Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Neurosci ; 40(16): 3231-3249, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32144180

RESUMEN

Endogenous neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF) modulate the responses of the basolateral amygdala (BLA) to stress and are associated with the development of stress resilience and vulnerability, respectively. We characterized persistent effects of repeated NPY and CRF treatment on the structure and function of BLA principal neurons in a novel organotypic slice culture (OTC) model of male rat BLA, and examined the contributions of specific NPY receptor subtypes to these neural and behavioral effects. In BLA principal neurons within the OTCs, repeated NPY treatment caused persistent attenuation of excitatory input and induced dendritic hypotrophy via Y5 receptor activation; conversely, CRF increased excitatory input and induced hypertrophy of BLA principal neurons. Repeated treatment of OTCs with NPY followed by an identical treatment with CRF, or vice versa, inhibited or reversed all structural changes in OTCs. These structural responses to NPY or CRF required calcineurin or CaMKII, respectively. Finally, repeated intra-BLA injections of NPY or a Y5 receptor agonist increased social interaction, a validated behavior for anxiety, and recapitulated structural changes in BLA neurons seen in OTCs, while a Y5 receptor antagonist prevented NPY's effects both on behavior and on structure. These results implicate the Y5 receptor in the long-term, anxiolytic-like effects of NPY in the BLA, consistent with an intrinsic role in stress buffering, and highlight a remarkable mechanism by which BLA neurons may adapt to different levels of stress. Moreover, BLA OTCs offer a robust model to study mechanisms associated with resilience and vulnerability to stress in BLA.SIGNIFICANCE STATEMENT Within the basolateral amygdala (BLA), neuropeptide Y (NPY) is associated with buffering the neural stress response induced by corticotropin releasing factor, and promoting stress resilience. We used a novel organotypic slice culture model of BLA, complemented with in vivo studies, to examine the cellular mechanisms associated with the actions of NPY. In organotypic slice cultures, repeated NPY treatment reduces the complexity of the dendritic extent of anxiogenic BLA principal neurons, making them less excitable. NPY, via activation of Y5 receptors, additionally inhibits and reverses the increases in dendritic extent and excitability induced by the stress hormone, corticotropin releasing factor. This NPY-mediated neuroplasticity indicates that resilience or vulnerability to stress may thus involve neuropeptide-mediated dendritic remodeling in BLA principal neurons.


Asunto(s)
Complejo Nuclear Basolateral/efectos de los fármacos , Hormona Liberadora de Corticotropina/farmacología , Dendritas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuropéptido Y/farmacología , Receptores de Neuropéptido Y/agonistas , Conducta Social , Animales , Complejo Nuclear Basolateral/metabolismo , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Dendritas/metabolismo , Masculino , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de Neuropéptido Y/metabolismo , Resiliencia Psicológica
2.
J Neurochem ; 147(5): 595-608, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30125942

RESUMEN

Guanine nucleotide exchange factors (GEFs) play important roles in many cellular processes, including regulation of the structural plasticity of dendritic spines. A GEF protein, adenomatous polyposis coli-stimulated GEF 1 (Asef1, ARHGEF4) is highly expressed in the nervous system. However, the function of Asef1 has not been investigated in neurons. Here, we present evidence showing that Asef1 negatively regulates the synaptic localization of postsynaptic density protein 95 (PSD-95) in the excitatory synapse by inhibiting Staufen-mediated synaptic localization of PSD-95. Accordingly, Asef1 expression impairs synaptic transmission in hippocampal cultured neurons. In addition, neuronal activity facilitates the dissociation of Asef1 from Staufen in a phosphoinositide 3 kinase (PI3K)-dependent manner. Taken together, our data reveal Asef1 functions as a negative regulator of synaptic localization of PSD-95 and synaptic transmission.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Fosfoproteínas/fisiología , Sinapsis/fisiología , Adenosina Trifosfatasas/genética , Animales , Dendritas/fisiología , Dendritas/ultraestructura , Homólogo 4 de la Proteína Discs Large/biosíntesis , Homólogo 4 de la Proteína Discs Large/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Hipocampo/citología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Técnicas de Placa-Clamp , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Ratas , Transmisión Sináptica/fisiología
3.
Neurobiol Dis ; 75: 159-76, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25595128

RESUMEN

Repeated exposure to cocaine was previously found to cause sensitized behavioral responses and structural remodeling on medium spiny neurons of the nucleus accumbens (NAc) and caudate putamen (CPu). Rac1 has emerged as a key integrator of environmental cues that regulates dendritic cytoskeletons. In this study, we investigated the role of Rac1 in cocaine-induced dendritic and behavioral plasticity in the CPu. We found that Rac1 activation was reduced in the NAc but increased in the CPu following repeated cocaine treatment. Inhibition of Rac1 activity by a Rac1-specific inhibitor NSC23766, overexpression of a dominant negative mutant of Rac1 (T17N-Rac1) or local knockout of Rac1 attenuated the cocaine-induced increase in dendrites and spine density in the CPu, whereas overexpression of a constitutively active Rac1 exert the opposite effect. Moreover, NSC23766 reversed the increased number of asymmetric spine synapses in the CPu following chronic cocaine exposure. Downregulation of Rac1 activity likewise attenuates behavioral reward responses to cocaine exposure, with activation of Rac1 producing the opposite effect. Thus, Rac1 signaling is differentially regulated in the NAc and CPu after repeated cocaine treatment, and induction of Rac1 activation in the CPu is important for cocaine exposure-induced dendritic remodeling and behavioral plasticity.


Asunto(s)
Núcleo Caudado/efectos de los fármacos , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuropéptidos/metabolismo , Putamen/efectos de los fármacos , Proteína de Unión al GTP rac1/metabolismo , Acatisia Inducida por Medicamentos/fisiopatología , Aminoquinolinas/farmacología , Animales , Núcleo Caudado/patología , Núcleo Caudado/fisiopatología , Fármacos del Sistema Nervioso Central/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Dendritas/efectos de los fármacos , Dendritas/patología , Dendritas/fisiología , Técnicas de Silenciamiento del Gen , Masculino , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/genética , Putamen/patología , Putamen/fisiopatología , Pirimidinas/farmacología , Percepción Espacial/efectos de los fármacos , Percepción Espacial/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/patología , Sinapsis/fisiología , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/genética
4.
Neurobiol Learn Mem ; 125: 189-94, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26318492

RESUMEN

Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that advances through stages. An initial increment in spine formation is followed by pruning and maturation one week after training ended. A similar biphasic course was described for the size of the forelimb representation in M1. This study investigates the evolution of the dendritic architecture in response to motor skill training using Golgy-Cox silver impregnation in rat M1. After learning of a unilateral forelimb-reaching task to plateau performance, an increase in dendritic length of layer V pyramidal neurons (i.e. motor neurons) was observed that peaked one month after training ended. This increment in dendritic length reflected an expansion of the distal dendritic compartment. After one month dendritic arborization shrinks even though animals retain task performance. This pattern of evolution was observed for apical and basal dendrites alike - although the increase in dendritic length occurs faster in basal than in apical dendrites. Dendritic plasticity in response to motor training follows a biphasic course with initial expansion and subsequent shrinkage. This evolution takes fourth as long as the biphasic reorganization of spines or motor representations.


Asunto(s)
Dendritas/fisiología , Aprendizaje/fisiología , Corteza Motora/fisiología , Neuronas Motoras/fisiología , Destreza Motora/fisiología , Plasticidad Neuronal/fisiología , Animales , Miembro Anterior/fisiología , Masculino , Ratas , Ratas Long-Evans
5.
J Sport Health Sci ; 13(2): 160-171, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37914153

RESUMEN

Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.


Asunto(s)
Neuronas , Condicionamiento Físico Animal , Animales , Neuronas/fisiología , Vertebrados , Condicionamiento Físico Animal/fisiología
6.
Br J Pharmacol ; 181(18): 3327-3345, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38751203

RESUMEN

BACKGROUND AND PURPOSE: Cytoplasmic fragile X messenger ribonucleoprotein 1 (FMR1)-interacting protein 2 (CYFIP2), as a component of the Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE) regulatory complex, is involved in actin polymerization, contributing to neuronal development and structural plasticity. Mutating serine-968 to phenylalanine (S968F) in CYFIP2 causes an altered cocaine response in mice. The neuronal mechanisms underlying this response remain unknown. EXPERIMENTAL APPROACH: We performed cocaine reward-related behavioural tests and examined changes in synaptic protein phenotypes and neuronal morphology in the nucleus accumbens (NAc), using CYFIP2 S968F knock-in mice to investigate the role of CYFIP2 in regulating cocaine reward. KEY RESULTS: CYFIP2 S968F mutation attenuated cocaine-induced behavioural sensitization and conditioned place preference. Cocaine-induced c-Fos was not observed in the NAc of CYFIP2 S968F knock-in mice. However, c-Fos induction was still evident in the medial prefrontal cortex (mPFC). CYFIP2 S968F mutation altered cocaine-associated CYFIP2 signalling, glutamatergic protein expression and synaptic density in the NAc following cocaine exposure. To further determine the role of CYFIP2 in NAc neuronal activity and the mPFC projecting to the NAc activity-mediating reward response, we used optogenetic tools to stimulate the NAc or mPFC-NAc pathway and observed that optogenetic activation of the NAc or mPFC-NAc pathway induced reward-related behaviours. This effect was not observed in the S968F mutation in CYFIP2. CONCLUSION AND IMPLICATIONS: These results suggest that CYFIP2 plays a role in controlling cocaine-mediated neuronal function and structural plasticity in the NAc, and that CYFIP2 could serve as a target for regulating cocaine reward.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Cocaína , Ratones Endogámicos C57BL , Plasticidad Neuronal , Núcleo Accumbens , Recompensa , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Cocaína/farmacología , Plasticidad Neuronal/efectos de los fármacos , Ratones , Masculino , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Mutación , Conducta Animal/efectos de los fármacos
7.
Front Mol Neurosci ; 17: 1375925, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807922

RESUMEN

Zinc transporter 3 (ZnT3) is abundantly expressed in the brain, residing in synaptic vesicles, where it plays important roles in controlling the luminal zinc levels. In this study, we found that ZnT3 knockout in mice decreased zinc levels in the hippocampus and cortex, and was associated with progressive cognitive impairments, assessed at 2, 6, and 9-month of age. The results of Golgi-Cox staining demonstrated that ZnT3 deficiency was associated with an increase in dendritic complexity and a decrease in the density of mature dendritic spines, indicating potential synaptic plasticity deficit. Since ZnT3 deficiency was previously linked to glucose metabolism abnormalities, we tested the expression levels of genes related to insulin signaling pathway in the hippocampus and cortex. We found that the Expression of glucose transporters, GLUT3, GLUT4, and the insulin receptor in the whole tissue and synaptosome fraction of the hippocampus of the ZnT3 knockout mice were significantly reduced, as compared to wild-type controls. Expression of AKT (A serine/threonine protein kinase) and insulin-induced AKT phosphorylation was also reduced in the hippocampus of ZnT3 knockout mice. We hypothesize that the ZnT3 deficiency and reduced brain zinc levels may cause cognitive impairment by negatively affecting glycose metabolism via decreased expression of key components of insulin signaling, as well as via changes in synaptic plasticity. These finding may provide new therapeutic target for treatments of neurodegenerative disorders.

8.
Pharmacol Rep ; 76(5): 1032-1043, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39012419

RESUMEN

BACKGROUND: Dendritic spine dysfunction is a key feature of Alzheimer's disease (AD) pathogenesis. Human T-cell lymphoma invasion and metastasis 2 (TIAM2) is expressed in two isoforms, the full length (TIAM2L) and a short transcript (TIAM2S). Compared to TIAM2L protein, which is undetectable, TIAM2S protein is abundant in human brain tissue, especially the hippocampus, and can promote neurite outgrowth in our previous findings. However, whether enhanced hippocampal TIAM2S expression can alleviate cognitive deficits in Alzheimer's disease model mice remains unclear. METHODS: We crossbred 3xTg-AD with TIAM2S mice to generate an AD mouse model that carries the human TIAM2S gene (3xTg-AD/TIAM2S mice). The Morris water maze and object location tests assessed hippocampus-dependent spatial memory. Lentiviral-driven shRNA or cDNA approaches were used to manipulate hippocampal TIAM2S expression. Golgi staining and Sholl analysis were utilized to measure neuronal dendrites and dendritic spines in the mouse hippocampi. RESULTS: Compared to 3xTg-AD mice, 3xTg-AD/TIAM2S mice displayed improved cognitive functions. According to the hippocampus is one of the earliest affected brain regions by AD, we further injected TIAM2S shRNA or TIAM2S cDNA into mouse hippocampi to confirm whether manipulating hippocampal TIAM2S expression could affect AD-related cognitive functions. The results showed that the reduced hippocampal TIAM2S expression in 3xTg-AD/TIAM2S mice abolished the memory improvement effect, whereas increased hippocampal TIAM2S levels alleviated cognitive deficits in 3xTg-AD mice. Furthermore, we found that TIAM2S-mediated memory improvement was achieved by regulating dendritic plasticity. CONCLUSIONS: These results will provide new insights into connecting TIAM2S with AD and support the notion that TIAM2S should be investigated as potential AD therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Modelos Animales de Enfermedad , Hipocampo , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Hipocampo/metabolismo , Ratones , Disfunción Cognitiva/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Masculino , Humanos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Aprendizaje por Laberinto , Memoria Espacial
9.
Exp Neurol ; 372: 114619, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38029808

RESUMEN

Bone marrow mesenchymal stem cells (BMSCs) have therapeutic potential in the subacute/chronic phase of acute ischemic stroke (AIS), but the underlying mechanisms are not yet fully elucidated. There is a knowledge gap in understanding the metabolic mechanisms of BMSCs in stroke therapy. In this study, we administered BMSCs intravenously 24 h after reperfusion in rats with transient cerebral artery occlusion (MCAO). The treatment with BMSCs for 21 days significantly reduced the modified neurological severity score of MCAO rats (P < 0.01) and increased the number of surviving neurons in both the striatum and hippocampal dentate gyrus region (P < 0.01, respectively). Moreover, BMSCs treatment resulted in significant enhancements in various structural parameters of dendrites in layer V pyramidal neurons in the injured hemispheric motor cortex, including total length (P < 0.05), number of branches (P < 0.05), number of intersections (P < 0.01), and spine density (P < 0.05). Then, we performed plasma untargeted metabolomics analysis to study the metabolic changes of BMSCs on AIS. There were 65 differential metabolites identified in the BMSCs treatment group. Metabolic profiling analysis revealed that BMSCs modulate abnormal sphingolipid metabolism and glycerophospholipid metabolism, particularly affecting core members such as sphingomyelin (SM), ceramide (Cer) and sphingosine-1-phosphate (S1P). The metabolic network analysis and pathway-based compound-reaction-enzyme-gene network analysis showed that BMSCs inhibited the Cer-induced apoptotic pathway and promoted the S1P signaling pathway. These findings suggest that the enhanced effects of BMSCs on neuronal survival and synaptic plasticity after stroke may be mediated through these pathways. In conclusion, our study provides novel insight into the potential mechanisms of BMSCs treatment in stroke and sheds light on the possible clinical translation of BMSCs.


Asunto(s)
Accidente Cerebrovascular Isquémico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Accidente Cerebrovascular , Ratas , Animales , Ratas Sprague-Dawley , Accidente Cerebrovascular Isquémico/metabolismo , Esfingolípidos/metabolismo , Esfingolípidos/uso terapéutico , Accidente Cerebrovascular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Glicerofosfolípidos/metabolismo , Glicerofosfolípidos/uso terapéutico , Trasplante de Células Madre Mesenquimatosas/métodos , Células de la Médula Ósea
10.
Exp Neurol ; 380: 114892, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047809

RESUMEN

T-cell death-associated gene 8 (TDAG8), a G-protein-coupled receptor sensing physiological or weak acids, regulates inflammatory responses. However, its role in traumatic brain injury (TBI) remains unknown. Our recent study showed that delayed CO2 postconditioning (DCPC) has neuroreparative effects after TBI. We hypothesized that activating astrocytic TDAG8 is a key mechanism for DCPC. WT and TDAG8-/- mice received DCPC daily by transiently inhaling 10% CO2 after controlled cortical impact (CCI). HBAAV2/9-GFAP-m-TDAG8-3xflag-EGFP was used to overexpress TDAG8 in astrocytes. The beam walking test, mNSS, immunofluorescence and Golgi-Cox staining were used to evaluate motor function, glial activation and dendritic plasticity. DCPC significantly improved motor function; increased total dendritic length, neuronal complexity and spine density; inhibited overactivation of astrocytes and microglia; and promoted the expression of astrocytic brain-derived neurotrophic factor in WT but not TDAG8-/- mice. Overexpressing TDAG8 in astrocytes surrounding the lesion in TDAG8-/- mice restored the beneficial effects of DCPC. Although the effects of DCPC on Days 14-28 were much weaker than those of DCPC on Days 3-28 in WT mice, these effects were further enhanced by overexpressing astrocytic TDAG8. Astrocytic TDAG8 is a key target of DCPC for TBI rehabilitation. Its overexpression is a strategy that broadens the therapeutic window and enhances the effects of DCPC.


Asunto(s)
Astrocitos , Lesiones Traumáticas del Encéfalo , Dióxido de Carbono , Ratones Endogámicos C57BL , Animales , Astrocitos/metabolismo , Astrocitos/patología , Ratones , Dióxido de Carbono/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Recuperación de la Función/fisiología
11.
Brain Res Bull ; 198: 15-26, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37031792

RESUMEN

Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) have emerged as the signature injuries of the U.S. veterans who served in Iraq and Afghanistan, and frequently co-occur in both military and civilian populations. To better understand how fear learning and underlying neural systems might be altered after mTBI, we examined the acquisition of cued fear conditioning and its extinction along with brain morphology and dendritic plasticity in a mouse model of mTBI. To induce mTBI in adult male C57BL/6J mice, a lateral fluid percussive injury (LFP 1.7) was produced using a fluid pulse of 1.7 atmosphere force to the right parietal lobe. Behavior in LFP 1.7 mice was compared to behavior in mice from two separate control groups: mice subjected to craniotomy without LFP injury (Sham) and mice that did not undergo surgery (Unoperated). Following behavioral testing, neural endpoints (dendritic structural plasticity and neuronal volume) were assessed in the basolateral nucleus of the amygdala (BLA), which plays a critical sensory role in fear learning, and medial prefrontal cortex (mPFC), responsible for executive functions and inhibition of fear behaviors. No gross motor abnormalities or increased anxiety-like behaviors were observed in LFP or Sham mice after surgery compared to Unoperated mice. We found that all mice acquired fear behavior, assessed as conditioned freezing to auditory cue in a single session of 6 trials, and acquisition was similar across treatment groups. Using a linear mixed effects analysis, we showed that fear behavior decreased overall over 6 days of extinction training with no effect of treatment group across extinction days. However, a significant interaction was demonstrated between the treatment groups during within-session freezing behavior (5 trials per day) during extinction training. Specifically, freezing behavior increased across within-session extinction trials in LFP 1.7 mice, whereas freezing behavior in control groups did not change on extinction test days, reflecting a dissociation between within-trial and between-trial fear extinction. Additionally, LFP mice demonstrated bilateral increases in dendritic spine density in the BLA and decreases in dendritic complexity in the PFC. The translational implications are that individuals with TBI undergoing fear extinction therapy may demonstrate within-session aberrant learning that could be targeted for more effective treatment interventions.


Asunto(s)
Conmoción Encefálica , Ratones , Masculino , Animales , Extinción Psicológica , Miedo/fisiología , Ratones Endogámicos C57BL , Amígdala del Cerebelo/fisiología , Corteza Prefrontal
12.
Neurosci Biobehav Rev ; 134: 104482, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34922987

RESUMEN

Basic pain research has shed light on key cellular and molecular mechanisms underlying nociceptive and phenomenological aspects of pain. Despite these advances, we still yearn for the discovery of novel therapeutic strategies to address the unmet needs of about 70 % of chronic neuropathic pain patients whose pain fails to respond to opioids as well as to other conventional analgesic agents. Importantly, a substantial body of clinical observations over the past decade cumulatively suggests that the psychedelic class of drugs may possess heuristic value for understanding and treating chronic pain conditions. The present review presents a theoretical framework for hitherto insufficiently understood neuroscience-based mechanisms of psychedelics' potential analgesic effects. To that end, searches of PubMed-indexed journals were performed using the following Medical Subject Headings' terms: pain, analgesia, inflammatory, brain connectivity, ketamine, psilocybin, functional imaging, and dendrites. Recursive sets of scientific and clinical evidence extracted from this literature review were summarized within the following key areas: (1) studies employing psychedelics for alleviation of physical and emotional pain; (2) potential neuro-restorative effects of psychedelics to remediate the impaired connectivity underlying the dissociation between pain-related conscious states/cognitions and the subcortical activity/function leading to the eventual chronicity through immediate and long-term effects on dentritic plasticity; (3) anti-neuroinflammatory and pro-immunomodulatory actions of psychedelics as the may pertain to the role of these factors in the pathogenesis of neuropathic pain; (4) safety, legal, and ethical consideration inherent in psychedelics' pharmacotherapy. In addition to direct beneficial effects in terms of reduction of pain and suffering, psychedelics' inclusion in the analgesic armamentarium will contribute to deeper and more sophisticated insights not only into pain syndromes but also into frequently comorbid psychiatric condition associated with emotional pain, e.g., depressive and anxiety disorders. Further inquiry is clearly warranted into the above areas that have potential to evolve into further elucidate the mechanisms of chronic pain and affective disorders, and lead to the development of innovative, safe, and more efficacious neurobiologically-based therapeutic approaches.


Asunto(s)
Dolor Crónico , Alucinógenos , Analgésicos , Analgésicos Opioides , Dolor Crónico/tratamiento farmacológico , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Humanos , Psilocibina/farmacología , Psilocibina/uso terapéutico
13.
Zoology (Jena) ; 147: 125929, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34091244

RESUMEN

Coracias benghalensis, commonly known as Indian Roller, a subtropical seasonally breeding bird native to Prayagraj (25° 28' N, 81° 54' E), U.P., India, exhibits a specific rolling behavior (an ornate sexual display) to attract the female for courtship. We hypothesized that the emergence of the seasonal rolling behavior of C. benghalensis would coincide with seasonal neuronal morphology changes in the dorsomedial hippocampus (DMH) area of the hippocampal complex (HCC). To test this hypothesis, the present study aimed to reveal qualitative and quantitative changes in neuronal plasticity in various neuronal classes of DMH across the breeding (pre-breeding and breeding) and the non-breeding (quiescent and regression) phases of the reproductive cycle of C. benghalensis. Plasticity in the morphology of four neuronal types (unipolar, bipolar, pyramidal, and multipolar) in the DMH area of HCC during the breeding and the non-breeding phases was characterized by using Golgi-Colonnier staining for identification and characterization of neuronal morphology. As compared to the quiescent phase, a significant increase of soma diameter, dendritic field, dendritic thickness, length of spine neck, spine head diameter, number of visible spines, and spine density in all four types of neurons was observed during the breeding phase. In contrast, significant decreases were observed during the bird's non-breeding phase compared to the breeding phase. This study concludes that during the breeding phase of C. benghalensis, neuronal arborization was substantially increased in DMH, suggesting an enhanced capability for circuit plasticity possibly underlying rolling behavior. Our study establishes seasonal plasticity in DMH and will serve as a novel model for future studies investigating the molecular, physiological, and cellular mechanisms underlying complex, yet stereotyped, sensorimotor behavior.


Asunto(s)
Aves/anatomía & histología , Hipocampo/citología , Plasticidad Neuronal/fisiología , Estaciones del Año , Conducta Sexual Animal/fisiología , Animales , Aves/fisiología , Masculino
14.
Front Cell Neurosci ; 14: 189, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774242

RESUMEN

Adiponectin, a cytokine secreted by mature adipocytes, proves to be neuroprotective. We have previously reported that running triggers adiponectin up-regulation which subsequently promotes generation of hippocampal neurons and thereby alleviates depression-like behaviors in non-stressed mice. However, under the stressing condition, whether adiponectin could still exert antidepressant-like effects following exercise remained unexplored. In this study, by means of repeated corticosterone injections to mimic stress insult and voluntary wheel running as physical exercise intervention, we examined whether exercise-elicited antidepressive effects might involve adiponectin's regulation on hippocampal neurogenesis and dendritic plasticity in stressed mice. Here we show that repeated injections of corticosterone inhibited hippocampal neurogenesis and impaired dendritic morphology of neurons in the dentate gyrus of both wild-type and adiponectin-knockout mice comparably, which subsequently evoked depression-like behaviors. Voluntary wheel running attenuated corticosterone-suppressed neurogenesis and enhanced dendritic plasticity in the hippocampus, ultimately reducing depression-like behaviors in wild-type, but not adiponectin-knockout mice. We further demonstrate that such proneurogenic effects were potentially achieved through activation of the AMP-dependent kinase (AMPK) pathway. Our study provides the first evidence that adiponectin signaling is essential for physical exercise-triggered effects on stress-elicited depression by retaining the normal proliferation of neural progenitors and dendritic morphology of neurons in the hippocampal dentate gyrus, which may depend on activation of the AMPK pathway.

15.
Neuroscience ; 442: 17-28, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32634528

RESUMEN

Motor learning depends on plastic reorganization of neural networks within the primary motor cortex (M1). In the circuitry of M1, integration and processing of afferent inputs is executed by pyramidal neurons of layer II/III. Thus, an involvement of these layer II/III pyramids in learning-induced changes is highly plausible. We therefore analyzed dendritic plasticity in layer II/III pyramidal cells on Golgi-Cox silver-impregnated sections after training of a forelimb reaching task. Based on their location within layer II/III, neurons were assigned to either a superficial or a deep population. After training, morphological changes occurred in both superficial and deep layer II/III pyramids. Overall, a decrease in dendritic length could be observed. In detail, superficial cells showed a significant reduction in the length of the apical dendrite after training ended in contrast to deep layer II/III pyramids, where dendritic length initially remained stable. Both types of neurons showed a transient increment in complexity of the distal apical dendrite 30 days after training. Findings were different in basal dendrites: length and complexity continuously decreased in superficial and deep layer II/III pyramids. Spine density increased in apical and basal dendrites of both superficial and deep layer II/III neurons, likely an effect of ageing that occurred independently from motor learning. This increase in spine density was accompanied with a morphological change towards stubby- and mushroom-like spines. Thus, profound but delayed changes occurred within the dendritic compartment of layer II/III pyramidal cells.


Asunto(s)
Corteza Motora , Plasticidad Neuronal , Animales , Dendritas , Aprendizaje , Células Piramidales
16.
Mol Neurobiol ; 57(7): 3171-3182, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32504419

RESUMEN

Disrupted neuronal plasticity due to subtle inflammation is considered to play a fundamental role in the pathogenesis of major depressive disorder. Interferon-α (IFN-α) potentiates immune responses against viral pathogens that induce toll-like receptor-3 (TLR3) activation but evokes severe major depressive disorder in humans by mechanisms that remain insufficiently described. By using a previously established mouse model of depression induced by combined delivery of IFN-α and polyinosinic:polycytidylic acid (poly(I:C)), a TLR3 agonist, we provide evidence that IFN-α and poly(I:C) reduce apical dendritic spine density in the hippocampal CA1 area ex vivo via mechanisms involving decreased TrkB signaling. In vitro, IFN-α and poly(I:C) treatments required neuronal activity to reduce dendritic spine density and TrkB signaling. The levels of presynaptic protein vesicular glutamate transporter (VGLUT)-1 and postsynaptic protein postsynaptic density-95 (PSD95) were specifically decreased, whereas the expression of both synaptic and extrasynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 1 (AMPAR1) was increased by IFN-α and poly(I:C) delivery. Patch clamp recordings in primary hippocampal neurons revealed that morphological changes at the synapse induced by IFN-α and poly(I:C) costimulation were accompanied by an increased action potential threshold and action potential frequency, indicative of impaired neuronal excitability. Taken together, IFN-α and poly(I:C) delivery leads to structural and functional alterations at the synapse indicating that compromised neuroplasticity may play an integral role in the pathogenesis of immune response-induced depression.


Asunto(s)
Depresión/fisiopatología , Hipocampo/fisiopatología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptor Toll-Like 3/metabolismo , Animales , Depresión/inducido químicamente , Depresión/metabolismo , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/metabolismo , Interferón-alfa , Ratones , Poli I-C , Transducción de Señal/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
17.
Neuron ; 102(1): 6-8, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30946826

RESUMEN

Learning is accompanied by temporal compression and sharpening of neuronal firing sequences. In this issue of Neuron, Adler et al. (2019), using a motor skill paradigm and its variant, uncover a dual role for somatostatin interneuron regulation to support ensemble compaction and protection in learning.


Asunto(s)
Interneuronas , Somatostatina , Aprendizaje , Neuronas , Células Piramidales
18.
Brain Struct Funct ; 223(6): 2823-2840, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29663134

RESUMEN

The seasonal changes in brain size of some shrews represent the most drastic reversible transformation in the mammalian central nervous system known to date. Brain mass decreases 10-26% from summer to winter and regrows 9-16% in spring, but the underlying structural changes at the cellular level are not yet understood. Here, we describe the volumetric differences in brain structures between seasons and sexes of the common shrew (Sorex araneus) in detail, confirming that changes in different brain regions vary in the magnitude of change. Notably, shrews show a decrease in hypothalamus, thalamus, and hippocampal volume and later regrowth in spring, whereas neocortex and striatum volumes decrease in winter and do not recover in size. For some regions, males and females showed different patterns of seasonal change from each other. We also analyzed the underlying changes in neuron morphology. We observed a general decrease in soma size and total dendrite volume in the caudoputamen and anterior cingulate cortex. This neuronal retraction may partially explain the overall tissue shrinkage in winter. While not sufficient to explain the entire seasonal process, it represents a first step toward understanding the mechanisms beneath this remarkable phenomenon.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Vías Nerviosas/fisiología , Neuronas/citología , Estaciones del Año , Musarañas/anatomía & histología , Factores de Edad , Animales , Mapeo Encefálico/métodos , Dendritas/ultraestructura , Femenino , Masculino , Vías Nerviosas/ultraestructura , Neuronas/clasificación , Factores Sexuales , Tinción con Nitrato de Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA