RESUMEN
BACKGROUND: Radio-guided surgery (RGS) holds promise for improving surgical outcomes in neuroendocrine tumors (NETs). Previous studies showed low specificity (SP) using γ-probes to detect radiation emitted by radio-labeled somatostatin analogs. OBJECTIVE: We aimed to assess the sensitivity (SE) and SP of the intraoperative RGS approach using a ß-probe with a per-lesion analysis, while assessing safety and feasibility as secondary objectives. METHODS: This prospective, single-arm, single-center, phase II trial (NCT05448157) enrolled 20 patients diagnosed with small intestine NETs (SI-NETs) with positive lesions detected at 68Ga-DOTA-TOC positron emission tomography/computed tomography (PET/CT). Patients received an intravenous injection of 1.1 MBq/Kg of 68Ga-DOTA-TOC 10 min prior to surgery. In vivo measurements were conducted using a ß-probe. Receiver operating characteristic (ROC) analysis was performed, with the tumor-to-background ratio (TBR) as the independent variable and pathology result (cancer vs. non-cancer) as the dependent variable. The area under the curve (AUC), optimal TBR, and absorbed dose for the surgery staff were reported. RESULTS: The intraoperative RGS approach was feasible in all cases without adverse effects. Of 134 specimens, the AUC was 0.928, with a TBR cut-off of 1.35 yielding 89.3% SE and 86.4% SP. The median absorbed dose for the surgery staff was 30 µSv (range 12-41 µSv). CONCLUSION: This study reports optimal accuracy in detecting lesions of SI-NETs using the intraoperative RGS approach with a novel ß-probe. The method was found to be safe, feasible, and easily reproducible in daily clinical practice, with minimal radiation exposure for the staff. RGS might potentially improve radical resection rates in SI-NETs. CLINICAL TRIALS REGISTRATION: 68Ga-DOTATOC Radio-Guided Surgery with ß-Probe in GEP-NET (RGS GEP-NET) [NCT0544815; https://classic. CLINICALTRIALS: gov/ct2/show/NCT05448157 ].
Asunto(s)
Neoplasias Intestinales , Intestino Delgado , Tumores Neuroendocrinos , Octreótido , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Cirugía Asistida por Computador , Humanos , Tumores Neuroendocrinos/cirugía , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/diagnóstico por imagen , Femenino , Masculino , Estudios Prospectivos , Persona de Mediana Edad , Neoplasias Intestinales/cirugía , Neoplasias Intestinales/patología , Neoplasias Intestinales/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Anciano , Intestino Delgado/patología , Intestino Delgado/diagnóstico por imagen , Intestino Delgado/cirugía , Octreótido/análogos & derivados , Adulto , Cirugía Asistida por Computador/métodos , Compuestos Organometálicos , Somatostatina/análogos & derivados , Estudios de Seguimiento , Pronóstico , Partículas beta/uso terapéutico , Estudios de FactibilidadRESUMEN
OBJECTIVES: To investigate an additional value of [68Ga]Ga-DOTA-TOC PET/CT for characterizing suspected pancreatic neuroendocrine neoplasms (NENs) in a large study cohort. METHODS: This retrospective study included 167 patients who underwent [68Ga]Ga-DOTA-TOC PET/CT for suspected pancreatic NENs detected by contrast-enhanced CT (n = 153) and/or MRI (n = 85). Two board-certified radiologists independently reviewed CT and/or MRI as well as [68Ga]Ga-DOTA-TOC PET/CT and scored the probability of NEN on a 5-point scale. Radiologists' diagnostic performances with and without [68Ga]Ga-DOTA-TOC PET/CT were compared using pathologic findings as the standard of reference. RESULTS: All 167 patients were pathologically diagnosed with NENs (n = 131) or non-NENs (n = 36) by surgery (n = 93) or biopsy (n = 74). The non-NEN group included focal pancreatitis (n = 7), gastrointestinal stromal tumor (n = 6), serous cystadenoma (n = 5), metastatic renal cell carcinoma (n = 4), intrapancreatic accessory spleen (n = 4), ductal adenocarcinoma (n = 3), solid pseudopapillary neoplasm (n = 2), intraductal papillary mucinous carcinoma (n = 1), adenosquamous carcinoma (n = 1), schwannoma (n = 1), paraganglioma (n = 1), and solitary fibrous tumor (n = 1). Radiologists' diagnostic performance significantly improved after the addition of [68Ga]Ga-DOTA-TOC PET/CT (AUC of CT: 0.737 vs. 0.886 for reviewer 1 [p = 0.0004]; 0.709 vs. 0.859 for reviewer 2 [p = 0.0002], AUC of MRI: 0.748 vs. 0.872 for reviewer 1 [p = 0.023]; 0.670 vs. 0.854 for reviewer 2 [p = 0.001]). [68Ga]Ga-DOTA-TOC PET/CT significantly improved sensitivity (CT: 87.4% vs. 96.6% for reviewer 1 [p = 0.001]; 74.8% vs. 92.5% for reviewer 2 [p = 0.0001], MRI: 86.9% vs. 98.4% for reviewer 1 [p = 0.016]; 70.5% vs. 91.8% for reviewer 2 [p = 0.002]). CONCLUSIONS: [68Ga]Ga-DOTA-TOC PET/CT provided an additional value over conventional CT or MRI for the characterization of suspected pancreatic NENs. KEY POINTS: ⢠[68Ga]Ga-DOTA-TOC PET/CT could provide additional value over conventional CT and/or MRI for the exact characterization of suspected pancreatic NENs by increasing AUC values and sensitivity. ⢠Diagnostic improvement was significant, especially in NENs showing an atypical enhancement pattern. ⢠The inter-observer agreement was improved when [68Ga]Ga-DOTA-TOC PET/CT was added to CT and/or MRI.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Tumores Neuroendocrinos , Compuestos Organometálicos , Neoplasias Pancreáticas , Radioisótopos de Galio , Humanos , Imagen por Resonancia Magnética , Tumores Neuroendocrinos/diagnóstico por imagen , Octreótido , Neoplasias Pancreáticas/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Estudios RetrospectivosRESUMEN
PURPOSE: DOTA-D-Phe1-Tyr3-octreotide with gallium-68 ([68Ga]Ga-DOTA-TOC) is one of the PET tracers that forms the basis for peptide receptor radionuclide therapy based on somatostatin receptor subtype 2 (SSTR2) expression in meningiomas. Yet, the quantitative relationship between [68Ga]Ga-DOTA-TOC accumulation and SSTR2 is unknown. We conducted a correlative analysis of a range of [68Ga]Ga-DOTA-TOC PET metric(s) as imaging surrogate(s) of the receptor binding in meningiomas by correlating the PET results with SSTR2 expression from surgical specimens. We additionally investigated possible influences of secondary biological factors such as vascularization, inflammation and proliferation. METHODS: Fifteen patients with MRI-presumed or recurrent meningiomas underwent a 60-min dynamic [68Ga]Ga-DOTA-TOC PET/CT before surgery. The PET data comprised maximum and mean standardized uptake values (SUVmax, SUVmean) with and without normalization to reference regions, and quantitative measurements derived from kinetic modelling using a reversible two-tissue compartment model with the fractional blood volume (VB). Expressions of SSTR2 and proliferation (Ki-67, phosphohistone-H3, proliferating cell nuclear antigen) were determined by immunohistochemistry and/or quantitative polymerase chain reaction (qPCR), while biomarkers of vascularization (vascular endothelial growth factor A (VEGFA), endothelial marker CD34) and inflammation (cytokine interleukin-18, microglia/macrophage-specific marker CD68) by qPCR. RESULTS: Histopathology revealed 12 World Health Organization (WHO) grade I and three WHO grade II meningiomas showing no link to SSTR2. The majority of [68Ga]Ga-DOTA-TOC PET metrics showed significant associations with SSTR2 protein, while all PET metrics were positively correlated with SSTR2 mRNA with the best results for mean tumour-to-blood ratio (TBRmean) (r = 0.757, P = 0.001) and SUVmean (r = 0.714, P = 0.003). Significant positive correlations were also found between [68Ga]Ga-DOTA-TOC PET metrics, and VEGFA and VB. SSTR2 mRNA was moderately correlated with VEGFA (r = 0.539, P = 0.038). Neither [68Ga]Ga-DOTA-TOC PET metrics nor SSTR2 were correlated with proliferation or inflammation. CONCLUSION: [68Ga]Ga-DOTA-TOC accumulation in meningiomas is associated with SSTR2 binding and vascularization with TBRmean being the best PET metric for assessing SSTR2.
Asunto(s)
Neoplasias Meníngeas , Meningioma , Compuestos Organometálicos , Niño , Radioisótopos de Galio , Humanos , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/genética , Meningioma/diagnóstico por imagen , Meningioma/genética , Recurrencia Local de Neoplasia , Octreótido , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Receptores de Somatostatina/genética , Factor A de Crecimiento Endotelial VascularRESUMEN
INTRODUCTION: PET/CT using 68Ga-labeled somatostatin analogs (SSA) targeting somatostatin receptors (SSR) on the cell surface of well-differentiated neuroendocrine tumors (NET) represents the clinical reference standard for imaging. However, economic and logistic challenges of the 68Ge/68Ga generator-based approach have disadvantages over 18F-labeled compounds. Here, we present the first in-human data of 18F-SiFAlin-TATE, a novel 18F-labeled, SSR-targeting peptide. The aim was to compare the intra-individual biodistribution, tumor uptake, and image quality of 18F-SiFAlin-TATE to the clinical reference standard 68Ga-DOTA-TOC. METHODS: Thirteen patients with NET staged with both 68Ga-DOTA-TOC and 18F-SiFAlin-TATE PET/CT have been included in this retrospective analysis. We compared the biodistribution in normal organs and tumor uptake of NET lesions by SUVmean and SUVmax measurement for tracers. Additionally mean and max tumor-to-liver (TLR) and tumor-to-spleen ratios (TSR) have been calculated by division of SUVmean and SUVmax of tumor lesions by the SUVmean of the liver and spleen, respectively. Additionally, image quality was visually rated by 5 blinded readers and an intra-class correlation (ICC) analysis on inter-observer agreement has been performed. RESULTS: Compared with 68Ga-DOTA-TOC, the biodistribution of 18F-SiFAlin-TATE showed somewhat higher, however, statistically not significant higher uptake in the liver, spleen, and adrenal glands. Significantly higher uptake was observed in the kidneys. Tumor uptake was higher in most tumor lesions with significantly higher uptake in common metastatic sites of NET including the liver (SUVmax 18.8 ± 8.4 vs. 12.8 ± 5.6; p < 0.001), lymph nodes (SUVmax 23.8 ± 20.7 vs. 17.4 ± 16.1; p < 0.001) and bone (SUVmax 16.0 ± 10.1 vs. 10.3 ± 5.7; p < 0.01) for 18F-SiFAlin-TATE. The high tumor uptake resulted in favorable TLR and TSR, comparable with that of 68Ga-DOTA-TOC. The ICC analysis on the inter-observer agreement on image quality was substantial and almost perfect. Image quality was rated as excellent in most cases in both 68Ga-DOTA-TOC and 18F-SiFAlin-TATE PET. CONCLUSION: The favorable characteristics of 18F-SiFAlin-TATE with a high image quality, the kit-like labeling procedure, and the promising clinical performance enable improved logistics and diagnostic possibilities for PET imaging of NET. Our first clinical results warrant further systematic studies investigating the clinical use of 18F-SiFAlin-TATE in NET patients.
Asunto(s)
Tumores Neuroendocrinos , Compuestos Organometálicos , Humanos , Tumores Neuroendocrinos/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Receptores de Somatostatina/metabolismo , Estudios Retrospectivos , Somatostatina , Distribución TisularRESUMEN
A critical factor for clinical practice is the production of 68 Ga radiopharmaceuticals manufactured manually or through an automated procedure. 68 Ga radiopharmaceuticals are often prepared manually, although this method can lead to an increased operator's radiation dose and potential variability within production. The present work compares 68 Ga-radiolabelling (PSMA-11; DOTA-TOC) utilizing a cassette module (GAIA; Elysia-Raytest; Germany) with a manual setup for routine clinical production with regard to process reliability and reproducibility.
Asunto(s)
Radioisótopos de Galio/química , Marcaje Isotópico/métodos , AutomatizaciónRESUMEN
Gallium-68 (68 Ga, t1/2 = 68 min) can be easily obtained from a 68 Ge/68 Ga generator, and several such systems are commercially available. The use of positron emission tomography (PET) imaging using 68 Ga-labeled radiopharmaceuticals is expected to increase in both preclinical and clinical settings. However, the chelation between a 68 Ga cation and the bifunctional macrocyclic chelates that are used for labeling bioactive substances, such as 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), requires a relatively long reaction time and high temperature to achieve a high radiochemical yield. Previously, we reported on a novel resonant-type microwave reactor that can be used for radiosynthesis and the usefulness of this reactor in the PET radiosynthesis of 18 F. In the present study, the usefulness of this resonant-type microwave reactor was evaluated for the radiolabeling of model macrocyclic chelates with 68 Ga. As a result, microwave heating of resonant-type microwave reactor notably improved the rate of the 68 Ga labeling chelate reaction in a short time period of 2 minutes, compared with the use of a conventional heating method. Additionally, it was found that the use of this reactor made it possible to decrease the amount of precursors required in the reaction and to improve the molar activity of the labeled compounds.
Asunto(s)
Radioisótopos de Galio/química , Compuestos Heterocíclicos con 1 Anillo/química , Radiofármacos/síntesis química , Quelantes/química , Técnicas de Química Sintética/instrumentación , Técnicas de Química Sintética/métodos , MicroondasRESUMEN
PURPOSE: Oncogenic osteomalacia is an endocrine disorder induced by small benign tumours (TIO) producing excessive fibroblast growth factor-23 (FGF23). The only way of curing oncogenic osteomalacia is surgical resection of the culprit TIO, which is extremely difficult to detect using conventional imaging modalities due to its small size and variable location in the body. Since TIO frequently overexpress somatostatin receptors, a clinical utility of SPECT or PET with radiolabelled somatostatin analogues has been reported. Among them, 68Ga-DOTA-TOC has recently been granted a marketing authorization, facilitating its routine application. We report here the results of the first series evaluating the diagnostic performance of 68Ga-DOTA-TOC PET/CT in detecting TIO and its impact on patient management. METHODS: 68Ga-DOTA-TOC PET/CT and clinical and imaging data from 15 patients with clinical and biochemical signs of oncogenic osteomalacia were retrospectively reviewed. The 68Ga-DOTA-TOC PET/CT findings were compared with the results of post-surgical pathology and clinical and biochemical follow-up. RESULTS: 68Ga-DOTA-TOC PET/CT resulted in the detection of one focus suspicious for TIO in nine of 15 patients (60%), and a tumour was surgically removed in eight. Post-operative pathology confirmed a TIO in those eight patients whose symptoms diminished promptly and biochemical anomalies resolved. 68Ga-DOTA-TOC PET/CT sensitivity, specificity and accuracy were 73%, 67% and 71%, respectively. 68Ga-DOTA-TOC PET/CT findings affected patient management in 67% of cases. In particular, 68Ga-DOTA-TOC PET/CT was able to detect the TIO with a negative or a false-positive result of a previous 111In-pentetreotide SPECT/CT in 5/8 patients (63%) or a previous FDG PET/CT in 7/11 patients (64%). No close relationship was found between the positivity of 68Ga-DOTA-TOC PET/CT and the serum level of a biochemical marker. However, a true-positive result of 68Ga-DOTA-TOC PET/CT was obtained in only one patient with a non-elevated serum level of FGF23. CONCLUSION: 68Ga-DOTA-TOC PET/CT is an accurate imaging modality in the detection of TIO; in particular, it is worthwhile after failure of somatostatin receptor SPECT(/CT) or FDG PET/CT.
Asunto(s)
Neoplasias/complicaciones , Neoplasias/diagnóstico por imagen , Compuestos Organometálicos , Osteomalacia/complicaciones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Anciano , Anciano de 80 o más Años , Femenino , Factor-23 de Crecimiento de Fibroblastos , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto JovenRESUMEN
PURPOSE: To determine the value of (68)Ga-DOTA-TOC and (18)F-FDG PET/CT for initial and follow-up evaluation of patients with neuroendocrine tumour (NET) treated with peptide receptor radionuclide therapy (PRRT). METHODS: We evaluated 66 patients who had histologically proven NET and underwent both PRRT and three combined (68)Ga-DOTA-TOC and (18)F-FDG PET/CT studies. (68)Ga-DOTA-TOC PET/CT was performed before PRRT, 3 months after completion of PRRT and after a further 6 - 9 months. (18)F-FDG PET/CT was done within 2 months of (68)Ga-DOTA-TOC PET/CT. Follow-up ranged from 11.8 to 80.0 months (mean 34.5 months). RESULTS: All patients were (68)Ga-DOTA-TOC PET-positive initially and at follow-up after the first full PRRT cycle. Overall, 62 of the 198 (18)F-FDG PET studies (31 %) were true-positive in 38 of the 66 patients (58 %). Of the 66 patients, 28 (5 grade 1, 23 grade 2) were (18)F-FDG-negative initially and during follow-up (group 1), 24 (5 grade 1, 13 grade 2, 6 grade 3) were (18)F-FDG-positive initially and during follow-up (group 2), 9 patients (2 grade 1, 6 grade 2, 1 grade 3) were (18)F-FDG-negative initially but (18)F-FDG-positive during follow-up (group 3), and 5 patients (all grade 2) were (18)F-FDG-positive initially but (18)F-FDG-negative during follow-up (group 4).(18)F-FDG PET showed more and/or larger metastases than (68)Ga-DOTA-TOC PET in five patients of group 2 and four patients of group 3, all with progressive disease. In three patients with progressive disease who died during follow-up tumour SUVmax increased by 41 - 82 % from the first to the last follow-up investigation. CONCLUSION: In NET patients, the presence of (18)F-FDG-positive tumours correlates strongly with a higher risk of progression. Initially, patients with (18)F-FDG-negative NET may show (18)F-FDG-positive tumours during follow-up. Also patients with grade 1 and grade 2 NET may have (18)F-FDG-positive tumours. Therefore, (18)F-FDG PET/CT is a complementary tool to (68)Ga-DOTA-TOC PET/CT with clinical relevance for molecular investigation.
Asunto(s)
Fluorodesoxiglucosa F18 , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/radioterapia , Octreótido/análogos & derivados , Compuestos Organometálicos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Receptores de Somatostatina/uso terapéutico , Adulto , Anciano , Transporte Biológico , Femenino , Fluorodesoxiglucosa F18/metabolismo , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Octreótido/metabolismo , Compuestos Organometálicos/metabolismo , Estudios RetrospectivosRESUMEN
CONTEXT: Somatostatin receptor scintigraphy with (111)In-pentetreotide (SRS) is used to detect duodenopancreatic neuroendocrine tumors (dpNETs) in multiple endocrine neoplasia type 1 (MEN1). However, SRS has limited sensitivity for this purpose. Positron emission tomography/computed tomography (PET/CT) with (68)Ga-DOTA-TOC has a higher rate of sporadic dpNETs detection than SRS but there is little data for dpNETs detection in MEN1. PURPOSE: To compare the performances of (68)Ga-DOTA-TOC PET/CT, SRS and contrast-enhanced computed tomography (CE-CT) to diagnose dpNETs in MEN1. DESIGN AND SETTING: Single-institution prospective comparative study PATIENTS AND METHODS: Nineteen consecutive MEN1 patients (aged 47 ± 13 years) underwent (68)Ga-DOTA-TOC PET/CT, SRS, and CE-CT within 2 months in random order. Blinded readings of images were performed separately by experienced physicians. Unblinded analysis of CE-CT, combined with additional magnetic resonance imaging, endoscopic-ultrasound, (18)F-2-fluoro-deoxy-D-glucose ((18)F-FDG) PET/CT or histopathology results served as reference standard for dpNETs diagnosis. RESULTS: The sensitivity of (68)Ga-DOTA-TOC PET/CT, SRS, and CE-CT was 76, 20, and 60 %, respectively (p < 0.0001). All the true-positive lesions detected by SRS were also depicted on (68)Ga-DOTA-TOC PET/CT. (68)Ga-DOTA-TOC PET/CT detected lesions of smaller size than SRS (10.7 ± 7.6 and 15.2 ± 5.9 mm, respectively, p < 0.03). False negatives of (68)Ga-DOTA-TOC PET/CT included small dpNETs (<10 mm) and (18)F-FDG PET/CT positive aggressive dpNETs. No false positives were recorded. In addition, whole-body mapping with (68)Ga-DOTA-TOC PET/CT identified extra-abdominal MEN1-related tumors including one neuroendocrine thymic carcinoma identified by the three imaging procedures, one bronchial carcinoid undetected by CE-CT and three meningiomas undetected by SRS. CONCLUSIONS: Owing to higher diagnostic performance, (68)Ga-DOTA-TOC PET/CT (or alternative (68)Ga-labeled somatostatin analogues) should replace (111)In-pentetreotide in the investigation of MEN1 patients.
Asunto(s)
Neoplasia Endocrina Múltiple Tipo 1/complicaciones , Tumores Neuroendocrinos/complicaciones , Tumores Neuroendocrinos/diagnóstico por imagen , Octreótido/análogos & derivados , Compuestos Organometálicos , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Adulto , Anciano , Duodeno , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
PURPOSE: Radiolabelled somatostatin (SST) analogues have proven useful in diagnosing tumours positive for SST receptor (SSTR). As different subtypes of SSTR are expressed on the tumour cell surface, the choice of appropriate therapeutic SST analogue is crucial. We evaluated the SSTR status of thyroid cancer patients who had signs of progressive disease comparing different SSTR ligands for PET imaging to evaluate possible further therapeutic options. METHODS: PET with (68)Ga-radiolabelled SSTR ligands DOTA lanreotide (DOTA-LAN), DOTA-Tyr(3) octreotide (DOTA-TOC) and (18)F-FDG was performed in 31 patients with thyroid cancer (TC). These 31 patients comprised 18 with radioiodine non-avid differentiated TC (DTC) including 6 papillary TC (PTC), 8 follicular TC (FTC) and 4 oxyphilic TC (oxyTC), 5 with anaplastic TC (ATC), and 8 with medullary TC (MTC). The PET results were compared in a region-based evaluation. RESULTS: All patients underwent a PET study with (68)Ga-DOTA-LAN, 28 patients with (68)Ga-DOTA-TOC and 28 patients with (18)F-FDG. A lack of SSTR expression was found in 13 of the 31 patients (42%) with negative results with both SSTR tracers in 12 patients. Ambiguous results with both SSTR tracers were observed in one patient. High tracer uptake in SSTR PET images was seen in seven DTC patients (39%; two PTC, three FTC, two oxyTC), in four ATC patients (80%) and in six MTC patients (75%). Lesions showing aerobic glycolysis on (18)F-FDG PET were found in 24 of 28 patients (86%) with corresponding positive results with (68)Ga-DOTA-LAN in 35% and with (68)Ga-DOTA-TOC in 29%. CONCLUSION: The heterogeneous SSTR profile of TC tumour lesions needs to be evaluated using different SSTR PET tracers to characterize more closely the SSTR subtype affinities in patients with progressive TC in order to further stratify therapy with SSTR therapeutics.
Asunto(s)
Glucosa/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos , Receptores de Somatostatina/metabolismo , Neoplasias de la Tiroides/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Fluorodesoxiglucosa F18 , Compuestos Heterocíclicos con 1 Anillo , Humanos , Masculino , Persona de Mediana Edad , Octreótido/análogos & derivados , Compuestos Organometálicos , Péptidos Cíclicos , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patologíaRESUMEN
Neuroendocrine tumors (NETs) are commonly seen in the small intestine and rarely found within the bile ducts. This low incidence is due to a smaller number of Kulchitsky cells in the extrahepatic biliary tree, which predisposes to the disease. The diagnosis of biliary tree carcinoid preoperatively is very rare, with most cases in the literature being incidentally diagnosed during surgery or being identified on the histopathology report postoperatively. Here, we present an interesting case of an extrahepatic biliary NET which was diagnosed preoperatively.
RESUMEN
One example of a PET exam that suffers from noise problems is [68Ga]Ga-DOTA-TOC, where patients are generally administered between 100 and 200 MBq [68Ga]Ga-DOTA-TOC, irrespective of size. However, a fixed activity can result in low signal-to-noise ratios (SNRs) in larger patients. This study aimed to evaluate the impact on image quality with respect to injected activity and patient habitus through Monte Carlo (MC) simulation. Eight anthropomorphic computer phantoms with body mass indices (BMIs) between 19 kg/m2 and 38 kg/m2 and tumours distributed in the liver were simulated using the MC software Gate v8.2 with an activity distribution defined according to [68Ga]Ga-DOTA-TOC standardised uptake values. Three activity-administration protocols were simulated: (i) with a fixed activity of 100 MBq, (ii) with the activity scaled by 2 MBq/kg, and (iii) with the activity scaled by a body size-dependent power-function based on the SNR obtained with (ii). BMI, weight, body surface area, and abdominal circumference were evaluated body size parameters. Images were reconstructed with the CASToR software and evaluated for background SNR and lesion contrast-to-noise ratio (CNR). Large SNR variabilities were obtained with protocols (i) and (ii), while (iii) generated good consistency. Several tumours failed to reach a CNR of 5 for large phantoms with protocol (i), but the CNR was generally improved by (ii) and (iii). An activity scaled by patient habitus generate better image quality consistency, which increases the likelihood that patients receive a similar standard of care.
RESUMEN
BACKGROUND: PET/MRI is an emerging imaging modality which enables the evaluation and quantification of biochemical processes in tissues, complemented with accurate anatomical information and low radiation exposure. In the framework of theragnosis, PET/MRI is of special interest due to its ability to delineate small lesions, adequately quantify them, and therefore to plan targeted therapies. The aim of this study was to validate the diagnostic performance of [68 Ga]Ga-DOTA-TOC PET/MRI compared to PET/CT in advanced disease paragangliomas and pheochromocytomas (PGGLs) to assess in which clinical settings, PET/MRI may have a greater diagnostic yield. METHODS: We performed a same-day protocol with consecutive acquisition of a PET/CT and a PET/MRI after a single [68 Ga]Ga-DOTA-TOC injection in 25 patients. Intermodality agreement, Krenning Score (KS), SUVmax (Standard Uptake Value), target-to-liver-ratio (TLR), clinical setting, location, and size were assessed. RESULTS: The diagnostic accuracy with PET/MRI increased by 14.6% compared to PET/CT especially in bone and liver locations (mean size of new lesions was 3.73 mm). PET/MRI revealed a higher overall lesion uptake than PET/CT (TLR 4.12 vs 2.44) and implied an upward elevation of the KS in up to 60% of patients. The KS changed in 30.4% of the evaluated lesions (mean size 11.89 mm), in 18.4% of the lesions it increased from KS 2 on PET/CT to a KS ≥ 3 on PET/MRI and 24.96% of the lesions per patient with multifocal disease displayed a KS ≥ 3 on PET/MR, that were not detected or showed lower KS on PET/CT. In 12% of patients, PET/MRI modified clinical management. CONCLUSIONS: PET/MRI showed minor advantages over conventional PET/CT in the detection of new lesions but increased the intensity of SSRs expression in a significant number of them, opening the door to select which patients and clinical settings can benefit from performing PET/MRI.
Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Compuestos Organometálicos , Paraganglioma , Feocromocitoma , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Feocromocitoma/diagnóstico por imagen , Medicina de Precisión , Tomografía de Emisión de Positrones/métodos , Paraganglioma/diagnóstico por imagen , Neoplasias de las Glándulas Suprarrenales/diagnóstico por imagen , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: The demand for 68Ga-labeled radiotracers has significantly increased in the past decade, driven by the development of diversified imaging tracers, such as FAPI derivatives, PSMA-11, DOTA-TOC, and DOTA-TATE. These tracers have exhibited promising results in theranostic applications, fueling interest in exploring them for clinical use. Among these probes, 68Ga-labeled FAPI-46 and DOTA-TOC have emerged as key players due to their ability to diagnose a broad spectrum of cancers ([68Ga]Ga-FAPI-46) in late-phase studies, whereas [68Ga]Ga-DOTA-TOC is clinically approved for neuroendocrine tumors. To facilitate their production, we leveraged a microfluidic cassette-based iMiDEV radiosynthesizer, enabling the synthesis of [68Ga]Ga-FAPI-46 and [68Ga]Ga-DOTA-TOC based on a dose-on-demand (DOD) approach. RESULTS: Different mixing techniques were explored to influence radiochemical yield. We achieved decay-corrected yield of 44 ± 5% for [68Ga]Ga-FAPI-46 and 46 ± 7% for [68Ga]Ga-DOTA-TOC in approximately 30 min. The radiochemical purities (HPLC) of [68Ga]Ga-FAPI-46 and [68Ga]Ga-DOTA-TOC were 98.2 ± 0.2% and 98.4 ± 0.9%, respectively. All the quality control results complied with European Pharmacopoeia quality standards. We optimized various parameters, including 68Ga trapping and elution, cassette batches, passive mixing in the reactor, and solid-phase extraction (SPE) purification and formulation. The developed synthesis method reduced the amount of precursor and other chemicals required for synthesis compared to conventional radiosynthesizers. CONCLUSIONS: The microfluidic-based approach enabled the implementation of radiosynthesis of [68Ga]Ga-FAPI-46 and [68Ga]Ga-DOTA-TOC on the iMiDEV™ microfluidic module, paving the way for their use in preclinical and clinical applications. The microfluidic synthesis approach utilized 2-3 times less precursor than cassette-based conventional synthesis. The synthesis method was also successfully validated in a similar microfluidic iMiDEV module at a different research center for the synthesis of [68Ga]Ga-FAPI-46 with limited runs. Our study demonstrated the potential of microfluidic methods for efficient and reliable radiometal-based radiopharmaceutical synthesis, contributing valuable insights for future advancements in this field and paving the way for routine clinical applications in the near future.
RESUMEN
PURPOSE: The aim of this paper was to investigate correlations between pre- therapeutic [68Ga]Ga-DOTA-TOC uptake and absorbed dose to tumours from therapy with [177Lu]Lu-DOTA-TATE. METHODS: This retrospective study included 301 tumours from 54 GEP-NET patients. The tumours were segmented on pre-therapeutic [68Ga]Ga-DOTA-TOC PET/CT, and post-therapy [177Lu]Lu-DOTA-TATE SPECT/CT images, using a fixed 40% threshold. The SPECT/CT images were used for absorbed dose calculations by assuming a linear build-up from time zero to day one, and mono-exponential wash-out after that. Both SUVmean and SUVmax were measured from the PET images. A linear absorbed-dose prediction model was formed with SUVmean as the independent variable, and the accuracy was tested with a split 70-30 training-test set. RESULTS: Mean SUVmean and SUVmax from [68Ga]Ga-DOTA-TOC PET was 24.0 (3.6-84.4) and 41.0 (6.7-146.5), and the mean absorbed dose from [177Lu]Lu-DOTA-TATE was 26.9 Gy (2.4-101.9). A linear relationship between SUVmean and [177Lu]Lu-DOTA-TATE activity concentration at 24 h post injection was found (R2 = 0.44, p < 0.05). In the prediction model, a root mean squared error and a mean absolute error of 1.77 and 1.33 Gy/GBq, respectively, were found for the test set. CONCLUSIONS: There was a high inter- and intra-patient variability in tumour measurements, both for [68Ga]Ga-DOTA-TOC SUVs and absorbed doses from [177Lu]Lu-DOTA-TATE. Depending on the required accuracy, [68Ga]Ga-DOTA-TOC PET imaging may estimate the [177Lu]Lu-DOTA-TATE uptake. However, there could be a high variance between predicted and actual absorbed doses.
RESUMEN
BACKGROUND: Segmenting the whole-body somatostatin receptor-expressing tumour volume (SRETVwb) on positron emission tomography/computed tomography (PET/CT) images is highly time-consuming but has shown value as an independent prognostic factor for survival. An automatic method to measure SRETVwb could improve disease status assessment and provide a tool for prognostication. This study aimed to develop an artificial intelligence (AI)-based method to detect and quantify SRETVwb and total lesion somatostatin receptor expression (TLSREwb) from [68Ga]Ga-DOTA-TOC/TATE PET/CT images. METHODS: A UNet3D convolutional neural network (CNN) was used to train an AI model with [68Ga]Ga-DOTA-TOC/TATE PET/CT images, where all tumours were manually segmented with a semi-automatic method. The training set consisted of 148 patients, of which 108 had PET-positive tumours. The test group consisted of 30 patients, of which 25 had PET-positive tumours. Two physicians segmented tumours in the test group for comparison with the AI model. RESULTS: There were good correlations between the segmented SRETVwb and TLSREwb by the AI model and the physicians, with Spearman rank correlation coefficients of r = 0.78 and r = 0.73, respectively, for SRETVwb and r = 0.83 and r = 0.81, respectively, for TLSREwb. The sensitivity on a lesion detection level was 80% and 79%, and the positive predictive value was 83% and 84% when comparing the AI model with the two physicians. CONCLUSION: It was possible to develop an AI model to segment SRETVwb and TLSREwb with high performance. A fully automated method makes quantification of tumour burden achievable and has the potential to be more widely used when assessing PET/CT images.
RESUMEN
PURPOSE: 68 Ga-DOTA-TOC uptake in the pancreas uncinate process is often found due to physiologic expression of somatostatin receptors (SSTR). We investigated the association of physiologic 68 Ga-DOTA-TOC uptake in the pancreas uncinate process with blood glucose level. METHODS: 68 Ga-DOTA-TOC PET scans acquired from 44 patients (male:female = 20:24, age = 50.8 ± 14.8y [mean ± SD]) were retrospectively analyzed. The blood glucose level (BGL) was examined before 68 Ga-DOTA-TOC injection. Patients diagnosed with diabetes mellitus and patients with BGL over 200 mg/dl were excluded. 68 Ga-DOTA-TOC uptake was measured by the maximum standardized uptake values (SUVmax). Additionally, SSTR-positive volume (SV) in the pancreas uncinate process was measured with two different thresholds: by SUV cutoff of 2.5 (SV2.5) and 40% of SUVmax (SV40%). These measurements on 68 Ga-DOTA-TOC PET were correlated with BGL. RESULTS: The mean of SUVmax of the pancreas uncinate process was 6.51 ± 2.04. SV2.5 was 17.81 ± 7.14 cm3, and SV40% was 18.20 ± 8.83 cm3. A significant negative correlation was found between SUVmax of the pancreas uncinate process and BGL (r = -0.37, p = 0.01). The ratio between SUVmax of the pancreas uncinate process and SUVmean of the pancreas body also showed a significance negative correlation with BGL (r = -0.40, p = 0.01). SV2.5 (r = 0.27, p = 0.07) and SV40% (r = -0.151, p = 0.32) were not significantly correlated with BGL. CONCLUSION: Physiologic 68 Ga-DOTA-TOC uptake in the pancreas uncinate process was negatively correlated with BGL. Our results suggested that glycemia could affect physiologic uptake of 68 Ga-DOTA-TOC.
RESUMEN
BACKGROUND: Since it was first approved in Europe in 2016, the gallium-68 (68Ga) radiopharmaceutical [68Ga]Ga-DOTA-TOC has been widely used for imaging of somatostatin receptor (SSTR) positive tumours using positron emission tomography-computed tomography (PET/CT). Significant patient benefits have been reported, so its use is rapidly increasing. However, few studies have been published regarding occupational doses to nuclear medicine personnel handling this radiopharmaceutical, despite its manual usage at low distances from the skin and the beta-emission decay scheme, which may result in an increased absorbed dose to their hands. In this context, this study aims to analyse the occupational exposure during the administration of [68Ga]Ga-DOTA-TOC for PET/CT imaging. For this purpose, extremity, eye lens and whole-body dosimetry in terms of Hp(0.07), Hp(3) and Hp(10), respectively, was conducted on six workers with both thermoluminescent dosimeters, and personal electronic dosimeters. RESULTS: The non-dominant hand is more exposed to radiation than the dominant hand, with the thumb and the index fingertip being the most exposed sites on this hand. Qualitative analysis showed that when no shielding is used during injection, doses increase significantly more in the dominant than in the non-dominant hand, so the use of shielding is strongly recommended. While wrist dosimeters may significantly underestimate doses to the hands, placing a ring dosimeter at the base of the ring or middle finger of the non-dominant hand may give a valuable estimation of maximum doses to the hands if at least a correction factor of 5 is applied. Personal equivalent doses for the eyes did not result in measurable values (i.e., above the lowest detection limit) for almost all workers. The extrapolated annual dose estimations showed that there is compliance with the annual dose limits during management of [68Ga]Ga-DOTA-TOC for diagnostics with PET in the hospital included in this study. CONCLUSIONS: Imaging with [68Ga]Ga-DOTA-TOC is a safe process for the workers performing the administration of the radiopharmaceutical, including intravenous injection to the patient and the pre- and post-activity control, as it is highly unlikely that annual dose limits will be exceeded if good working practices and shielding are used.
RESUMEN
PET imaging has gained significant momentum in the last few years, especially in the area of oncology, with an increasing focus on metal radioisotopes owing to their versatile chemistry and favourable physical properties. Copper-61 (t1/2 = 3.33 h, 61% ß+, Emax = 1.216 MeV) provides unique advantages versus the current clinical standard (i.e., gallium-68) even though, until now, no clinical amounts of 61Cu-based radiopharmaceuticals, other than thiosemicarbazone-based molecules, have been produced. This study aimed to establish a routine production, using a standard medical cyclotron, for a series of widely used somatostatin analogues, currently labelled with gallium-68, that could benefit from the improved characteristics of copper-61. We describe two possible routes to produce the radiopharmaceutical precursor, either from natural zinc or enriched zinc-64 liquid targets and further synthesis of [61Cu]Cu-DOTA-NOC, [61Cu]Cu-DOTA-TOC and [61Cu]Cu-DOTA-TATE with a fully automated GMP-compliant process. The production from enriched targets leads to twice the amount of activity (3.28 ± 0.41 GBq vs. 1.84 ± 0.24 GBq at EOB) and higher radionuclidic purity (99.97% vs. 98.49% at EOB). Our results demonstrate, for the first time, that clinical doses of 61Cu-based radiopharmaceuticals can easily be obtained in centres with a typical biomedical cyclotron optimised to produce 18F-based radiopharmaceuticals.
RESUMEN
BACKGROUND: In treatment of neuroendocrine neoplasms (NENs), confirmation of somatostatin receptor expression with 68Ga-DOTA somatostatin analogues is mandatory to determine eligibility for peptide receptor radionuclide therapy (PRRT). [18F]DOPA can detect additional lesions compared to [68Ga]DOTA-TOC. The aim of this study was to explore differences in tumour detection of both tracers and their relevance for selecting patients for PRRT. We retrospectively studied eight patients with NENs who underwent both [68Ga]DOTA-TOC and carbidopa-enhanced [18F]DOPA PET/CT, before first-time PRRT with [177Lu]DOTA-TATE. Tracer order was influenced due to stock availability or to detect suspected metastases with a second tracer. On CT, disease control was defined as a lesion showing complete response, partial response, or stable disease, according to RECIST 1.1. RESULTS: Seven patients with in total 89 lesions completed four infusions of 7.4 GBq [177Lu]DOTA-TATE, one patient received only two cycles. Before treatment, [18F]DOPA PET/CT detected significantly more lesions than [68Ga]DOTA-TOC PET/CT (79 vs. 62, p < .001). After treatment, no difference in number of lesions with disease control was found for [18F]DOPA-only (5/27) and [68Ga]DOTA-TOC-only lesions (4/10, p = .25). [18F]DOPA detected more liver metastases (24/27) compared to [68Ga]DOTA-TOC (7/10, p = .006). Six patients showed inpatient heterogeneity in treatment response between [18F]DOPA-only and [68Ga]DOTA-TOC-only lesions. CONCLUSIONS: Response to PRRT with [177Lu]DOTA-TATE was comparable for both [68Ga]DOTA-TOC- and [18F]DOPA-only NEN lesions. [18F]DOPA may be capable of predicting response to PRRT while finding more lesions compared to [68Ga]DOTA-TOC, although these additional lesions are often small of size and undetected by diagnostic CT.