Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 113(6): 1160-1175, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36609772

RESUMEN

Cisgenesis, the genetic modification of a plant with genes from a sexually compatible plant, was used to confer fire blight resistance to the cultivar 'Gala Galaxy' by amendment of the resistance gene FB_MR5, resulting in the line C44.4.146. To verify whether cisgenesis changed other tree-, flower- or fruit-related traits, a 5-year field trial was conducted with trees of C44.4.146 and multiple control genotypes, including members of the 'Gala' sports group. None of the 44 investigated tree-, flower- or fruit-related traits significantly differed between C44.4.146 and at least one of the control genotypes in all observation years. However, fruits of C44.4.146 and its wild-type 'Gala Galaxy' from tissue culture were paler in color than fruits of 'Gala Galaxy' that had not undergone tissue culture. There was no significant and consistently detected difference in the fruit flesh and peel metabolome of C44.4.146 compared with the control genotypes. Finally, the disease resistance of C44.4.146 was confirmed also when the fire blight pathogen was inoculated through the flowers. We conclude that the use of cisgenesis to confer fire blight resistance to 'Gala Galaxy' in C44.4.146 did not have unintended effects, and that the in vitro establishment of 'Gala Galaxy' had a greater effect on C44.4.146 properties than its generation applying cisgenesis.


Asunto(s)
Erwinia amylovora , Malus , Malus/genética , Enfermedades de las Plantas/genética , Frutas/genética , Resistencia a la Enfermedad/genética
2.
BMC Microbiol ; 24(1): 389, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375611

RESUMEN

BACKGROUND: Fire blight, caused by Erwinia amylovora, is the most destructive bacterial disease affecting plants in the Rosaceae family, leading to significant economic losses. In Algeria, this disease has been reported since 2010. This study aimed to investigate the origin of fire blight in Algeria, in order to increase knowledge of the epidemiology of this serious disease and contribute to its management. A comprehensive characterization of 18 E. amylovora isolates recovered from northern Algeria between 2016 and 2021 to evaluate their phenotypical and genotypical diversity was conducted. RESULTS: Phenotypic differences, particularly in growth kinetics, virulence, and fatty acid profiles, allowed differentiation of strains into five groups, possibly indicating distinct introduction events. Genetic characterization revealed that only one strain lacked the ubiquitous plasmid pEA29, which is correlated with reduced virulence, while none harbored the pEI70 plasmid. Phylogenetic analysis using concatenated sequences of the recA, groEL, rpoS, ams, and hrpN genes grouped Algerian strains with those from a broadly prevalent clade. CRISPR genotyping identified a novel CR1 pattern and three genotypes, two of them previously unreported. CONCLUSIONS: This study represents the first phenotypic, genetic, and phylogenetic investigation of E. amylovora strains in the region, and provides valuable information on the possible pathways of the introduction of this fire blight pathogen in northern Africa. The findings suggest one or more introduction events from a common ancestor, likely originating in northern Italy, followed by dispersal in various regions of Algeria.


Asunto(s)
Erwinia amylovora , Variación Genética , Genotipo , Filogenia , Enfermedades de las Plantas , Plásmidos , Argelia , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Erwinia amylovora/clasificación , Erwinia amylovora/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Plásmidos/genética , Virulencia/genética , Fenotipo , Proteínas Bacterianas/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-38625720

RESUMEN

Phytopathogenic bacteria (MAFF 302110T and MAFF 302107) were isolated from lesions on Japanese angelica trees affected by bacterial soft rot in Yamanashi Prefecture, Japan. The strains were Gram-reaction-negative, facultatively anaerobic, motile with peritrichous flagella, rod-shaped, and non-spore-forming. The genomic DNA G+C content was 51.1 mol % and the predominant cellular fatty acids included summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 2 (comprising any combination of C12 : 0 aldehyde, an unknown fatty acid with an equivalent chain length of 10.928, C16 : 1 iso I, and C14 : 0 3OH), and C12 : 0. Phylogenetic analyses based on 16S rRNA and gyrB gene sequences, along with phylogenomic analysis utilizing whole-genome sequences, consistently placed these strains within the genus Pectobacterium. However, their phylogenetic positions did not align with any known species within the genus. Comparative studies involving average nucleotide identity and digital DNA-DNA hybridization with the closely related species indicated values below the thresholds employed for the prokaryotic species delineation (95-96 % and 70 %, respectively), with the highest values observed for Pectobacterium polonicum DPMP315T (92.10 and 47.1 %, respectively). Phenotypic characteristics, cellular fatty acid composition, and a repertoire of secretion systems could differentiate the strains from their closest relatives. The phenotypic, chemotaxonomic, and genotypic data obtained in this study show that MAFF 302110T/MAFF 302107 represent a novel species of the genus Pectobacterium, for which we propose the name Pectobacterium araliae sp. nov., designating MAFF 302110T (=ICMP 25161T) as the type strain.


Asunto(s)
Angelica , Pectobacterium , Japón , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias
4.
J Appl Microbiol ; 135(10)2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363195

RESUMEN

AIM: Fire blight, attributed to the bacterium Erwinia amylovora, significantly damages economically important crops, such as apples and pears. Conventional methods for managing fire blight involve the application of chemical pesticides, such as streptomycin and oxytetracycline. Nevertheless, apprehensions are increasing regarding developing antibiotic and pesticide-resistant strains, compounded by documented instances of plant toxicity. Here, we present that Streptomyces recifensis SN1E1 has exhibited remarkable efficacy in suppressing apple fire blight disease. This study aims to unravel the molecular-level antimicrobial mechanisms employed by the SN1E1 strain. METHODS AND RESULTS: We identified four antimicrobial-associated biosynthetic gene clusters within the genomics of S. recifensis SN1E1. To validate antimicrobial activity against E. amylovora, knock-out mutants of biosynthetic genes linked to antimicrobial activity were generated using the CRISPR/Cas9 mutagenesis system. Notably, the whiE4 and phzB deficient mutants displayed statistically reduced antibacterial activity against E. amylovora. CONCLUSION: This research establishes a foundation for environmental and biological control studies. The potential utilization of environmentally friendly microbial agents derived from the SN1E1 strain holds promise for the biological control of fire blight disease.


Asunto(s)
Erwinia amylovora , Malus , Enfermedades de las Plantas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Erwinia amylovora/genética , Erwinia amylovora/efectos de los fármacos , Malus/microbiología , Genoma Bacteriano , Antibacterianos/farmacología , Sistemas CRISPR-Cas , Familia de Multigenes , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39085039

RESUMEN

AIMS: The Gram-negative bacterium Erwinia amylovora (Ea) is the causal agent of fire blight, a devastating disease of apples and pears. In the fire blight disease cycle, Ea grows in different plant tissues, each presenting a distinct nutrient environment. Here, we investigate the ability of aspartate and tyrosine double auxotroph Ea lines to proliferate on apple flower stigma surfaces representing the epiphytic growth stage of Ea and in developing fruitlets representing one endophytic growth stage of Ea. METHODS AND RESULTS: Heterologous complementation studies in an Escherichia coli aspartate and tyrosine auxotroph verify that Ea aspartate aminotransferase (AspC) and tyrosine aminotransferase (TyrB) act as aspartate and tyrosine amino transferases. Growth analysis reveals that Ea aspC tyrB mutants multiply to near-wild-type levels on apple flower stigmas and immature fruitlets. CONCLUSIONS: Ea AspC and TyrB are reciprocally complementing for aspartate and tyrosine synthesis in Ec and in Ea. Ea aspC  and  tyrB mutants obtain sufficient aspartate and tyrosine to support multiplication on stigma surfaces and virulence in immature fruitlets.


Asunto(s)
Ácido Aspártico , Erwinia amylovora , Flores , Malus , Enfermedades de las Plantas , Tirosina , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Enfermedades de las Plantas/microbiología , Malus/microbiología , Tirosina/metabolismo , Virulencia , Ácido Aspártico/metabolismo , Flores/microbiología , Aspartato Aminotransferasas/metabolismo , Frutas/microbiología , Tirosina Transaminasa/genética , Tirosina Transaminasa/metabolismo
6.
Plant Dis ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003503

RESUMEN

During the 2021-22 and 2022-23 seasons (December to February), onion plants (Allium cepa L.) showing decay, leaf blight, chlorosis and water soak lesions were collected in Central Chile. Five symptomatic plants were sampled from 20 different onion fields. Brown rot of the external scales was observed in bulbs from two fields: one planted with the cv. Campero (20 ha; O'Higgins Region), and another with cv. Marenge (2 ha; Metropolitan Region). The disease incidence in these fields ranged from 2% to 5%. Isolations were carried out from symptomatic leaves and bulbs from these fields on King's B medium, resulting in small white colonies with smooth margin. Three isolates were selected, two from first field (QCJ3A & QCJ2B), and one from second field (EPB1). A preliminary identification based on 16S rRNA sequences was conducted. BLAST analyses of strains QCJ3A, QCJ2B and EPB1 (GenBank Accession No. PP345601 to PP345603) against the NCBI Database resulted in a match with strains (GenBank Accession No. ON255770.1 and ON255825.1) isolated from infected bulbs in Texas, USA identified as Erwinia spp. (Khanal et al. 2023), with 100% coverage and 100% identity (707 bp out of 707). To evaluate the pathogenicity of these three strains, onion bulbs were inoculated (Guajardo et al. 2023). Toothpicks previously immersed in a bacterial suspension at ~ 108 colony forming units (CFU)/mL were pricked at a 4 cm depth into the shoulders of onion bulbs bought from commercial store and incubated at room temperature. Bulbs inoculated with sterile water served as negative control. A known onion bulb rotting bacterial strain of Dickeya sp. was used as a positive control. At the end of the incubation period (20 days), bulbs were opened longitudinally across their inoculation site, showing that the external scales had a brown color. Negative control remained asymptomatic. Strains were re-isolated from damaged tissue and identified as Erwinia sp. This assay was repeated three times with the same results. For further identification, genomic DNA extraction was carried out using the Blood & Cell Culture DNA Kit (Qiagen), and genome sequencing was performed in the Illumina HiSeq 2500 platform. The Whole Genome Shotgun project for strains QCJ3A, QCJ2B and EPB1 have been deposited at DDBJ/ENA/GenBank under the accession JBANEI010000000, JBANEJ010000000 and JBANEK010000000. The average nucleotide identity (ANI) values were 99.6% (EPB1), 98.2% (QCJ2B), and 99.6% (QCJ3A) and DNA-DNA hybridization (dDDH) values were 96.9% (EPB1), 83.7% (QCJ2B), and 97.1% (QCJ3A), when compared with the type strain Erwinia aphidicola JCM 21238 (GenBank accession No. GCF_014773485.1). The three strains were deposited in the Chilean Collection of Microbial Genetic Resources (CChRGM). Erwinia aphidicola has been previously described causing diseases in common bean (Phaseolus vulgaris) and pea (Pisum sativum), in Spain (Santos et al. 2009) and in pepper (Capsicum annuum) in China (Luo et al. 2018). Its close relative E. persicina has been reported causing bulb rot in onion in Korea (Cho et al. 2019) and garlic in Europe (Galvez et al. 2015). To our knowledge, this is the first report of E. aphidicola causing a bulb rot of onion in Chile. Although the distribution and prevalence of this bacterium in Chilean agroecosystems is not known, it can be a potential cause of losses in onions and other crops such as beans, peas, and peppers. Additional studies should be conducted to determine the host range of Chilean Erwinia aphidicola strains.

7.
Plant Dis ; 108(5): 1174-1178, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105454

RESUMEN

Erwinia amylovora, the causal agent of fire blight disease, has become a serious threat to the pome fruit industry in Korea since 2015. In this study, we showed that two new isolates of E. amylovora, Ea17-2187 and Ea19-7, obtained from pear orchards in Anseong, Korea, exhibited unique pathogenicity compared with other isolates thus far. Both were nonpathogenic to immature apple fruits but occasionally caused disease on immature pear fruits at varying reduced rates. Bioinformatic analyses revealed that their genomes are highly similar to those of the type strains TS3128 and ATCC49946 but have different mutations in essential virulence regulatory genes. Ea17-2187 has a single nucleotide substitution in rcsC, which encodes the core components of the Rcs system that activates the exopolysaccharide amylovoran production. In contrast, Ea19-7 contains a single nucleotide insertion in hrpL, which encodes a master regulator of the type III secretion system. In both cases, the mutation can cause premature termination and production of truncated gene products, disrupting virulence regulation. Introduction of the nonmutated rcsC and hrpL genes into Ea17-2187 and Ea19-7, respectively, fully recovered pathogenicity, comparable with that of TS3128; hence, these mutations were responsible for the altered pathogenicity observed. Interestingly, virulence assays on immature pear fruits showed that the hrpL mutant of Ea19-7 was still pathogenic, although its virulence level was markedly reduced. Taken together, these results suggest that the two new isolates might act as opportunistic pathogens or cheaters and that some Korean isolates might have evolved to acquire alternative pathways for activating pathogenicity factors.


Asunto(s)
Erwinia amylovora , Enfermedades de las Plantas , Pyrus , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Enfermedades de las Plantas/microbiología , Pyrus/microbiología , Virulencia/genética , República de Corea , Polimorfismo de Nucleótido Simple , Proteínas Bacterianas/genética , Malus/microbiología , Genoma Bacteriano , Frutas/microbiología , Polisacáridos Bacterianos
8.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612570

RESUMEN

Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.


Asunto(s)
Gammaproteobacteria , Solanum tuberosum , Solanum , Hipoxia , Oxígeno , Agricultura
9.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474041

RESUMEN

Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.


Asunto(s)
Solanum tuberosum , Solanum , Solanum/genética , Dickeya/genética , Solanum tuberosum/genética , Enterobacteriaceae/genética , Sitios Genéticos , Enfermedades de las Plantas
10.
Mol Genet Metab ; 139(3): 107627, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37327713

RESUMEN

Hyperammonemia has been reported following asparaginase administration, consistent with the mechanisms of asparaginase, which catabolizes asparagine to aspartic acid and ammonia, and secondarily converts glutamine to glutamate and ammonia. However, there are only a few reports on the treatment of these patients, which varies widely from watchful waiting to treatment with lactulose, protein restriction, sodium benzoate, and phenylbutyrate to dialysis. While many patients with reported asparaginase-induced hyperammonemia (AIH) are asymptomatic, some have severe complications and even fatal outcomes despite medical intervention. Here, we present a cohort of five pediatric patients with symptomatic AIH, which occurred after switching patients from polyethylene glycolated (PEG)- asparaginase to recombinant Crisantaspase Pseudomonas fluorescens (4 patients) or Erwinia (1 patient) asparaginase, and discuss their subsequent management, metabolic workup, and genetic testing. We developed an institutional management plan, which gradually evolved based on our local experience and previous treatment modalities. Because of the significant reduction in glutamine levels after asparaginase administration, sodium benzoate should be used as a first-line ammonia scavenger for symptomatic AIH instead of sodium phenylacetate or phenylbutyrate. This approach facilitated continuation of asparaginase doses, which is known to improve cancer outcomes. We also discuss the potential contribution of genetic modifiers to AIH. Our data highlights the need for increased awareness of symptomatic AIH, especially when an asparaginase with higher glutaminase activity is used, and its prompt management. The utility and efficacy of this management approach should be systematically investigated in a larger cohort of patients.


Asunto(s)
Antineoplásicos , Hiperamonemia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Asparaginasa/efectos adversos , Fenilbutiratos/uso terapéutico , Hiperamonemia/inducido químicamente , Hiperamonemia/tratamiento farmacológico , Benzoato de Sodio/efectos adversos , Glutamina/efectos adversos , Amoníaco , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/inducido químicamente , Resultado del Tratamiento , Antineoplásicos/efectos adversos
11.
BMC Microbiol ; 23(1): 268, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749510

RESUMEN

BACKGROUND: Andrimid is reported to be a novel kind of polyketide-nonribosomal peptide hybrid product (PK-NRPs) that inhibits fatty acid biosynthesis in bacteria. Considering its great potential in biomedicine and biofarming, intensive studies have been conducted to increase the production of andrimid to overcome the excessive costs of chemosynthesis. In screening for species with broad-spectrum antibacterial activity, we detected andrimid in the fermentation products of Erwinia persicina BST187. To increase andrimid production, the BST187 fermentation medium formulation and fermentation conditions were optimized by using systematic design of experiments (One-Factor-At-A-Time, Plackett-Burman design, Response Surface Methodology). RESULTS: The results indicate that the actual andrimid production reached 140.3 ± 1.28 mg/L under the optimized conditions (trisodium citrate dihydrate-30 g/L, beef extract-17.1 g/L, MgCl2·6H2O-100 mM, inoculation amount-1%, initial pH-7.0, fermentation time-36 h, temperature-19.7℃), which is 20-fold greater than the initial condition without optimization (7.00 ± 0.40 mg/L), consistent with the improved antibacterial effect of the fermentation supernatant. CONCLUSIONS: The present study provides valuable information for improving andrimid production via optimization of the fermentation process, which will be of great value in the future industrialization of andrimid production.


Asunto(s)
Antibacterianos , Erwinia , Bovinos , Animales , Fermentación , Antibacterianos/farmacología
12.
Am J Bot ; 110(2): e16126, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36633920

RESUMEN

PREMISE: Quantifying how closely related plant species differ in susceptibility to insect herbivory is important for understanding the variation in evolutionary pressures on plant functional traits. However, empirically measuring in situ variation in herbivory spanning the geographic range of a plant-insect complex is logistically difficult. Recently, new methods have been developed using herbarium specimens to investigate patterns in plant-insect symbioses across large geographic scales. Such investigations provide insights into how accelerated anthropogenic changes may impact plant-insect interactions that are of ecological or agricultural importance. METHODS: Here, we analyze 274 pressed herbarium samples to investigate variation in herbivory damage in 13 different species of the economically important plant genus Cucurbita (Cucurbitaceae). This collection is composed of specimens of wild, undomesticated Cucurbita that were collected from across their native range, and Cucurbita cultivars collected from both within their native range and from locations where they have been introduced for agriculture in temperate North America. RESULTS: Herbivory is common on individuals of all Cucurbita species collected throughout their geographic ranges. However, estimates of herbivory varied considerably among individuals, with mesophytic species accruing more insect damage than xerophytic species, and wild specimens having more herbivory than specimens collected from human-managed habitats. CONCLUSIONS: Our study suggests that long-term evolutionary changes in habitat from xeric to mesic climates and wild to human-managed habitats may mediate the levels of herbivory pressure from coevolved herbivores. Future investigations into the potential factors that contribute to herbivory may inform the management of domesticated crop plants and their insect herbivores.


Asunto(s)
Cucurbita , Humanos , Animales , Herbivoria , Insectos , Ecosistema , Evolución Biológica , Plantas
13.
Phytopathology ; 113(12): 2205-2214, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37530490

RESUMEN

The stability of the fire blight control material, oxytetracycline, in water is strongly affected by pH, increasing with increasing acidity. From 2017 to 2021, pear and apple orchard trials were conducted to evaluate if acidic amendments to oxytetracycline sprays improve fire blight control. Compared with the water-treated control, infection suppression after two bloom applications of an acidified commercial oxytetracycline formulation averaged 85.9 ± 0.4% compared with 72.2 ± 1.7% without an acidifier, but individual trials frequently had insufficient statistical power to separate among acidified and non-acidified antibiotic treatments. Across trials, a significant linear relationship was observed for regression of relative infection suppression from oxytetracycline (hydrochloride formulation) on spray tank pH. Similar relationships were observed for oxytetracycline (calcium complex formulation) and kasugamycin (P values were 0.055 and 0.069, respectively). Also based on regression, acidified oxytetracycline and kasugamycin suppressed epiphytic populations of Erwinia amylovora on flowers to a greater degree than the antibiotic only. As spray suspensions, commercial oxytetracycline formulations at label rate and amended with citric acid (1.2 g/liter) in well water had pH values near 3.4, but after spraying, the pH of flowers washed in deionized water (1 ml/flower) measured in a range of 5.2 to 5.5 compared with a pH range of 5.8 to 6.0 after a treatment of oxytetracycline only. In pear fruit finish trials, sprays acidified with citric acid-based materials had negligible effects on fruit russeting. Based on a serological assay, the detectable residual of oxytetracycline on apple foliage was increased by co-application with citric acid compared with a non-acidified control.


Asunto(s)
Erwinia amylovora , Malus , Oxitetraciclina , Pyrus , Oxitetraciclina/farmacología , Enfermedades de las Plantas/prevención & control , Antibacterianos/farmacología , Ácido Cítrico , Agua
14.
Phytopathology ; 113(12): 2143-2151, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37505073

RESUMEN

Fire blight, caused by the plant-pathogenic bacterium Erwinia amylovora, is a devastating disease that occurs on rosaceous plants, including pears and apples. E. amylovora is indigenous to North America and was spread to the Eurasian continent in the second half of the 20th century through contaminated plant materials. In 2016, fire blight was first observed in Yili, Xinjiang Province, in Northwestern China. Since then, it has spread to most pear-producing regions in Xinjiang Province and parts of Gansu Province. The disease has caused severe damage to China's pear and apple industries, including the 2017 disease epidemic in Korla, Xinjiang, which caused an overall yield reduction of 30 to about 50% in Korla and the destruction of over 1 million pear trees. Over the past few years, a combined effort of research, extension, and education by the Chinese government, scientists, and fruit growers has greatly alleviated outbreaks and epidemics in affected regions while successfully limiting the further spread of fire blight to new geographical regions. Here, we review the occurrence, spread, and damage of this disease to the Chinese fruit industry, as well as the management options used in China and their outcomes. We also discuss future perspectives for restraining the spread and alleviating the damage of fire blight in China.


Asunto(s)
Erwinia amylovora , Malus , Pyrus , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Malus/microbiología , Frutas/microbiología , Pyrus/microbiología
15.
Phytopathology ; 113(12): 2215-2221, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37606320

RESUMEN

Nighttime applications of germicidal UV light (UV-C) have been used to suppress several fungal diseases of plants, but less is known of UV-C's potential to suppress bacterial plant pathogens. Fire blight of apple and pear, caused by the bacterium Erwinia amylovora, is difficult to suppress using cultural practices, antibiotics, and host resistance. We therefore investigated the potential of UV-C as an additional means to manage the disease. Laboratory assays confirmed that in vitro exposure of cultures E. amylovora to UV-C at doses ranging from 0 to 400 J/m2 in the absence of visible light was more than 200% as effective as cultures exposed to visible light after the same UV-C treatments. In a 2-year orchard study, we demonstrated that with only two nighttime applications of UV-C at 200 J/m2 made at bloom resulted in an incidence of blossom blight and shoot blight equivalent to the results viewed when antibiotic and biopesticide commercial standards were applied. In vitro dose-response studies indicated consistency in pathogen response to suppressive UV-C doses, including pathogen isolates that were resistant to streptomycin. Based on these results, UV-C may be useful in managing bacterial populations with antibiotic resistance. Concurrent measurements of host growth after UV-C applications indicated that the dose required to suppress E. amylovora had no significant (P > 0.05) effects on foliar growth, shoot extension, internode length, or fruit finish but substantially reduced epiphytic populations of E. amylovora on host tissues.


Asunto(s)
Erwinia amylovora , Malus , Malus/microbiología , Rayos Ultravioleta , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Frutas/microbiología , Antibacterianos
16.
Phytopathology ; 113(12): 2222-2229, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37856693

RESUMEN

Several fire blight resistance loci in Malus genotypes map on different linkage groups (LGs) representing chromosomes of the domesticated apple. Prior genetics studies primarily focused on F1 populations. A strong resistance quantitative trait locus (QTL) explained up to 66% of phenotypic variance in an F1 progeny derived from crossing the highly resistant wild apple genotype Malus fusca MAL0045 and the highly susceptible apple cultivar 'Idared', which was previously mapped on LG10 (Mfu10) of MAL0045. Strains of the causative bacterial pathogen Erwinia amylovora, notably those that show a single nucleotide polymorphism in the avrRpt2EA effector protein sequence at position 156 (e.g., Ea3049), are more virulent and overcome some known fire blight resistance donors and their QTLs. However, MAL0045 is resistant to Ea3049 and Mfu10 is not overcome, but most of the F1 progeny were highly susceptible to this strain. This phenomenon led to the assumption that other putative resistance factors not segregating in the F1 progeny might be present in the genome of MAL0045. Here, we crossed F1 progeny together to obtain 135 F2 individuals. Facilitated by genotyping-by-sequencing and phenotypic assessments, we identified and mapped two novel resistance QTLs in these F2 individuals on LGs 4 and 15, which were not identified in the F1. To our knowledge, these are the first resistance QTLs mapped in F2 progeny in Malus. In addition, we report that neither MAL0045 nor Mfu10 is broken down by a highly aggressive U.S. strain, LA635, after analyses in the original F1 individuals. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Erwinia amylovora , Malus , Humanos , Sitios de Carácter Cuantitativo/genética , Malus/genética , Malus/microbiología , Enfermedades de las Plantas/microbiología , Mapeo Cromosómico , Genotipo , Erwinia amylovora/genética
17.
Phytopathology ; 113(12): 2187-2196, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37287124

RESUMEN

Pantoea vagans C9-1 (C9-1) is a biological control bacterium that is applied to apple and pear trees during bloom for suppression of fire blight, caused by Erwinia amylovora. Strain C9-1 has three megaplasmids: pPag1, pPag2, and pPag3. Prior bioinformatic studies predicted these megaplasmids have a role in environmental fitness and/or biocontrol efficacy. Plasmid pPag3 is part of the large Pantoea plasmid (LPP-1) group that is present in all Pantoea spp. and has been hypothesized to contribute to environmental colonization and persistence, while pPag2 is less common. We assessed fitness of C9-1 derivatives cured of pPag2 and/or pPag3 on pear and apple flowers and fruit in experimental orchards. We also assessed the ability of a C9-1 derivative lacking pPag3 to reduce populations of E. amylovora on flowers and disease incidence. Previously, we determined that tolerance to stresses imposed in vitro was compromised in derivatives of C9-1 lacking pPag2 and/or pPag3; however, in this study, the loss of pPag2 and/or pPag3 did not consistently reduce the fitness of C9-1 on flowers in orchards. Over the summer, pPag3 contributed to survival of C9-1 on developing apple and pear fruit in two of five trials, whereas loss of pPag2 did not significantly affect survival of C9-1. We also found that loss of pPag3 did not affect C9-1's ability to reduce E. amylovora populations or fire blight incidence on apple flowers. Our findings partially support prior hypotheses that LPP-1 in Pantoea species contributes to persistence on plant surfaces but questions whether LPP-1 facilitates host colonization.


Asunto(s)
Erwinia amylovora , Malus , Pantoea , Pyrus , Malus/microbiología , Frutas , Pantoea/genética , Pyrus/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Plásmidos , Erwinia amylovora/genética , Flores/microbiología
18.
Phytopathology ; 113(12): 2197-2204, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37344783

RESUMEN

Fire blight, caused by Erwinia amylovora, is an economically important disease in apples and pears worldwide. This pathogen relies on the type III secretion system (T3SS) to cause disease. Compounds that inhibit the function of the T3SS (T3SS inhibitors) have emerged as alternative strategies for bacterial plant disease management, as they block bacterial virulence without affecting growth, unlike traditional antibiotics. In this study, we investigated the mode of action of a T3SS inhibitor named TS108, a plant phenolic acid derivative, in E. amylovora. We showed that adding TS108 to an in vitro culture of E. amylovora repressed the expression of several T3SS regulon genes, including the master regulator gene hrpL. Further studies demonstrated that TS108 negatively regulates CsrB, a global regulatory small RNA, at the posttranscriptional level, resulting in a repression of hrpS, which encodes a key activator of hrpL. Additionally, TS108 has no impact on the expression of T3SS in Dickeya dadantii or Pseudomonas aeruginosa, suggesting that its inhibition of the E. amylovora T3SS is likely species specific. To better evaluate the performance of T3SS inhibitors in fire blight management, we conducted five independent field experiments in four states (Michigan, New York, Oregon, and Connecticut) from 2015 to 2022 and observed reductions in blossom blight incidence as high as 96.7% compared with untreated trees. In summary, the T3SS inhibitors exhibited good efficacy against fire blight.


Asunto(s)
Erwinia amylovora , Malus , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Antibacterianos/farmacología , Malus/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
19.
Phytopathology ; 113(12): 2152-2164, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37399041

RESUMEN

Fire blight, caused by Erwinia amylovora, is a destructive disease of pome fruit trees. In the United States, apple and pear growers rely on applications of copper and antibiotics during bloom to control fire blight, but such methods have already led to regional instances of resistance. In this study, we used transcriptome analyses and field trials to evaluate the effectiveness of three commercially available plant defense elicitors and one plant growth regulator for fire blight management. Our data indicated that foliar applications of acibenzolar-S-methyl (ASM; Actigard 50WG) triggered a strong defense-related response in apple leaves, whereas applications of Bacillus mycoides isolate J (LifeGard WG) or Reynoutria sachalinensis extract (Regalia) did not. Genes upregulated by ASM were enriched in the biological processes associated with plant immunity, such as defense response and protein phosphorylation. The expression of several pathogenesis-related (PR) genes was induced by ASM as well. Surprisingly, many differentially expressed genes in ASM-treated apple leaves overlapped with those induced by treatment with prohexadione-calcium (ProCa; Apogee), a plant growth regulator that suppresses shoot elongation. Further analysis suggested that ProCa likely acts similarly to ASM to stimulate plant immunity because genes involved in plant defense were shared and significantly upregulated (more than twofold) by both treatments. Our field trials agreed with the transcriptome study, demonstrating that ASM and ProCa exhibit the best control performance relative to the other biopesticides. Taken together, these data are pivotal for the understanding of plant response and shed light on future improvements of strategies for fire blight management.


Asunto(s)
Erwinia amylovora , Malus , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma , Enfermedades de las Plantas/genética , Malus/genética , Frutas , Erwinia amylovora/genética , Erwinia amylovora/metabolismo
20.
J Oncol Pharm Pract ; 29(1): 105-111, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34854779

RESUMEN

INTRODUCTION: Pegaspargase can cause anti-asparaginase antibody formation, which can decrease its effectiveness without causing any clinically apparent reaction (silent inactivation). When a patient has silent inactivation, a switch to Erwinia anti-asparaginase is warranted, but there is currently a global shortage of Erwinia. The only way to identify silent inactivation is to measure an asparaginase level. However, routine asparaginase level monitoring is not currently standard of care at all Canadian centers. This study aims to identify variations in practice regarding asparaginase level monitoring and Erwinia use. METHODS: A 21-item survey was developed using OPINIO software and distributed to all Pediatric Hematology-Oncologists in Canada from February to October 2020. RESULTS: Respondents represented 15 hospitals across each region of Canada (response rate = 52%). Only 39.2% of respondents reported routinely measuring asparaginase levels, yet 53% of respondents have modified therapy from pegaspargase to Erwinia in up to half of their patients. The most common reason for not measuring asparaginase levels was not knowing how to use levels clinically (25.5%). There was variation in the timing of levels and their target. CONCLUSIONS: We identified substantial variation in asparaginase activity monitoring practices across Canada. Therefore, future research should aim to develop a national practice guideline on asparaginase activity monitoring.


Asunto(s)
Antineoplásicos , Hipersensibilidad a las Drogas , Erwinia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Antineoplásicos/efectos adversos , Canadá , Hipersensibilidad a las Drogas/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA