
7.
Immunol Rev ; 296(1): 48-61, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32412663

RESUMEN

Germinal centers (GCs) are confined anatomic regions where rapidly proliferating B cells undergo somatic mutation and selection and eventual differentiation into memory B cells or long-lived plasma cells. GCs are also the origin of malignancy, namely follicular lymphoma (FL), GC B cell-diffuse large B cell lymphoma (GCB-DLBCL), and Burkitt lymphoma (BL). GC B cell lymphomas maintain their GC transcriptional signatures and sustain many features of the GC microenvironment, including CD4+ T follicular helper (Tfh) cells. Tfh cells are essential for the formation and maintenance of GCs, providing critical helper signals such as CD40L. Large-scale sequencing efforts have led to new insights about the tightly regulated selection mechanisms that are commonly targeted during GC B cell lymphomagenesis. For instance, HVEM, a frequently mutated surface molecule in GC-derived lymphomas, engages the inhibitory receptor BTLA on Tfh cells and loss of HVEM leads to exaggerated T cell help. Here, we review current understanding of how Tfh cells contribute to the selection of GC B cells, with a particular emphasis on how Tfh cell signals may contribute to lymphomagenesis. The possibility of targeting Tfh cells for the treatment of GC-derived lymphomas is discussed.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Centro Germinal/inmunología , Centro Germinal/metabolismo , Linfoma/etiología , Linfoma/metabolismo , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Animales , Biomarcadores de Tumor , Diferenciación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Selección Clonal Mediada por Antígenos , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Humanos , Linfoma/diagnóstico , Linfoma/terapia , Mutación
8.
Semin Cancer Biol ; 86(Pt 3): 137-150, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35341913

RESUMEN

Immune checkpoint proteins (ICP) are currently one of the most novel and promising areas of immune-oncology research. This novel way of targeting tumor cells has shown favorable success over the past few years with some FDA approvals such as Ipilimumab, Nivolumab, Pembrolizumab etc. Currently, more than 3000 clinical trials of immunotherapeutic agents are ongoing with majority being ICPs. However, as the number of trials increase so do the challenges. Some challenges such as adverse side effects, non-specific binding on healthy tissues and absence of response in some subset populations are critical obstacles. For a safe and effective further therapeutic development of molecules targeting ICPs, understanding their mechanism at molecular level is crucial. Since ICPs are mostly membrane bound receptors, a number of downstream signaling pathways divaricate following ligand-receptor binding. Most ICPs are expressed on more than one type of immune cell populations. Further, the expression varies within a cell type. This naturally varied expression pattern adds to the difficulty of targeting specific effector immune cell types against cancer. Hence, understanding the expression pattern and cellular mechanism helps lay out the possible effect of any immunotherapy. In this review, we discuss the signaling mechanism, expression pattern among various immune cells and molecular interactions derived using interaction database analysis (BioGRID).


Asunto(s)
Proteínas de Punto de Control Inmunitario , Neoplasias , Humanos , Receptor de Muerte Celular Programada 1 , Inmunoterapia , Antígeno CTLA-4 , Neoplasias/terapia , Factores Inmunológicos
9.
Mol Cancer ; 22(1): 142, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649037

RESUMEN

Recent introduction of monoclonal antibodies targeting immune checkpoints to harness antitumor immunity has revolutionized the cancer treatment landscape. The therapeutic success of immune checkpoint blockade (ICB)-based therapies mainly relies on PD-1/PD-L1 and CTLA-4 blockade. However, the limited overall responses and lack of reliable predictive biomarkers of patient´s response are major pitfalls limiting immunotherapy success. Hence, this reflects the compelling need of unveiling novel targets for immunotherapy that allow to expand the spectrum of ICB-based strategies to achieve optimal therapeutic efficacy and benefit for cancer patients. This review thoroughly dissects current molecular and functional knowledge of BTLA/HVEM axis and the future perspectives to become a target for cancer immunotherapy. BTLA/HVEM dysregulation is commonly found and linked to poor prognosis in solid and hematological malignancies. Moreover, circulating BTLA has been revealed as a blood-based predictive biomarker of immunotherapy response in various cancers. On this basis, BTLA/HVEM axis emerges as a novel promising target for cancer immunotherapy. This prompted rapid development and clinical testing of the anti-BTLA blocking antibody Tifcemalimab/icatolimab as the first BTLA-targeted therapy in various ongoing phase I clinical trials with encouraging results on preliminary efficacy and safety profile as monotherapy and combined with other anti-PD-1/PD-L1 therapies. Nevertheless, it is anticipated that the intricate signaling network constituted by BTLA/HVEM/CD160/LIGHT involved in immune response regulation, tumor development and tumor microenvironment could limit therapeutic success. Therefore, in-depth functional characterization in different cancer settings is highly recommended for adequate design and implementation of BTLA-targeted therapies to guarantee the best clinical outcomes to benefit cancer patients.


Asunto(s)
Antígeno B7-H1 , Neoplasias Hematológicas , Humanos , Inmunoterapia , Anticuerpos Monoclonales/uso terapéutico , Transducción de Señal , Microambiente Tumoral
10.
Eur J Immunol ; 52(6): 924-935, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35344223

RESUMEN

T-cell responses against tumors and pathogens are critically shaped by cosignaling molecules providing a second signal. Interaction of herpes virus entry mediator (HVEM, CD270, TNFRSF14) with multiple ligands has been proposed to promote or inhibit T-cell responses and inflammation, dependent on the context. In this study, we show that absence of HVEM did neither affect generation of effector nor maintenance of memory antiviral T cells and accordingly viral clearance upon acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, due to potent HVEM downregulation during infection. Notably, overexpression of HVEM on virus-specific CD8+ T cells resulted in a reduction of effector cells, whereas numbers of memory cells were increased. Overall, this study indicates that downregulation of HVEM driven by LCMV infection ensures an efficient acute response at the price of impaired formation of T-cell memory.


Asunto(s)
Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica , Animales , Antivirales , Linfocitos T CD8-positivos , Regulación hacia Abajo , Humanos , Ratones , Ratones Endogámicos C57BL
11.
Cancer Immunol Immunother ; 72(7): 2529-2539, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37041226

RESUMEN

Patients with chronic lymphocytic leukemia (CLL) progressively develop marked immunosuppression, dampening innate and adaptive-driven antitumor responses. However, the underlying mechanisms promoting immune exhaustion are largely unknown. Herein, we provide new insights into the role of BTLA/HVEM axis promoting defects in T cell-mediated responses against leukemic cells. Increased expression of BTLA, an inhibitory immune checkpoint, was detected on the surface of CD4 + and CD8 + T lymphocytes in patients with CLL. Moreover, high levels of BTLA on CD4 + T cells correlated with diminished time to treatment. Signaling through BTLA activation led to decreased IL-2 and IFN-γ production ex vivo, whereas BTLA/HVEM binding disruption enhanced IFN-γ + CD8 + T lymphocytes. Accordingly, BTLA blockade in combination with bispecific anti-CD3/anti-CD19 antibody promoted CD8 + T cell-mediated anti-leukemic responses. Finally, treatment with an anti-BLTA blocking monoclonal antibody alone or in combination with ibrutinib-induced leukemic cell depletion in vitro. Altogether, our data reveal that BTLA dysregulation has a prognostic role and is limiting T cell-driven antitumor responses, thus providing new insights about immune exhaustion in patients with CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Linfocitos T CD8-positivos , Linfocitos T CD4-Positivos , Antígenos CD19/metabolismo , Receptores Inmunológicos/metabolismo
12.
BMC Cancer ; 23(1): 437, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179293

RESUMEN

BACKGROUND: The most common subtype of ovarian cancer (OC) showing immunogenic potential is represented by the high-grade serous ovarian cancer (HGSOC), which is characterized by the presence of tumor-infiltrating immune cells able to modulate immune response. Because several studies showed a close correlation between OC patient's clinical outcome and expression of programmed cell death protein-1 or its ligand (PD-1/PD-L1), the aim of our study was to investigate if plasma levels of immunomodulatory proteins may predict prognosis of advanced HGSOC women. PATIENTS AND METHODS: Through specific ELISA tests, we analyzed plasma concentrations of PD-L1, PD-1, butyrophilin sub-family 3A/CD277 receptor (BTN3A1), pan-BTN3As, butyrophilin sub-family 2 member A1 (BTN2A1), and B- and T-lymphocyte attenuator (BTLA) in one hundred patients affected by advanced HGSOC, before surgery and therapy. The Kaplan-Meier method was used to generate the survival curves, while univariate and multivariate analysis were performed using Cox proportional hazard regression models. RESULTS: For each analyzed circulating biomarker, advanced HGSOC women were discriminated based on long (≥ 30 months) versus short progression-free survival (PFS < 30 months). The concentration cut-offs, obtained by receiver operating characteristic (ROC) analysis, allowed to observe that poor clinical outcome and median PFS ranging between 6 and 16 months were associated with higher baseline levels of PD-L1 (> 0.42 ng/mL), PD-1 (> 2.48 ng/mL), BTN3A1 (> 4.75 ng/mL), pan-BTN3As (> 13.06 ng/mL), BTN2A1 (> 5.59 ng/mL) and BTLA (> 2.78 ng/mL). Furthermore, a lower median PFS was associated with peritoneal carcinomatosis, age at diagnosis > 60 years or Body Mass Index (BMI) > 25. A multivariate analysis also suggested that plasma concentrations of PD-L1 ≤ 0.42 ng/mL (HR: 2.23; 95% CI: 1.34 to 3.73; p = 0.002), age at diagnosis ≤ 60 years (HR: 1.70; 95% CI: 1.07 to 2.70; p = 0.024) and absence of peritoneal carcinomatosis (HR: 1.87; 95% CI: 1.23 to 2.85; p = 0.003) were significant prognostic marker for a longer PFS in advanced HGSOC patients. CONCLUSIONS: The identification of high-risk HGSOC women could be improved through determination of the plasma PD-L1, PD-1, BTN3A1, pan-BTN3As, BTN2A1 and BTLA levels.


Asunto(s)
Neoplasias Ováricas , Neoplasias Peritoneales , Humanos , Femenino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/uso terapéutico , Antígeno B7-H1/metabolismo , Pronóstico , Neoplasias Ováricas/metabolismo , Butirofilinas , Antígenos CD
13.
Cell Immunol ; 376: 104532, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537322

RESUMEN

Autoimmune diseases constitute a heterogeneous group of disorders with one common feature - the loss of immune tolerance towards autoantigens. Due to the complexity of the pathogenesis of these diseases, there are still many open questions regarding their etiology. Therefore, scientists unceasingly search for new data hoping to detect dependable biomarkers and design safe and effective treatment. The research on immune checkpoints is in line with these scientific and clinical demands. Immune checkpoints may be the key to understanding the pathogenesis of many immunological disorders. BTLA-HVEM complex, the inhibitory immune checkpoint, has recently caught scientific attention as an important regulator in different immune contexts, including autoreactivity. So far, the BTLA-HVEM complex has been mainly studied in the context of cancer, but as numerous data show, it may also be a target in the treating of autoimmune diseases. In this review, we intend to focus on the mechanisms of BTLA-HVEM interactions in immune cells and summarize the available data in the context of autoimmunity.


Asunto(s)
Enfermedades Autoinmunes , Receptores Inmunológicos , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/fisiopatología , Autoinmunidad/inmunología , Humanos , Complejos Multiproteicos/inmunología , Receptores Inmunológicos/inmunología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/inmunología
14.
BMC Infect Dis ; 22(1): 543, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701741

RESUMEN

BACKGROUND: Immune checkpoints are crucial for the maintenance of subtle balance between self-tolerance and effector immune responses, but the role of soluble immune checkpoints (sICs) in Mycobacterium tuberculosis (M. tb) infection remains unknown. We assessed the levels of multiple sICs in individuals with distinct M. tb infection status, and their dynamic changes during anti-tuberculosis treatment. METHODS: We enrolled 24 patients with pulmonary tuberculosis, among which 10 patients were diagnosed with tuberculous pleurisy (TBP), 10 individuals with latent tuberculosis infection (LTBI), and 10 healthy volunteers from Wuxi Fifth People's Hospital and Huashan Hospital between February 2019 and May 2021. Plasma concentrations of thirteen sICs were measured at enrollment and during anti-tuberculosis treatment using luminex-based multiplex assay. sICs levels in tuberculous pleural effusion (TPE) and their relations to laboratory test markers of TPE were also assessed in TBP patients. RESULTS: The circulating levels of sPD-1, sPD-L1, sCTLA-4, sBTLA, sGITR, sIDO, sCD28, sCD27 and s4-1BB were upregulated in tuberculosis patients than in healthy controls. A lower sPD-L1 level was found in LTBI individuals than in tuberculosis patients. In TBP patients, the levels of sPD-1, sPD-L2, sCD28, sCD80, sCD27, sTIM-3, sLAG-3, sBTLA, s4-1BB and sIDO increased significantly in TPE than in plasma. In TPE, sBTLA and sLAG-3 correlated positively with the adenosine deaminase level. sIDO and sCD80 correlated positively with the lactate dehydrogenase level and the percentage of lymphocytes in TPE, respectively. Meanwhile, sCD27 correlated negatively with the specific gravity and protein level in TPE. In tuberculosis patients, the circulating levels of sBTLA and sPD-L1 gradually declined during anti-tuberculosis treatment. CONCLUSIONS: We characterized the changing balance of sICs in M. tb infection. And our results revealed the relations of sICs to laboratory test markers and treatment responses in tuberculosis patients, indicating that certain sICs may serve as potential biomarkers for disease surveillance and prognosis of tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Derrame Pleural , Tuberculosis Pleural , Antituberculosos/uso terapéutico , Biomarcadores , Humanos , Derrame Pleural/diagnóstico , Pronóstico , Tuberculosis Pleural/diagnóstico , Tuberculosis Pleural/tratamiento farmacológico
15.
Int J Cancer ; 149(5): 1189-1198, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33890289

RESUMEN

Therapy with immune checkpoint inhibitors (ICIs) can lead to durable tumor control in patients with various advanced stage malignancies. However, this is not the case for all patients, leading to an ongoing search for biomarkers predicting response and outcome to ICI. The B and T lymphocyte attenuator (BTLA) is an immune checkpoint expressed on immune cells that was shown to modulate therapeutic responses. Here, we evaluate circulating levels of its soluble form, soluble B and T lymphocyte attenuator (sBTLA), as a biomarker for the prediction of treatment response and outcome to ICI therapy. Serum levels of sBTLA were analyzed by multiplex immunoassay in n = 84 patients receiving ICI therapy for solid malignancies and 32 healthy controls. BTLA expression was evaluated on peripheral blood mononuclear cells in a subset of patients (n = 6) using multicolor flow cytometry. Baseline sBTLA serum levels were significantly higher in cancer patients compared to healthy controls. Importantly, circulating sBTLA levels were an independent prognostic factor for overall survival (OS). As such, patients with initial sBTLA levels above the calculated prognostic cutoff value (311.64 pg/mL) had a median OS of only 138 days compared to 526 for patients with sBTLA levels below this value (P = .001). Uni- and multivariate Cox regression analyses confirmed the prognostic role of sBTLA in the context of ICI therapy. Finally, we observed a significant correlation between sBTLA levels and the frequency of CD3 + CD8 + BTLA+ T cells in peripheral blood. Thus, our data suggest that circulating sBTLA could represent a noninvasive biomarker to predict outcome to ICI therapy, helping to select eligible therapy candidates.


Asunto(s)
Biomarcadores de Tumor/sangre , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Leucocitos Mononucleares/efectos de los fármacos , Neoplasias/mortalidad , Receptores Inmunológicos/sangre , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Pronóstico , Tasa de Supervivencia
16.
Adv Exp Med Biol ; 1350: 33-66, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888843

RESUMEN

Thyroid cancer incidence is increasing at an alarming rate, almost tripling every decade. About 44,280 new cases of thyroid cancer (12,150 in men and 32,130 in women) are estimated to be diagnosed in 2021, with an estimated death toll of around 2200. Although most thyroid tumors are treatable and associated with a favorable outcome, anaplastic thyroid cancer (ATC) is extremely aggressive with a grim prognosis of 6-9 months post-diagnosis. A large contributing factor to this aggressive nature is that ATC is completely refractory to mainstream therapies. Analysis of the tumor microenvironment (TME) associated with ATC can relay insight to the pathological realm that encompasses tumors and aids in cancer progression and proliferation. The TME is defined as a complex niche that surrounds a tumor and involves a plethora of cellular components whose secretions can modulate the environment in order to favor tumor progression. The cellular heterogeneity of the TME contributes to its dynamic function due to the presence of both immune and nonimmune resident, infiltrating, and interacting cell types. Associated immune cells discussed in this chapter include macrophages, dendritic cells (DCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes (TILs). Nonimmune cells also play a role in the establishment and proliferation of the TME, including neuroendocrine (NE) cells, adipocytes, endothelial cells (ECs), mesenchymal stem cells (MSCs), and fibroblasts. The dynamic nature of the TME contributes greatly to cancer progression.Recent work has found ATC tissues to be defined by a T cell-inflamed "hot" tumor immune microenvironment (TIME) as evidenced by presence of CD3+ and CD8+ T cells. These tumor types are amenable to immune checkpoint blockade (ICB) therapy. This therapeutic avenue, as of 2021, has remained unexplored in ATC. New studies should seek to explore the therapeutic feasibility of a combination therapy, through the use of a small molecule inhibitor with ICB in ATC. Screening of in vitro model systems representative of papillary, anaplastic, and follicular thyroid cancer explored the expression of 29 immune checkpoint molecules. There are higher expressions of HVEM, BTLA, and CD160 in ATC cell lines when compared to the other TC subtypes. The expression level of HVEM was more than 30-fold higher in ATC compared to the others, on average. HVEM is a member of tumor necrosis factor (TNF) receptor superfamily, which acts as a bidirectional switch through interaction with BTLA, CD160, and LIGHT, in a cis or trans manner. Given the T cell-inflamed hot TIME in ATC, expression of HVEM on tumor cells was suggestive of a possibility for complex crosstalk of HVEM with inflammatory cytokines. Altogether, there is emerging evidence of a T cell-inflamed TIME in ATC along with the expression of immune checkpoint proteins HVEM, BTLA, and CD160 in ATC. This can open doors for combination therapies using small molecule inhibitors targeting downstream effectors of MAPK pathway and antagonistic antibodies targeting the HVEM/BTLA axis as a potentially viable therapeutic avenue for ATC patients. With this being stated, the development of adaptive resistance to targeted therapies is inevitable; therefore, using a combination therapy that targets the TIME can serve as a preemptive tactic against the characteristic therapeutic resistance that is seen in ATC. The dynamic nature of the TME, including the immune cells, nonimmune cells, and acellular components, can serve as viable targets for combination therapy in ATC. Understanding the complex interactions of these associated cells and the paradigm in which their secretions and components can serve as immunomodulators are critical points of understanding when trying to develop therapeutics specifically tailored for the anaplastic thyroid carcinoma microenvironment.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Comunicación Celular , Células Endoteliales , Femenino , Humanos , Inmunoterapia , Masculino , Receptores Inmunológicos , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Carcinoma Anaplásico de Tiroides/terapia , Neoplasias de la Tiroides/terapia , Microambiente Tumoral
17.
Adv Exp Med Biol ; 1350: 123-143, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888847

RESUMEN

Melanoma is the most aggressive form of skin cancer with an estimated 106,110 newly diagnosed cases in the United States of America in 2021 leading to an approximated 7180 melanoma-induced deaths. Cancer typically arises from an accumulation of somatic mutations and can be associated with mutagenic or carcinogenic exposure. A key characteristic of melanoma is the extensive somatic mutation rate of 16.8 mutations/Mb, which is largely attributed to UV exposure. Bearing the highest mutational load, many of them occur in key driver pathways, most commonly the BRAFV600E in the mitogen-activated protein kinase (MAPK) pathway. This driver mutation is targeted clinically with FDA-approved therapies using small molecule inhibitors of oncogenic BRAFV600E and MEK, which has greatly expanded therapeutic intervention following a melanoma diagnosis. Up until 2011, therapeutic options for metastatic melanoma were limited, and treatment typically fell under the spectrum of surgery, radiotherapy, and chemotherapy.Attributed to the extensive mutation rate, as well as having the highest number of neoepitopes, melanoma is deemed to be extremely immunogenic. However, despite this highly immunogenic nature, melanoma is notorious for inducing an immunosuppressive microenvironment which can be relieved by checkpoint inhibitor therapy. The two molecules currently approved clinically are ipilimumab and nivolumab, which target the molecules CTLA-4 and PD-1, respectively.A plethora of immunomodulatory molecules exist, many with redundant functions. Additionally, these molecules are expressed not only by immune cells but also by tumor cells within the tumor microenvironment. Tumor profiling of these cell surface checkpoint molecules is necessary to optimize a clinical response. The presence of immunomodulatory molecules in melanoma, using data from The Cancer Genome Atlas and validation of expression in two model systems, human melanoma tissues and patient-derived melanoma cells, revealed that the expression levels of B and T lymphocyte attenuator (BTLA), TIM1, and CD226, concurrently with the BRAFV600E mutation status, significantly dictated overall survival in melanoma patients. These molecules, along with herpesvirus entry mediator (HVEM) and CD160, two molecules that are a part of the HVEM/BTLA/CD160 axis, had a higher expression in human melanoma tissues when compared to normal skin melanocytes and have unique roles to play in T cell activation. New links are being uncovered between the expression of immunomodulatory molecules and the BRAFV600E genetic lesion in melanoma. Small molecule inhibitors of the MAPK pathway regulate the surface expression of this multifaceted molecule, making BTLA a promising target for immuno-oncology to be targeted in combination with small molecule inhibitors, potentially alleviating T regulatory cell activation and improving patient prognosis.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Ipilimumab , Melanoma/tratamiento farmacológico , Melanoma/genética , Oncogenes , Proteínas Proto-Oncogénicas B-raf , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Microambiente Tumoral
18.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205742

RESUMEN

Immune therapy has emerged as an effective treatment against cancers. Inspired by the PD-1/PD-L1 antibodies, which have achieved great success in clinical, other immune checkpoint proteins have drawn increasing attention in cancer research. B and T lymphocyte attenuator (BTLA) and herpes virus entry mediator (HVEM) are potential targets for drug development. The co-crystal structure of BTLA/HVEM have revealed that HVEM (26-38) fragment is the core sequence which directly involved on the interface. Herein, we conducted virtual evolution with this sequence by using saturation mutagenesis in silico and mutants with lower binding energy were selected. Wet-lab experiments confirmed that several of them possessed higher affinity with BTLA. Based on the best mutant of the core sequence, extended peptides with better efficacy were obtained. Furthermore, the mechanism of the effects of mutations was revealed by computational analysis. The mutated peptide discovered here can be a potent inhibitor to block BTLA/HVEM interaction and its mechanism may extend people's view on inhibitor discovery for the checkpoint pair.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Receptores Inmunológicos/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Sustitución de Aminoácidos , Evolución Biológica , Simulación por Computador , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular
19.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34769327

RESUMEN

Programmed cell death 1 (PD-1) and its ligands PD-L1 and PD-L2 are receptors that act in co-stimulatory and coinhibitory immune responses. Signaling the PD-1/PD-L1 or PD-L2 pathway is essential to regulate the inflammatory responses to infections, autoimmunity, and allergies, and it has been extensively studied in cancer. Allergic diseases include asthma, rhinoconjunctivitis, atopic dermatitis, drug allergy, and anaphylaxis. These overactive immune responses involve IgE-dependent activation and increased CD4+ T helper type 2 (Th2) lymphocytes. Recent studies have shown that PD-L1 and PD-L2 act to regulate T-cell activation and function. However, the main role of PD-1 and its ligands is to balance the immune response; however, the inflammatory process of allergic diseases is poorly understood. These immune checkpoint molecules can function as a brake or a kick-start to regulate the adaptive immune response. These findings suggest that PD-1 and its ligands may be a key factor in studying the exaggerated response in hypersensitivity reactions in allergies. This review summarizes the current understanding of the role of PD-1 and PD-L1 and PD-L2 pathway regulation in allergic diseases and how this immunomodulatory pathway is currently being targeted to develop novel therapeutic immunotherapy.


Asunto(s)
Antígeno B7-H1/metabolismo , Hipersensibilidad/patología , Inmunidad Innata/inmunología , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Antígeno B7-H1/inmunología , Humanos , Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Proteína 2 Ligando de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/inmunología
20.
BMC Immunol ; 21(1): 14, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197584

RESUMEN

BACKGROUND: The use of anti-B cell based therapies in immune-mediated diseases targeting general B cell markers or molecules important for B cell function has increased the clinical needs of monitoring B cell subpopulations. RESULTS: We analyzed the expression profile of cell surface markers CD86 and B and T lymphocyte attenuator (BTLA) in B cell subtypes using flow cytometry, including naïve, transitional, switched memory, non-switched memory and double-negative memory B cells and plasmablasts, and investigated the dependence of age and sex in a healthy adult blood donor population. The switched memory B cell subtype displayed a divergent expression of the markers, with increased CD86 and decreased BTLA as compared to non-switched and double negative memory cells, as well as compared to naïve B cells. Plasmablasts expressed highly increased CD86 compared to all other subtypes and a decreased expression of BTLA compared to naïve cells, but still higher compared to the memory cell populations. Transitional B cells had CD86 and BTLA expression similar to the other naïve cells. CONCLUSIONS: We show divergent expression of CD86 and BTLA in memory cells and plasmablasts compared to naïve B cells independent of age and sex. Furthermore, a similarly divergent difference of expression pattern was seen between the memory cell subtypes, altogether indicating that the combination of CD86 and BTLA might be markers for a permissive activation state. We suggest the combination of CD86 and BTLA expression on B cell subtypes as a potentially important tool in monitoring the status of B cell subtypes before and after treatments influencing the B cell compartment.


Asunto(s)
Linfocitos B/inmunología , Antígeno B7-2/inmunología , Activación de Linfocitos/inmunología , Receptores Inmunológicos/inmunología , Adulto , Biomarcadores/metabolismo , Donantes de Sangre , Femenino , Humanos , Memoria Inmunológica/inmunología , Masculino , Células Plasmáticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA