RESUMEN
Salvia miltiorrhiza Bunge is an herb rich in bioactive tanshinone and salvianolic acid compounds. It is primarily used as an effective medicine for treating cardiovascular and cerebrovascular diseases. Liposoluble tanshinones and water-soluble phenolic acids are a series of terpenoids and phenolic compounds, respectively. However, the regulation mechanism for the simultaneous promotion of tanshinone and salvianolic acid biosynthesis remains unclear. This study identified a R2R3-MYB subgroup 20 transcription factor (TF), SmMYB98, which was predominantly expressed in S. miltiorrhiza lateral roots. The accumulation of major bioactive metabolites, tanshinones, and salvianolic acids, was improved in SmMYB98 overexpression (OE) hairy root lines, but reduced in SmMYB98 knockout (KO) lines. The qRT-PCR analysis revealed that the transcriptional expression levels of tanshinone and salvianolic acid biosynthesis genes were upregulated by SmMYB98-OE and downregulated by SmMYB98-KO. Dual-Luciferase (Dual-LUC) assays demonstrated that SmMYB98 significantly activated the transcription of SmGGPPS1, SmPAL1, and SmRAS1. These results suggest that SmMYB98-OE can promote tanshinone and salvianolic acid production. The present findings illustrate the exploitation of R2R3-MYB in terpenoid and phenolic biosynthesis, as well as provide a feasible strategy for improving tanshinone and salvianolic acid contents by MYB proteins in S. miltiorrhiza.
RESUMEN
The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system. This study demonstrates that both types of enzyme targets, one acting via flux reduction and the other by metabolite accumulation, exist in P. falciparum MEP pathway. These groups of targets can be exploited for independent anti-malarial drugs.