RESUMEN
BACKGROUND: Familial hypokalemic periodic paralysis (HypoPP) is an uncommon genetic disorder characterized by recurrent episodes of muscle weakness and hypokalemia, typically starting in early adulthood. The existence of hyperthyroidism in the presence of HypoPP is more strongly associated with a diagnosis of thyrotoxic periodic paralysis (TPP), with most cases occurring in Asian males with pathogenic KCNJ2 or KCNJ18 variants and without a family history of the condition. This case is novel due to the combination of familial HypoPP and hyperthyroidism induced by Graves' disease, a rare occurrence especially in non-Asian populations. CASE PRESENTATION: A 40-year-old African American man presented with profound muscle weakness after consuming a high-salt meal. He had a significant family history of hyperthyroidism and hypokalemia. On examination, he showed profound weakness in all extremities. Laboratory tests confirmed hypokalemia and hyperthyroidism, and genetic testing identified a pathogenic variant in the CACNA1S gene (c.1583 G > A, p. R528H), with normal SCN4A, KCNJ2 and KCNJ18 sequencing. He was diagnosed with familial HypoPP and hyperthyroidism due to Graves' disease. He was started on PO methimazole 10 mg three times a day and PO acetazolamide 250 mg twice a day. He was advised to follow a low carbohydrate and low salt diet. CONCLUSIONS: This case highlights the importance of considering a genetic basis for HypoPP in patients with a family history of the condition, even when hyperthyroidism is present. The combination of familial HypoPP and Graves' disease is rare and emphasizes the need for careful genetic and clinical evaluation in similar cases. Management should focus on correcting hypokalemia, treating hyperthyroidism, and lifestyle modifications to prevent recurrence.
Asunto(s)
Hipertiroidismo , Parálisis Periódica Hipopotasémica , Humanos , Masculino , Adulto , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/etiología , Parálisis Periódica Hipopotasémica/diagnóstico , Hipertiroidismo/genética , Hipertiroidismo/complicaciones , Enfermedad de Graves/genética , Enfermedad de Graves/complicaciones , Canales de Calcio Tipo L/genéticaRESUMEN
Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.
Asunto(s)
Defectos del Tabique Interventricular , Humanos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Defectos del Tabique Interventricular/genética , Mutación , Factores de Transcripción/genéticaRESUMEN
A recessive haplotype resulting in elevated calf mortality but with apparent incomplete penetrance was previously linked to the end of chromosome 16 (78.7-80.7 Mbp). Genotype analysis of 5.6 million Holsteins indicated that the haplotype was common and traced back to 1952, with a key ancestor born in 1984 (HOUSA1964484, Southwind) identified from chip genotypes as homozygous for the suspect haplotype. Sequence data from Southwind (an affected calf) and the sire of the affected calf were scanned for candidate mutations. A missense mutation with a deleterious projected impact at 79,613,592 bp was homozygous in the affected calf and heterozygous in the calf's sire and Southwind. Sequence data available from the Cooperative Dairy DNA Repository for 299 other Holsteins indicated a 97% concordance with the haplotype and an 89% call rate. The exon amino acid sequence appears to be broadly conserved in the CACNA1S gene, and mutations in humans and mice can cause phenotypes of temporary or permanent paralysis analogous to those in calves with the haplotype causing muscle weakness (HMW). Improved methods for using pedigree to track new mutations within existing haplotypes were developed and applied to the haplotypes for both muscle weakness and Holstein cholesterol deficiency (HCD). For HCD, concordance of the gene test with its haplotype status was greatly improved. For both defects, haplotype status was matched to heifer livability records for 558,000 calves. For HMW, only 46 heifers with livability records were homozygous and traced only to Southwind on both sides. Of those, 52% died before 18 mo at an average age of 1.7 ± 1.6 mo, but that death rate may be underestimated if only healthier calves were genotyped. The death rate was 2.4% for noncarriers. Different reporting methods or dominance effects may be needed to include HMW and other partially lethal effects in selection and mating. Direct tests are needed for new mutations within existing common haplotypes because tracking can be difficult even with accurate pedigrees when the original haplotype has a high frequency.
Asunto(s)
Enfermedades de los Bovinos , Haplotipos , Debilidad Muscular , Animales , Bovinos/genética , Debilidad Muscular/veterinaria , Debilidad Muscular/genética , Enfermedades de los Bovinos/genética , Femenino , Mutación , Genotipo , MasculinoRESUMEN
BACKGROUND: The CACNA1S gene encodes the alpha 1 S-subunit of the voltage-gated calcium channel, which is primarily expressed in the skeletal muscle cells. Pathogenic variants of CACNA1S can cause hypokalemic periodic paralysis (HypoPP), malignant hyperthermia susceptibility, and congenital myopathy. We aimed to study the clinical and molecular features of a male child with a CACNA1S variant and depict the molecular sub-regional characteristics of different phenotypes associated with CACNA1S variants. CASE PRESENTATION: We presented a case of HypoPP with recurrent muscle weakness and hypokalemia. Genetic analyses of the family members revealed that the proband had a novel c.497 C > A (p.Ala166Asp) variant of CACNA1S, which was inherited from his father. The diagnosis of HypoPP was established in the proband as he met the consensus diagnostic criteria. The patient and his parents were informed to avoid the classical triggers of HypoPP. The attacks of the patient are prevented by lifestyle changes and nutritional counseling. We also showed the molecular sub-regional location of the variants of CACNA1S which was associated with different phenotypes. CONCLUSIONS: Our results identified a new variant of CACNA1S and expanded the spectrum of variants associated with HypoPP. Early genetic diagnosis can help avoid diagnostic delays, perform genetic counseling, provide proper treatment, and reduce morbidity and mortality.
Asunto(s)
Parálisis Periódica Hipopotasémica , Humanos , Masculino , Niño , Parálisis Periódica Hipopotasémica/diagnóstico , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/complicaciones , Mutación , Fenotipo , Debilidad Muscular , Familia , Canales de Calcio Tipo L/genéticaRESUMEN
Familial periodic paralyses (PPs) are inherited disorders of skeletal muscle characterized by recurrent episodes of flaccid muscle weakness. PPs are classified as hypokalemic (HypoPP), normokalemic (NormoPP), or hyperkalemic (HyperPP) according to the potassium level during the paralytic attacks. HypoPP is an autosomal dominant disease caused by mutations in the CACNA1S gene, encoding for Cav1.1 channel (HypoPP-1), or SCN4A gene, encoding for Nav1.4 channel (HypoPP-2). In the present study, we included 60 patients with a clinical diagnosis of HypoPP. Fifty-one (85%) patients were tested using the direct sequencing (Sanger method) of all reported HypoPP mutations in CACNA1S and SCN4A genes; the remaining 9 (15%) patients were analyzed through a next-generation sequencing (NGS) panel, including the whole CACNA1S and SCN4A genes, plus other genes rarely associated to PPs. Fifty patients resulted mutated: 38 (76%) cases showed p.R528H and p.R1239G/H CACNA1S mutations and 12 (24%) displayed p.R669H, p.R672C/H, p.R1132G/Q, and p.R1135H SCN4A mutations. Forty-one mutated cases were identified among the 51 patients managed with Sanger sequencing, while all the 9 cases directly analyzed with the NGS panel showed mutations in the hotspot regions of SCN4A and CACNA1S. Ten out of the 51 patients unresolved through the Sanger sequencing were further analyzed with the NGS panel, without the detection of any mutation. Hence, our data suggest that in HypoPP patients, the extension of genetic analysis from the hotspot regions using the Sanger method to the NGS sequencing of the entire CACNA1S and SCN4A genes does not lead to the identification of new pathological mutations.
Asunto(s)
Parálisis Periódica Hipopotasémica , Canales de Calcio Tipo L/genética , Pruebas Genéticas , Humanos , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/patología , Músculo Esquelético/patología , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genéticaRESUMEN
BACKGROUND AND PURPOSE: CACNA1S encodes Cav 1.1, a voltage sensor for muscle excitation-contraction coupling, which activates the ryanodine receptor 1 (RYR1) leading to calcium release from the sarcoplasmic reticulum. CACNA1S mutations cause hypokalemic periodic paralysis, malignant hyperthermia and congenital myopathy. RYR1 mutations result in congenital myopathy, malignant hyperthermia and rhabdomyolysis. METHODS: The aim was to describe a novel phenotype associated with a CACNA1S variant at a site previously linked to hypokalemic periodic paralysis. RESULTS: The patient presented with fluctuating asymptomatic creatine kinase elevation after an episode of rhabdomyolysis but has no history of periodic paralysis. His muscle biopsy showed core-like structures occurring mainly in type 2 fibers. He carries a novel Cav 1.1 variant (p.Arg528Leu) affecting a highly conserved amino acid. Different mutations at the same location cause hypokalemic periodic paralysis. CONCLUSION: This case underscores the similarity between the phenotypes caused by mutations in two functionally linked proteins, RYR1 and Cav 1.1.
Asunto(s)
Canales de Calcio/genética , Creatina Quinasa/sangre , Rabdomiólisis , Adulto , Animales , Canales de Calcio Tipo L , Humanos , Masculino , Rabdomiólisis/sangre , Rabdomiólisis/genética , Rabdomiólisis/fisiopatologíaRESUMEN
BACKGROUND: Gaps in our understanding of genetic susceptibility to malignant hyperthermia (MH) limit the application and interpretation of genetic diagnosis of the condition. Our aim was to define the prevalence and role of variants in the three genes implicated in MH susceptibility in the largest comprehensively phenotyped MH cohort worldwide. METHODS: We initially included one individual from each positive family tested in the UK MH Unit since 1971 to detect variants in RYR1, CACNA1S, or STAC3. Screening for genetic variants has been ongoing since 1991 and has involved a range of techniques, most recently next generation sequencing. We assessed the pathogenicity of variants using standard guidelines, including family segregation studies. The prevalence of recurrent variants of unknown significance was compared with the prevalence reported in a large database of sequence variants in low-risk populations. RESULTS: We have confirmed MH susceptibility in 795 independent families, for 722 of which we have a DNA sample. Potentially pathogenic variants were found in 555 families, with 25 RYR1 and one CACNA1S variants previously unclassified recurrent variants significantly over-represented (P<1×10-7) in our cohort compared with the Exome Aggregation Consortium database. There was genotype-phenotype discordance in 86 of 328 families suitable for segregation analysis. We estimate non-RYR1/CACNA1S/STAC3 susceptibility occurs in 14-23% of MH families. CONCLUSIONS: Our data provide current estimates of the role of variants in RYR1, CACNA1S, and STAC3 in susceptibility to MH in a predominantly white European population.
Asunto(s)
Hipertermia Maligna/epidemiología , Hipertermia Maligna/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Canales de Calcio/genética , Canales de Calcio Tipo L , Estudios de Cohortes , Simulación por Computador , Exoma , Familia , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Variación Genética , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Reino Unido/epidemiologíaRESUMEN
A review of the pharmacogenetics (PGt) and pathophysiology of calcium voltage-gated channel subunit alpha1 S (CACNA1S) mutations in malignant hyperthermia susceptibility type 5 (MHS5; MIM #60188) is presented. Malignant hyperthermia (MH) is a life-threatening hypermetabolic state of skeletal muscle usually induced by volatile, halogenated anesthetics and/or the depolarizing neuromuscular blocker succinylcholine. In addition to ryanodine receptor 1 (RYR1) mutations, several CACNA1S mutations are known to be risk factors for increased susceptibility to MH (MHS). However, the presence of these pathogenic CACNA1S gene variations cannot be used to positively predict MH since the condition is genetically heterogeneous with variable expression and incomplete penetrance. At present, one or at most six CACNA1S mutations display significant linkage or association either to clinically diagnosed MH or to MHS as determined by contracture testing. Additional pathogenic variants in CACNA1S, either alone or in combination with genes affecting Ca2+ homeostasis, are likely to be discovered in association to MH as whole exome sequencing becomes more commonplace.
Asunto(s)
Canales de Calcio/genética , Hipertermia Maligna/genética , Hipertermia Maligna/fisiopatología , Mutación/genética , Canales de Calcio Tipo L , Predisposición Genética a la Enfermedad , Humanos , Farmacogenética , Canal Liberador de Calcio Receptor de Rianodina/genéticaRESUMEN
Cacna1s encodes the α1S subunit (Cav1.1) of voltage-dependent calcium channels, and is required for normal skeletal and cardiac muscle function, where it couples with the ryanodine receptor to regulate muscle contraction. Recently CACNA1S was reported to be expressed on the tips of retinal depolarizing bipolar cells (DBCs) and colocalized with metabotropic glutamate receptor 6 (mGluR6), which is critical to DBC signal transduction. Further, in mGluR6 knockout mice, expression at this location is down regulated. We examined RNAseq data from mouse retina and found expression of a novel isoform of Cacna1s. To determine if CACNA1S was a functional component of the DBC signal transduction cascade, we performed immunohistochemistry to visualize its expression in several mouse lines that lack DBC function. Immunohistochemical staining with antibodies to CACNA1S show punctate labeling at the tips of DBCs in wild type (WT) retinas that are absent in Gpr179 nob5 mutant retinas and decreased in Grm6 -/- mouse retinas. CACNA1S and transient receptor potential cation channel, subfamily M, member 1 (TRPM1) staining also colocalized in WT retinas. Western blot analyses for CACNA1S of either retinal lysates or proteins after immunoprecipitation with the CACNA1S antibody failed to show the presence of bands expected for CACNA1S. Mass spectrometric analysis of CACNA1S immunoprecipitated proteins also failed to detect any peptides matching CACNA1S. Immunohistochemistry and western blotting after expression of GPR179 in HEK293T cells indicate that the CACNA1S antibody used here and in the retinal studies published to date, cross-reacts with GPR179. These data suggest caution should be exercised in conferring a role for CACNA1S in DBC signal transduction based solely on immunohistochemical staining.
Asunto(s)
Reacciones Antígeno-Anticuerpo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/inmunología , Regulación de la Expresión Génica/fisiología , Receptores Acoplados a Proteínas G/inmunología , Retina/metabolismo , Células Bipolares de la Retina/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Reacciones Cruzadas , Femenino , Células HEK293 , Humanos , Inmunohistoquímica , Síndromes de Inmunodeficiencia , Masculino , Espectrometría de Masas , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Enfermedades de Inmunodeficiencia Primaria , Isoformas de Proteínas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de SeñalRESUMEN
It is 30 yr since the British Journal of Anaesthesia published the first consensus protocol for the laboratory diagnosis of malignant hyperthermia susceptibility from the European Malignant Hyperthermia Group. This has subsequently been used in more than 10 000 individuals worldwide to inform use of anaesthetic drugs in these patients with increased risk of developing malignant hyperthermia during general anaesthesia, representing an early and successful example of stratified medicine. In 2001, our group also published a guideline for the use of DNA-based screening of malignant hyperthermia susceptibility. We now present an updated and complete guideline for the diagnostic pathway for patients potentially at increased risk of developing malignant hyperthermia. We introduce the new guideline with a narrative commentary that describes its development, the changes to previously published protocols and guidelines, and new sections, including recommendations for patient referral criteria and clinical interpretation of laboratory findings.
Asunto(s)
Hipertermia Maligna/diagnóstico , Hipertermia Maligna/genética , Europa (Continente) , Predisposición Genética a la Enfermedad , Humanos , Derivación y ConsultaRESUMEN
It is unknown how often cardiac arrhythmias occur in hypokalemic periodic paralysis (HypoPP) and if they are caused by hypokalemia alone or other factors. This systematic review shows that cardiac arrhythmias were reported in 27 HypoPP patients. Cases were confirmed genetically (13 with an R528H mutation in CACNA1S, 1 an R669H mutation in SCN4A) or had a convincing clinical diagnosis of HypoPP (13 genetically undetermined) if reported prior to the availability of genetic testing. Arrhythmias occurred during severe hypokalemia (11 patients), between attacks at normokalemia (4 patients), were treatment-dependent (2 patients), or unspecified (10 patients). Nine patients died from arrhythmia. Convincing evidence for a pro-arrhythmogenic factor other than hypokalemia is still lacking. The role of cardiac expression of defective skeletal muscle channels in the heart of HypoPP patients remains unclear. Clinicians should be aware of and prevent treatment-induced cardiac arrhythmia in HypoPP.
Asunto(s)
Arritmias Cardíacas/etiología , Hipopotasemia/complicaciones , Parálisis Periódica Hipopotasémica/complicaciones , Adolescente , Adulto , Arritmias Cardíacas/genética , Canales de Calcio/genética , Canales de Calcio Tipo L , Causas de Muerte , Niño , Cuidados Críticos , Electrocardiografía , Femenino , Humanos , Hipopotasemia/genética , Parálisis Periódica Hipopotasémica/genética , Masculino , Debilidad Muscular/etiología , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Linaje , Adulto JovenRESUMEN
Background: Statins are commonly used medications. Variants in SLCO1B1, CYP2C9, and ABCG2 are known predictors of muscle effects when taking statins. More exploratory genes include RYR1 and CACNA1S, which can also be associated with disease conditions. Methods: Patients with pathogenic/likely pathogenic variants in RYR1 or CACNA1S were identified through an elective genomic testing program. Through chart review, patients with a history of statin use were assessed for statin-associated muscle symptoms (SAMS) along with collection of demographics and other known risk factors for SAMS. Results: Of the 23 patients who had a pathogenic or likely pathogenic RYR1 or CACNA1S variant found, 12 had previous statin use; of these, SAMS were identified in four patients. Conclusion: These data contribute to previous literature suggesting patients with RYR1 variants may have an increased SAMS risk. Additional research will be helpful in further investigating this relationship and providing recommendations.
[Box: see text].
Asunto(s)
Canales de Calcio Tipo L , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Masculino , Canales de Calcio Tipo L/genética , Femenino , Persona de Mediana Edad , Anciano , Incidencia , Enfermedades Musculares/genética , Enfermedades Musculares/inducido químicamente , Adulto , Factores de Riesgo , Canales de Calcio/genéticaRESUMEN
Dominant mutations in CACNA1S gene mainly causes hypokalemic periodic paralysis (PP)(hypoPP). A 68-year-old male proband developed a progressive proximal weakness from the age of 35. Muscle biopsy showed atrophic fibers with vacuoles containing tubular aggregates. Exome sequencing revealed a heterozygous p.R528H (c.1583G>A) mutation in the CACNA1S gene. CACNA1S-related HypoPP evolving to persistent myopathy in late adulthood is a well-known clinical condition. However, isolated progressive myopathy (without PP) was only exceptionally reported and never with an early onset. Reporting a case of early onset CACNA1S-related myopathy in a patient with no HypoPP we intend to alert clinicians to consider it in the differential diagnosis of younger adult-onset myopathies especially when featuring vacuolar changes.
Asunto(s)
Canales de Calcio Tipo L , Mutación , Humanos , Masculino , Anciano , Canales de Calcio Tipo L/genética , Enfermedades Musculares/genética , Vacuolas/patología , Vacuolas/genética , Músculo Esquelético/patología , Edad de Inicio , Parálisis Periódica Hipopotasémica/genéticaRESUMEN
Periodic paralysis is a rare, dominantly inherited disorder of skeletal muscle in which episodic attacks of weakness are caused by a transient impairment of fiber excitability. Attacks of weakness are often elicited by characteristic environmental triggers, which were the basis for clinically delineating subtypes of periodic paralysis and are an important distinction for optimal disease management. All forms of familial periodic paralysis are caused by mutations of ion channels, often selectively expressed in skeletal muscle, that destabilize the resting potential. The missense mutations usually alter channel function through gain-of-function changes rather than producing a complete loss-of-function null. The knowledge of which channel gene harbors a variant, whether that variant is expected to (or known to) alter function, and how altered function impairs fiber excitability aides in the interpretation of patient signs and symptoms, the interpretation of gene test results, and how to optimize therapeutic intervention for symptom management and improve quality of life.
Asunto(s)
Parálisis Periódicas Familiares , Humanos , Parálisis Periódicas Familiares/genética , Parálisis Periódicas Familiares/diagnóstico , Parálisis Periódicas Familiares/terapia , Mutación/genética , Canales Iónicos/genética , Músculo Esquelético/fisiopatologíaRESUMEN
Homozygous variants of Calcium Voltage-Gated Channel Subunit Alpha1 S (CACNA1S) gene mutation were previously identified as causes of periodic paralysis and congenital early-onset myopathy, while it could be manifested as a late-onset congenital core myopathy. Abstract: Calcium Voltage-Gated Channel Subunit Alpha1 S (CACNA1S) gene mutation has been linked to various neuromuscular conditions in recent years. Congenital myopathy with core-like features is one of the cardinal associations reported previously, causing severe respiratory insufficiency and death in neonates. Informed consent was received from the patients. Subsequently, peripheral blood leukocytes were utilized to extract genomic DNA. Moreover, exome enrichment was implemented through the Twist Human Core Exome Kit (Twist Bioscience) and exome sequenced using Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA). Sanger sequencing using BIG Dye Terminators confirmed the presence of the final variant. Finally, the candidate variants were classified based on the American College of Medical Genetics and Genomics (ACMG) guidelines. In this report, we describe two siblings, who presented with childhood and late-onset progressive muscle weakness, and had a homozygous variant in exon 2 of the CACNA1S gene defined as c.188C > A (p.Ala63Asp) (NM_000069.3). The SIFT, Polyphen2, CADD PHRED, and Mutation Taster analysis tools classified the variant as pathogenic/damaging. The muscle biopsy of the younger brother revealed intermyofibrillar network pattern disruption as cytoplasmic core-like lesions. The muscle magnetic resonance imaging (MRI) reported grade IIa and IIb fatty changes. Finally, the electromyography (EMG) findings suggested a myopathic change pattern. This report illustrates the clinical variability in CACNA1S-related myopathy by reviewing prior reports and adding newly found aspects, additionally expanding the gene defects associated with core myopathy.
RESUMEN
BACKGROUND: Primary periodic paralysis (PPP) is an inherited disorders of ion channel dysfunction characterized by recurrent episodes of flaccid muscle weakness, which can classified as hypokalemic (HypoPP), normokalemic (NormoPP), or hyperkalemic (HyperPP) according to the potassium level during the paralytic attacks. However, PPP is charactered by remarkable clinical and genetic heterogeneity, and the diagnosis of suspected patients is based on the characteristic clinical presentation then confirmed by genetic testing. At present, there are only limited cohort studies on PPP in the Chinese population. RESULTS: We included 37 patients with a clinical diagnosis of PPP. Eleven (29.7%) patients were tested using a specific gene panel and 26 (70.3%) by the whole-exome sequencing (WES). Twenty-two cases had a genetic variant identified, representing a diagnostic rate of 59.5% (22/37). All the identified mutations were either in the SCN4A or the CACNA1S gene. The overall detection rate was comparable between the panel (54.5%: 6/11) and WES (61.5%: 16/26). The remaining patients unresolved through panel sequencing were further analyzed by WES, without the detection of any mutation. The novel atypical splicing variant c.2020-5G > A affects the normal splicing of the SCN4A mRNA, which was confirmed by minigene splicing assay. Among 21 patients with HypoPP, 15 patients were classified as HypoPP-2 with SCN4A variants, and 6 HypoPP-1 patients had CACNA1S variants. CONCLUSIONS: Our results suggest that SCN4A alleles are the main cause in our cohort, with the remainder caused by CACNA1S alleles, which are the predominant cause in Europe and the United States. Additionally, this study identified 3 novel SCN4A and 2 novel CACNA1S variants, broadening the mutation spectrum of genes associated with PPP.
Asunto(s)
Parálisis Periódica Hipopotasémica , Distrofias Musculares , Humanos , Parálisis Periódica Hipopotasémica/genética , Alelos , Parálisis , China , Canal de Sodio Activado por Voltaje NAV1.4/genéticaRESUMEN
Introduction: CACNA1S related congenital myopathy is an emerging recently described entity. In this report we describe 2 sisters with mutations in the CACNA1S gene and the novel phenotype of congenital myopathy and infantile onset episodic weakness. Clinical description: Both sisters had neonatal onset hypotonia, muscle weakness, and delayed walking. Episodic weakness started in infancy and continued thereafter, provoked mostly by cold exposure. Muscle imaging revealed fat replacement of gluteus maximus muscles. Next generation sequencing found the missense p.Cys944Tyr variant and the novel splicing variant c.3526-2A>G in CACNA1S. Minigene assay revealed the splicing variant caused skipping of exon 28 from the transcript, potentially affecting protein folding and/or voltage dependent activation. Conclusion: This novel phenotype supports the notion that there are age related differences in the clinical expression of CACNA1S gene mutations. This expands our understanding of mutations located in regions of the CACNA1S outside the highly conserved S4 segment, where most mutations thus far have been identified.
RESUMEN
BACKGROUND: Congenital myopathies are a group of clinically, genetically, and histologically heterogeneous diseases caused by mutations in a large group of genes. One of these is CACNA1S, which is recognized as the cause of Dihydropyridine Receptor Congenital Myopathy. METHODS: To better characterize the phenotypic spectrum of CACNA1S myopathy, we conducted a systematic review of cases in the literature through three electronic databases following the PRISMA guidelines. We selected nine articles describing 23 patients with heterozygous, homozygous, or compound heterozygous mutations in CACNA1S and we added one patient with a compound heterozygous mutation in CACNA1S (c.1394-2A>G; c.1724T>C, p.L575P) followed at our Institute. We collected clinical and genetic data, muscle biopsies, and muscle MRIs when available. RESULTS: The phenotype of this myopathy is heterogeneous, ranging from more severe forms with a lethal early onset and mild-moderate forms with a better clinical course. CONCLUSIONS: Our patient presented a phenotype compatible with the mild-moderate form, although she presented peculiar features such as a short stature, myopia, mild sensorineural hearing loss, psychiatric symptoms, and posterior-anterior impairment gradient on thigh muscle MRI.
Asunto(s)
Enfermedades Musculares , Miotonía Congénita , Femenino , Humanos , Canales de Calcio Tipo L/genética , Enfermedades Musculares/genética , Mutación , Músculo Esquelético/patología , Fenotipo , Miotonía Congénita/genéticaRESUMEN
Background: Hypokalemic periodic paralysis (HypoKPP) is a rare neuromuscular genetic disorder causing recurrent episodes of flaccid paralysis. Most cases are associated with CACNA1S mutation, causing defect of calcium channel and subsequent impairment of muscle functions. Due to defined management approaches early diagnosis is crucial for promptly treatment and prevention new attacks. Materials and methods: We report a case of HypoKPP associated with previously unreported mutation in CACNA1S gene (p.R900M). Molecular modeling of CaV1.1 was applied to evaluate its pathogenicity. Results: As a patient referred between attacks neurological status, laboratory and neurophysiological examination were unremarkable. Molecular modeling predicted that the p.R900M mutation affects the process of calcium channels activation. Conclusion: Novel CACNA1S mutation, associated with HypoKPP was identified. Monte-Carlo energy minimization of the CaV1.1 model supported the association of this mutation with this disease.