Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(42): e2313133120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812697

RESUMEN

Water is a ubiquitous and vital component of living systems. Hydration, which is the interaction between water and intracellular biomolecules, plays an important role in cellular processes. However, it is technically challenging to study water structure within cells directly. Here, we demonstrate the utility and power of the water bend-libration combination band as a unique Raman spectral imaging probe of cellular hydration. Hydration maps reveal distinct water environments within subcellular compartments (e.g., nucleolus and lipid droplet) due to the spectral sensitivity of this coupled vibrational band. Spectroscopic studies using the water bend-libration are broadly applicable, offering the potential to capture the chemical complexity of hydration in numerous systems.


Asunto(s)
Espectrometría Raman , Agua , Agua/química , Análisis Espectral
2.
Nano Lett ; 24(25): 7757-7763, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38874303

RESUMEN

Terahertz scattering scanning near-field optical microscopy is a robust spectral detection technique with a nanoscale resolution. However, there are still major challenges in investigating the heterogeneity of cell membrane components in individual cells. Here, we present a novel and comprehensive analytical approach for detecting and investigating heterogeneity in cell membrane components at the single-cell level. In comparison to the resolution of the topographical atomic force microscopy image, the spatial resolution of the terahertz near-field amplitude image is 3 times that of the former. This ultrafine resolution enables the compositional distribution in the cell membrane, such as the distribution of extracellular vesicles, to be finely characterized. Furthermore, via extraction of the near-field absorption images at specific frequencies, the visualization and compositional difference analysis of cell membrane components can be presented in detail. These findings have significant implications for the intuitive and visual analysis of cell development and disease evolutionary pathways.


Asunto(s)
Membrana Celular , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Membrana Celular/química , Humanos , Imágen por Terahertz/métodos , Microscopía de Fuerza Atómica/métodos , Vesículas Extracelulares/química
3.
Am J Physiol Cell Physiol ; 326(1): C10-C26, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955119

RESUMEN

Sarcoidosis embodies a complex inflammatory disorder spanning multiple systems, with its origin remaining elusive. It manifests as the infiltration of inflammatory cells that coalesce into distinctive noncaseous granulomas within afflicted organs. Unraveling this disease necessitates the utilization of cellular or tissue-based imaging methods to both visualize and characterize the biochemistry of these sarcoid granulomas. Although hematoxylin and eosin stain, standard in routine use alongside cytological stains have found utility in diagnosis within clinical contexts, special stains such as Masson's trichrome, reticulin, methenamine silver, and Ziehl-Neelsen provide additional varied perspectives of sarcoid granuloma imaging. Immunohistochemistry aids in pinpointing specific proteins and gene expressions further characterizing these granulomas. Finally, recent advances in spatial transcriptomics promise to divulge profound insights into their spatial orientation and three-dimensional (3-D) molecular mapping. This review focuses on a range of preexisting imaging methods employed for visualizing sarcoid granulomas at the cellular level while also exploring the potential of the latest cutting-edge approaches like spatial transcriptomics and matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), with the overarching goal of shedding light on the trajectory of sarcoidosis research.


Asunto(s)
Granuloma , Sarcoidosis , Humanos , Granuloma/diagnóstico por imagen , Sarcoidosis/diagnóstico por imagen
4.
J Physiol ; 602(5): 891-912, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429930

RESUMEN

Skeletal muscle cellular development requires the integrated assembly of mitochondria and other organelles adjacent to the sarcomere in support of muscle contractile performance. However, it remains unclear how interactions among organelles and with the sarcomere relates to the development of muscle cell function. Here, we combine 3D volume electron microscopy, proteomic analyses, and live cell functional imaging to investigate the postnatal reorganization of mitochondria-organelle interactions in skeletal muscle. We show that while mitochondrial networks are disorganized and loosely associated with the contractile apparatus at birth, contact sites among mitochondria, lipid droplets and the sarcoplasmic reticulum are highly abundant in neonatal muscles. The maturation process is characterized by a transition to highly organized mitochondrial networks wrapped tightly around the muscle sarcomere but also to less frequent interactions with both lipid droplets and the sarcoplasmic reticulum. Concomitantly, expression of proteins involved in mitochondria-organelle membrane contact sites decreases during postnatal development in tandem with a decrease in abundance of proteins associated with sarcomere assembly despite an overall increase in contractile protein abundance. Functionally, parallel measures of mitochondrial membrane potential, NADH redox status, and NADH flux within intact cells revealed that mitochondria in adult skeletal muscle fibres maintain a more activated electron transport chain compared with neonatal muscle mitochondria. These data demonstrate a developmental redesign reflecting a shift from muscle cell assembly and frequent inter-organelle communication toward a muscle fibre with mitochondrial structure, interactions, composition and function specialized to support contractile function. KEY POINTS: Mitochondrial network organization is remodelled during skeletal muscle postnatal development. The mitochondrial outer membrane is in frequent contact with other organelles at birth and transitions to more close associations with the contractile apparatus in mature muscles. Mitochondrial energy metabolism becomes more activated during postnatal development. Understanding the developmental redesign process within skeletal muscle cells may help pinpoint specific areas of deficit in muscles with developmental disorders.


Asunto(s)
NAD , Proteómica , Humanos , Adulto , Recién Nacido , NAD/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias Musculares/metabolismo , Gotas Lipídicas/metabolismo
5.
Cell Biol Int ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252384

RESUMEN

Lysosomes are involved in a myriad of cellular functions, such as degradation of macromolecules, endocytosis and exocytosis, modulation of several signaling pathways, and regulation of cell metabolism. To fulfill these diverse functions, lysosomes can undergo several dynamic changes in their content, size, pH, and location within cells. Here, we studied some of these parameters during embryonic chick skeletal muscle cells. We used an anti-lysosome-associated membrane protein 2 (LAMP2) antibody to specifically determine the intracellular localization of lysosomes in these cells. Our data shows that lysosomes are highly enriched in the perinuclear region of chick embryonic muscle cells. We also showed that the wingless signaling pathway (Wnt)/ß-catenin signaling pathway can modulate the location of LAMP2 in chick myogenic cells. Our results highlight the role of lysosomes during muscle differentiation and particularly the presence of a subcellular population of lysosomes that are concentrated in the perinuclear region of muscle cells.

6.
J Fluoresc ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421599

RESUMEN

Intracellular copper ion (Cu2+) is irreplaceable and essential in regulation of physiological and biological processes, while excessive copper from bioaccumulation may cause potential hazards to human health. Hence, effective and sensitive recognition is urgently significant to prevent over-intake of copper. In this work, a novel highly sensitive and green carbon quantum dots (Green-CQDs) were synthesized by a low-cost and facile one-step microwave auxiliary method, which utilized gallic acid, carbamide and PEG400 as carbon source, nitrogen source and surface passivation agent, respectively. The decreased fluorescence illustrated excellent linear relationship with the increasing of Cu2+ concentration in a wide range. Substantial surface amino and hydroxyl group introduced by PEG400 significantly improved selectivity and sensitivity of Green-CQDs. The surface amino chelation mechanism and fluorescence internal filtration effect were demonstrated by the restored fluorescence after addition of EDTA. Crucially, the nanosensor illustrated good cell permeability, high biocompatibility and recovery rate, significantly practical application in fluorescent imaging and biosensing of intracellular Cu2+ in HepG-2 cells, which revealed a potential and promising biological applications in early diagnosis and treatment of copper ion related disease.

7.
Bioorg Chem ; 152: 107729, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39178703

RESUMEN

This study describes the synthesis and characterization of a novel near-infrared (NIR) fluorescent probe RBNE based on a hybrid rhodamine dye, which shows excellent optical capability for detecting and imaging ONOO- in necrotizing enterocolitis (NEC) mouse model. The probe RBNE undergoes hydrazine redox-process, and subsequently the spirocyclic structure's opening, resulting in a turn-on fluorescence emission with the presence of ONOO-, which exhibits several excellent features, including a significant Stokes shift of 108 nm, near-infrared emission at 668 nm, a lower detection limit of 56 nM, low cytotoxicity, and excellent imaging ability for ONOO- both in vitro and in vivo. The presented study introduces a novel optical tool that has the potential to significantly advance our understanding of peroxynitrite (ONOO-) behaviors in necrotizing enterocolitis (NEC).


Asunto(s)
Enterocolitis Necrotizante , Colorantes Fluorescentes , Hidrazinas , Ácido Peroxinitroso , Rodaminas , Ácido Peroxinitroso/análisis , Ácido Peroxinitroso/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Enterocolitis Necrotizante/diagnóstico por imagen , Rodaminas/química , Rodaminas/síntesis química , Animales , Ratones , Hidrazinas/química , Hidrazinas/síntesis química , Estructura Molecular , Modelos Animales de Enfermedad , Humanos , Imagen Óptica
8.
Subcell Biochem ; 106: 3-36, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38159222

RESUMEN

Cryo-electron tomography (cryo-ET) has emerged as a powerful tool in structural biology to study viruses and is undergoing a resolution revolution. Enveloped viruses comprise several RNA and DNA pleomorphic viruses that are pathogens of clinical importance to humans and animals. Considerable efforts in cryogenic correlative light and electron microscopy (cryo-CLEM), cryogenic focused ion beam milling (cryo-FIB), and integrative structural techniques are helping to identify virus structures within cells leading to a rise of in situ discoveries shedding light on how viruses interact with their hosts during different stages of infection. This chapter reviews recent advances in the application of cryo-ET in imaging enveloped viruses and the structural and mechanistic insights revealed studying the viral infection cycle within their eukaryotic cellular hosts, with particular attention to viral entry, replication, assembly, and egress during infection.


Asunto(s)
Tomografía con Microscopio Electrónico , Virus , Animales , Humanos , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Células Eucariotas
9.
Sensors (Basel) ; 24(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38676122

RESUMEN

Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.

10.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256142

RESUMEN

To reduce the mortality and morbidity associated with cancer, new cancer theranostics are in high demand and are an emerging area of research. To achieve this goal, we report the synthesis and characterization of piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives (SA1-SA7). These compounds were synthesized in good yields following a two-step protocol and characterized using multiple analytical techniques. In vitro cytotoxicity and fluorescent cellular imaging of the compounds were assessed against non-cancerous fibroblast (3T3) and breast cancer (4T1) cell lines. Although the former study indicated the safe nature of the compounds (viability = 82-95% at 1 µg/mL), imaging studies revealed that the designed probes had good membrane permeability and could disperse in the whole cell cytoplasm. In silico studies, including molecular docking, molecular dynamics (MD) simulation, and ADME/Tox results, indicated that the compounds had the ability to target CAIX-expressing cancers. These findings suggest that piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives are potential candidates for cancer theranostics and a valuable backbone for future research.


Asunto(s)
Naftalimidas , Neoplasias , Humanos , Simulación del Acoplamiento Molecular , Piperazina , Imagen Molecular
11.
Molecules ; 29(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39275024

RESUMEN

Upconversion nanoparticles (UCNPs) are well-reported for bioimaging. However, their applications are limited by low luminescence intensity. To enhance the intensity, often the UCNPs are coated with macromolecules or excited with high laser power, which is detrimental to their long-term biological applications. Herein, we report a novel approach to prepare co-doped CaF2:Yb3+ (20%), Er3+ with varying concentrations of Er (2%, 2.5%, 3%, and 5%) at ambient temperature with minimal surfactant and high-pressure homogenization. Strong luminescence and effective red emission of the UCNPs were seen even at low power and without functionalization. X-ray diffraction (XRD) of UCNPs revealed the formation of highly crystalline, single-phase cubic fluorite-type nanostructures, and transmission electron microscopy (TEM) showed co-doped UCNPs are of ~12 nm. The successful doping of Yb and Er was evident from TEM-energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy (XPS) studies. Photoluminescence studies of UCNPs revealed the effect of phonon coupling between host lattice (CaF2), sensitizer (Yb3+), and activator (Er3+). They exhibited tunable upconversion luminescence (UCL) under irradiation of near-infrared (NIR) light (980 nm) at low laser powers (0.28-0.7 W). The UCL properties increased until 3% doping of Er3+ ions, after which quenching of UCL was observed with higher Er3+ ion concentration, probably due to non-radiative energy transfer and cross-relaxation between Yb3+-Er3+ and Er3+-Er3+ ions. The decay studies aligned with the above observation and showed the dependence of UCL on Er3+ concentration. Further, the UCNPs exhibited strong red emission under irradiation of 980 nm light and retained their red luminescence upon internalization into cancer cell lines, as evident from confocal microscopic imaging. The present study demonstrated an effective approach to designing UCNPs with tunable luminescence properties and their capability for cellular imaging under low laser power.

12.
Traffic ; 22(7): 240-253, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33914396

RESUMEN

Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high-quality ground-truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high-quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data.


Asunto(s)
Aprendizaje Profundo , Células HeLa , Humanos , Microscopía Electrónica , Membrana Nuclear , Voluntarios
13.
Small ; 19(35): e2301190, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37096899

RESUMEN

Silicon nanostructures (SiNSs) can provide multifaceted bioapplications; but preserving their subhundred nm size during high-temperature silica-to-silicon conversion is the major bottleneck. The SC-SSR utilizes an interior metal-silicide stratum space at a predetermined radial distance inside silica nanosphere to guide the magnesiothermic reduction reaction (MTR)-mediated synthesis of hollow and porous SiNSs. In depth mechanistic study explores solid-to-hollow transformation encompassing predefined radial boundary through the participation of metal-silicide species directing the in-situ formed Si-phase accumulation within the narrow stratum. Evolving thin-porous Si-shell remains well protected by the in-situ segregated MgO emerging as a protective cast against the heat-induced deformation and interparticle sintering. Retrieved hydrophilic SiNSs (<100 nm) can be conveniently processed in different biomedia as colloidal solutions and endocytosized inside cells as photoluminescence (PL)-based bioimaging probes. Inside the cell, rattle-like SiNSs encapsulated with Pd nanocrystals can function as biorthogonal nanoreactors to catalyze intracellular synthesis of probe molecules through C-C cross coupling reaction.


Asunto(s)
Nanosferas , Nanoestructuras , Silicio/química , Nanoestructuras/química , Dióxido de Silicio/química , Nanosferas/química , Porosidad
14.
Small ; 19(23): e2301146, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879476

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic has rapidly escalated into the largest global health emergency, which pushes to develop detection kits for the detection of COVID-19 with high sensitivity, specificity, and fast analysis. Here, aptamer-functionalized MXene nanosheet is demonstrated as a novel bionanosensor that detects COVID-19. Upon binding to the spike receptor binding domain of SARS-CoV-2, the aptamer probe is released from MXene surface restoring the quenched fluorescence. The performances of the fluorosensor are evaluated using antigen protein, cultured virus, and swab specimens from COVID-19 patients. It is evidenced that this sensor can detect SARS-CoV-2 spike protein at final concentration of 38.9 fg mL-1 and SARS-CoV-2 pseudovirus (limit of detection: 7.2 copies) within 30 min. Its application for clinical samples analysis is also demonstrated successfully. This work offers an effective sensing platform for sensitive and rapid detection of COVID-19 with high specificity.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Pandemias , Oligonucleótidos
15.
Histochem Cell Biol ; 160(3): 253-276, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37284846

RESUMEN

Public participation in research, also known as citizen science, is being increasingly adopted for the analysis of biological volumetric data. Researchers working in this domain are applying online citizen science as a scalable distributed data analysis approach, with recent research demonstrating that non-experts can productively contribute to tasks such as the segmentation of organelles in volume electron microscopy data. This, alongside the growing challenge to rapidly process the large amounts of biological volumetric data now routinely produced, means there is increasing interest within the research community to apply online citizen science for the analysis of data in this context. Here, we synthesise core methodological principles and practices for applying citizen science for analysis of biological volumetric data. We collate and share the knowledge and experience of multiple research teams who have applied online citizen science for the analysis of volumetric biological data using the Zooniverse platform ( www.zooniverse.org ). We hope this provides inspiration and practical guidance regarding how contributor effort via online citizen science may be usefully applied in this domain.


Asunto(s)
Ciencia Ciudadana , Humanos , Participación de la Comunidad
16.
J Fluoresc ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906358

RESUMEN

Aluminum (Al), a non-essential element in living systems, can potentially cause chronic toxicity. Therefore, it is crucial to have a specific and sensitive method for detecting Al3+ in order to assess its risk to life. In this study, we designed and synthesized a novel fluorescent probe (IV) based on bromoflavonol. Upon binding to Al3+, probe IV exhibits a blue shift in emission and enhanced fluorescence, making it suitable for Al3+ detection. Our UV-Vis absorption and fluorescence emission spectra demonstrate that probe IV has high selectivity and sensitivity towards Al3+ while being immune to interference from other metal ions. Through fluorescence titration, we determined that the detection limit (LOD) of probe IV for Al3+ is 1.8 × 10-8 mol/L. Job's curve and 1 H NMR titration further confirmed a 1:1 binding stoichiometry between probe IV and Al3+. Additionally, using DFT (Density Functional Theory), we calculated the energy gap difference between IV and IV + Al3+ and found that the complex formed by probe IV and Al3+ is more stable than IV alone. We successfully detected Al3+ in tap water and river water from the middle regions of the Han River, achieving recoveries of over 96% using this probe. This demonstrates its potential for quantitative detection of Al3+ in environmental water samples. Moreover, we successfully used the probe for imaging Al3+ in MG63 cells, suggesting its potential application in biological imaging.

17.
Methods ; 204: 22-28, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35381337

RESUMEN

A near-infrared fluorescent probe was prepared for selective detection of reduced nicotinamide adenine dinucleotide (NADH) in live cells. The probe turns off the fluorescence with a closed spironolactone switch. However, reduction of the probe by NADH turns on fluorescence at 740 nm. Theoretical calculations suggest a more planar arrangement between the rhodamine and quinoline moieties with increased π-delocalization resulting from reduction.


Asunto(s)
Colorantes Fluorescentes , NAD , Fluorescencia , Células HeLa , Humanos , Rodaminas
18.
Nano Lett ; 22(7): 2881-2888, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35289621

RESUMEN

Nanodiamonds (NDs) with color centers are excellent emitters for various bioimaging and quantum biosensing applications. In our work, we explore new applications of NDs with silicon-vacancy centers (SiV) obtained by high-pressure high-temperature (HPHT) synthesis based on metal-catalyst-free growth. They are coated with a polypeptide biopolymer, which is essential for efficient cellular uptake. The unique optical properties of NDs with SiV are their high photostability and narrow emission in the near-infrared region. Our results demonstrate for the first time that NDs with SiV allow live-cell dual-color imaging and intracellular tracking. Also, intracellular thermometry and challenges associated with SiV atomic defects in NDs are investigated and discussed for the first time. NDs with SiV nanoemitters provide new avenues for live-cell bioimaging, diagnostic (SiV as a nanosized thermometer), and theranostic (nanodiamonds as drug carrier) applications.


Asunto(s)
Nanodiamantes , Termometría , Diagnóstico por Imagen , Portadores de Fármacos , Nanodiamantes/química , Silicio
19.
Molecules ; 28(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687075

RESUMEN

A novel fluorescent probe based on azamonardine (Aza) fluorophore was designed and synthesized for the highly selective detection of cysteine (Cys) in vivo and in vitro. After reacting with acryloyl chloride, the fluorescence of Aza is effectively quenched, resulting in the formation of the Aza-acryl probe. Upon the addition of Cys, the ester bond of Aza-acryl is cleaved, releasing a new compound (Compound 1) with strong fluorescence, thereby achieving fluorescence turn-on detection of Cys. The structure of Aza-acryl was characterized using X-ray crystallography and NMR spectroscopy. Additionally, density functional theory was employed to elucidate the quenching mechanism of the acyl group on the Aza. Aza-acryl exhibits high selectivity towards Cys and distinguishes it from other biothiols such as homocysteine (Hcy) and glutathione (GSH). The mechanism of Aza-acryl for detecting Cys was investigated through HPLC, NMR spectroscopy, high-resolution mass spectrometry, and reaction kinetics experiments. Aza-acryl demonstrates excellent imaging capabilities for Cys in cells and zebrafish, providing a reliable and selectable tool for the detection and imaging of Cys in biological systems.


Asunto(s)
Cisteína , Pez Cebra , Animales , Colorantes Fluorescentes , Cromatografía Líquida de Alta Presión , Cristalografía por Rayos X , Glutatión
20.
Molecules ; 28(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38138467

RESUMEN

Reactive oxygen species (ROS) are pivotal signaling molecules that control a variety of physiological functions. As a member of the ROS family, peroxynitrite (ONOO-) possesses strong oxidation and nitrification abilities. Abnormally elevated levels of ONOO- can lead to cellular oxidative stress, which may cause several diseases. In this work, based on the rhodamine fluorophore, we designed and synthesized a novel small-molecule fluorescent probe (DH-1) for ONOO-. Upon reaction with ONOO-, DH-1 exhibited a significant fluorescence signal enhancement (approximately 34-fold). Moreover, DH-1 showed an excellent mitochondria-targeting capability. Confocal fluorescence imaging validated its ability to detect ONOO- changes in HeLa and RAW264.7 cells. Notably, we observed the ONOO- generation during the ferroptosis process by taking advantage of the probe. DH-1 displayed good biocompatibility, facile synthesis, and high selectivity, and may have potential applications in the study of ONOO--associated diseases in biosystems.


Asunto(s)
Colorantes Fluorescentes , Ácido Peroxinitroso , Humanos , Especies Reactivas de Oxígeno , Mitocondrias , Rodaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA