RESUMEN
Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.
Asunto(s)
Alternaria , Luz Azul , Flavina-Adenina Dinucleótido , Proteínas Fúngicas , Fotorreceptores Microbianos , Alternaria/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Flavina-Adenina Dinucleótido/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fitocromo/metabolismo , Fitocromo/química , Fitocromo/genética , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , TemperaturaRESUMEN
Flavin-dependent halogenases are central enzymes in the production of halogenated secondary metabolites in various organisms and they constitute highly promising biocatalysts for regioselective halogenation. The mechanism of these monooxygenases includes formation of hypohalous acid from a reaction of fully reduced flavin with oxygen and halide. The hypohalous acid then diffuses via a tunnel to the substrate-binding site for halogenation of tryptophan and other substrates. Oxidized flavin needs to be reduced for regeneration of the enzyme, which can be performed in vitro by a photoreduction with blue light. Here, we employed this photoreduction to study characteristic structural changes associated with the transition from oxidized to fully reduced flavin in PyrH from Streptomyces rugosporus as a model for tryptophan-5-halogenases. The effect of the presence of bromide and chloride or the absence of any halides on the UV-vis spectrum of the enzyme demonstrated a halide-dependent structure of the flavin-binding pocket. Light-induced FTIR difference spectroscopy was applied and the signals assigned by selective isotope labeling of the protein moiety. The identified structural changes in α-helix and ß-sheet elements were strongly dependent on the presence of bromide, chloride, the substrate tryptophan, and the product 5-chloro-tryptophan, respectively. We identified a clear allosteric coupling in solution at ambient conditions between cofactor-binding site and substrate-binding site that is active in both directions, despite their separation by a tunnel. We suggest that this coupling constitutes a fine-tuned mechanism for the promotion of the enzymatic reaction of flavin-dependent halogenases in dependence of halide and substrate availability.
Asunto(s)
Proteínas Bacterianas , Flavinas , Oxidorreductasas , Streptomyces , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Flavinas/metabolismo , Flavinas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Streptomyces/enzimología , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Halogenación , Bromuros/química , Bromuros/metabolismo , Triptófano/metabolismo , Triptófano/química , Sitios de Unión , Cloruros/metabolismo , Cloruros/químicaRESUMEN
Berberine bridge enzyme-like oxidases are often involved in natural product biosynthesis and are seen as essential enzymes for the generation of intricate pharmacophores. These oxidases have the ability to transfer a hydride atom to the FAD cofactor, which enables complex substrate modifications and rearrangements including (intramolecular) cyclizations, carbon-carbon bond formations, and nucleophilic additions. Despite the diverse range of activities, the mechanistic details of these reactions often remain incompletely understood. In this Review, we delve into the complexity that BBE-like oxidases from bacteria, fungal, and plant origins exhibit by providing an overview of the shared catalytic features and emphasizing the different reactivities. We propose four generalized modes of action by which BBE-like oxidases enable the synthesis of natural products, ranging from the classic alcohol oxidation reactions to less common amine and amide oxidation reactions. Exploring the mechanisms utilized by nature to produce its vast array of natural products is a subject of considerable interest and can lead to the discovery of unique biochemical activities.
Asunto(s)
Productos Biológicos , Oxidorreductasas , Productos Biológicos/metabolismo , Productos Biológicos/química , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Flavoproteínas/metabolismo , Flavoproteínas/química , Oxidación-Reducción , Berberina/metabolismo , Berberina/química , Bacterias/enzimología , Bacterias/metabolismo , Hongos/enzimología , Plantas/enzimología , Plantas/metabolismoRESUMEN
Bifurcating electron transferring flavoproteins (Bf-ETFs) tune chemically identical flavins to two contrasting roles. To understand how, we used hybrid quantum mechanical molecular mechanical calculations to characterize noncovalent interactions applied to each flavin by the protein. Our computations replicated the differences between the reactivities of the flavins: the electron transferring flavin (ETflavin) was calculated to stabilize anionic semiquinone (ASQ) as needed to execute its single-electron transfers, whereas the Bf flavin (Bfflavin) was found to disfavor the ASQ state more than does free flavin and to be less susceptible to reduction. The stability of ETflavin ASQ was attributed in part to H-bond donation to the flavin O2 from a nearby His side chain, via comparison of models employing different tautomers of His. This H-bond between O2 and the ET site was uniquely strong in the ASQ state, whereas reduction of ETflavin to the anionic hydroquinone (AHQ) was associated with side chain reorientation, backbone displacement, and reorganization of its H-bond network including a Tyr from the other domain and subunit of the ETF. The Bf site was less responsive overall, but formation of the Bfflavin AHQ allowed a nearby Arg side chain to adopt an alternative rotamer that can H-bond to the Bfflavin O4. This would stabilize the anionic Bfflavin and rationalize effects of mutation at this position. Thus, our computations provide insights on states and conformations that have not been possible to characterize experimentally, offering explanations for observed residue conservation and raising possibilities that can now be tested.
Asunto(s)
Flavoproteínas Transportadoras de Electrones , Flavoproteínas , Flavoproteínas Transportadoras de Electrones/metabolismo , Flavoproteínas/química , Oxidación-Reducción , Flavinas/metabolismo , Transporte de Electrón , Flavina-Adenina Dinucleótido/metabolismoRESUMEN
Neurons exhibit a high energetic need, and the question arises as how they metabolically adapt to changing activity states. This is relevant for interpreting functional neuroimaging in different brain areas. Particularly, neurons with a broad firing range might exhibit metabolic adaptations. Therefore, we studied MNTB (medial nucleus of the trapezoid body) principal neurons, which generate action potentials (APs) at frequencies up to several hundred hertz. We performed the experiments in acute brainstem slices of the Mongolian gerbil (Meriones unguiculatus) at 22.5-24.5°C. Upon electrical stimulation of afferent MNTB fibres with 400 stimuli at varying frequencies, we monitored autofluorescence levels of NAD(P)H and FAD and determined the extremum amplitudes of their biphasic response. Additionally, we compared these data with alterations in O2 concentrations measured with an electrochemical sensor. These O2 changes are prominent since MNTB neurons rely on oxidative phosphorylation as shown by our pharmacological experiments. We calculated the O2 consumption rate as change in O2 concentration divided by stimulus durations, because these periods varied inversely with stimulus frequency as a result of the constant number of 400 stimuli applied. The O2 consumption rate increased with stimulation frequency up to a constant value at 600 Hz; that is, energy demand depends on temporal characteristics of activity despite the same number of stimuli. The rates showed no correlation with peak amplitudes of NAD(P)H or FAD, whilst the values of the two molecules were linearly correlated. This points at the complexity of analysing autofluorescence imaging for quantitative metabolic studies, because these values report only relative net changes of many superimposed oxidative and reductive processes. Monitoring O2 concentration rates is, thus, an important tool to improve the interpretation of NAD(P)H/FAD autofluorescence data, as they do not under all conditions and in all systems appropriately reflect the metabolic activity or energy demand.
Asunto(s)
Tronco Encefálico , Gerbillinae , Neuronas , Animales , Neuronas/metabolismo , Neuronas/fisiología , Tronco Encefálico/metabolismo , Consumo de Oxígeno/fisiología , Potenciales de Acción/fisiología , Masculino , Estimulación Eléctrica , Flavina-Adenina Dinucleótido/metabolismo , Femenino , Cuerpo Trapezoide/fisiología , Cuerpo Trapezoide/metabolismo , NADP/metabolismoRESUMEN
Over the last half century, the autofluorescence of the metabolic cofactors NADH (reduced nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) has been quantified in a variety of cell types and disease states. With the spread of nonlinear optical microscopy techniques in biomedical research, NADH and FAD imaging has offered an attractive solution to noninvasively monitor cell and tissue status and elucidate dynamic changes in cell or tissue metabolism. Various tools and methods to measure the temporal, spectral, and spatial properties of NADH and FAD autofluorescence have been developed. Specifically, an optical redox ratio of cofactor fluorescence intensities and NADH fluorescence lifetime parameters have been used in numerous applications, but significant work remains to mature this technology for understanding dynamic changes in metabolism. This article describes the current understanding of our optical sensitivity to different metabolic pathways and highlights current challenges in the field. Recent progress in addressing these challenges and acquiring more quantitative information in faster and more metabolically relevant formats is also discussed.
Asunto(s)
Flavina-Adenina Dinucleótido , NAD , Humanos , NAD/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Oxidación-Reducción , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Imagen ÓpticaRESUMEN
FAD-dependent pyranose oxidase (POx) and C-glycoside-3-oxidase (CGOx) are both members of the glucose-methanol-choline superfamily of oxidoreductases and belong to the same sequence space. Pyranose oxidases had been studied for their oxidation of monosaccharides such as D-glucose, but recently, a bacterial C-glycoside-3-oxidase that is phylogenetically related to POx and that reacts with C-glycosides such as carminic acid, mangiferin or puerarin has been described. Since these actinobacterial CGOx enzymes belong to the same sequence space as bacterial POx, they must have evolved from the same ancestor. Here, we performed a phylogenetic analysis of actinobacterial sequences and resurrected seven ancestral enzymes of the POx/CGOx sequence space to study the evolutionary trajectory of substrate preferences for monosaccharides and C-glycosides. Clade I, with its dimeric member POx from Kitasatospora aureofaciens, shows strict preference for monosaccharides (D-glucose and D-xylose) and does not react with any of the glycosides tested. No extant member of clade II has been studied to date. The two extant members of clades III and IV, monomeric POx/CGOx from Pseudoarthrobacter siccitolerans and Streptomyces canus, oxidized both monosaccharides as well as various C-glycosides (homoorientin, isovitexin, mangiferin, and puerarin). Steady-state kinetic parameters of several clades III and IV ancestral enzymes indicate that the generalist ancestor N35 slowly evolved to present-day enzymes with a much higher preference for C-glycosides than monosaccharides. Based on structural predictions of ancestors, we hypothesize that the strict specificity of bacterial clade I POx (and also fungal POx) is the result of oligomerization, which in turn results from the evolution of protein segments that were shown to be important for oligomerization, the arm, and the head domain.IMPORTANCEC-Glycosides often form active compounds in various plants. Breakage of the C-C bond in these glycosides to release the aglycone is challenging and proceeds via a two-step reaction, the oxidation of the sugar and subsequent cleavage of the C-C bond. Recently, an enzyme from a soil bacterium, FAD-dependent C-glycoside-3-oxidase (CGOx), was shown to catalyze the initial oxidation reaction. Here, we show that CGOx belongs to the same sequence space as pyranose oxidase (POx), and that an actinobacterial ancestor of the POx/CGOx family evolved into four clades, two of which show a high preference for C-glycosides.
Asunto(s)
Glicósidos , Oxidorreductasas , Oxidorreductasas/metabolismo , Filogenia , Monosacáridos , Glucosa/metabolismoRESUMEN
STUDY QUESTION: Does fluorescence lifetime imaging microscopy (FLIM)-based metabolic imaging assessment of human blastocysts prior to frozen transfer correlate with pregnancy outcomes? SUMMARY ANSWER: FLIM failed to distinguish consistent patterns in mitochondrial metabolism between blastocysts leading to pregnancy compared to those that did not. WHAT IS KNOWN ALREADY: FLIM measurements provide quantitative information on NAD(P)H and flavin adenine dinucleotide (FAD+) concentrations. The metabolism of embryos has long been linked to their viability, suggesting the potential utility of metabolic measurements to aid in selection. STUDY DESIGN, SIZE, DURATION: This was a pilot trial enrolling 121 IVF couples who consented to have their frozen blastocyst measured using non-invasive metabolic imaging. After being warmed, 105 couples' good-quality blastocysts underwent a 6-min scan in a controlled temperature and gas environment. FLIM-assessed blastocysts were then transferred without any intervention in management. PARTICIPANTS/MATERIALS, SETTING, METHODS: Eight metabolic parameters were obtained from each blastocyst (4 for NAD(P)H and 4 for FAD): short and long fluorescence lifetime, fluorescence intensity, and fraction of the molecule engaged with enzyme. The redox ratio (intensity of NAD(P)H)/(intensity of FAD) was also calculated. FLIM data were combined with known metadata and analyzed to quantify the ability of metabolic imaging to differentiate embryos that resulted in pregnancy from embryos that did not. De-identified discarded aneuploid human embryos (n = 158) were also measured to quantify correlations with ploidy status and other factors. Statistical comparisons were performed using logistic regression and receiver operating characteristic (ROC) curves with 5-fold cross-validation averaged over 100 repeats with random sampling. AUC values were used to quantify the ability to distinguish between classes. MAIN RESULTS AND THE ROLE OF CHANCE: No metabolic imaging parameters showed significant differences between good-quality blastocysts resulting in pregnancy versus those that did not. A logistic regression using metabolic data and metadata produced an ROC AUC of 0.58. In contrast, robust AUCs were obtained when classifying other factors such as comparison of Day 5 (n = 64) versus Day 6 (n = 41) blastocysts (AUC = 0.78), inner cell mass versus trophectoderm (n = 105: AUC = 0.88) and aneuploid (n = 158) versus euploid and positive pregnancy embryos (n = 108) (AUC = 0.82). LIMITATIONS, REASONS FOR CAUTION: The study protocol did not select which embryo to transfer and the cohort of 105 included blastocysts were all high quality. The study was also limited in number of participants and study sites. Increased power and performing the trial in more sites may have provided a stronger conclusion regarding the merits of the use of FLIM clinically. WIDER IMPLICATIONS OF THE FINDINGS: FLIM failed to distinguish consistent patterns in mitochondrial metabolism between good-quality blastocysts leading to pregnancy compared to those that did not. Blastocyst ploidy status was, however, highly distinguishable. In addition, embryo regions and embryo day were consistently revealed by FLIM. While metabolic imaging detects mitochondrial metabolic features in human blastocysts, this pilot trial indicates it does not have the potential to serve as an effective embryo viability detection tool. This may be because mitochondrial metabolism plays an alternative role post-implantation. STUDY FUNDING/COMPETING INTEREST(S): This study was sponsored by Optiva Fertility, Inc. Boston IVF contributed to the clinical site and services. Becker Hickl, GmbH, provided the FLIM system on loan. T.S. was the founder and held stock in Optiva Fertility, Inc., and D.S. and E.S. had options with Optiva Fertility, Inc., during this study. TRIAL REGISTRATION NUMBER: The study was approved by WCG Connexus IRB (Study Number 1298156).
Asunto(s)
Flavina-Adenina Dinucleótido , NAD , Femenino , Embarazo , Humanos , Proyectos Piloto , Ploidias , AneuploidiaRESUMEN
6-Hydroxynicotinic acid 3-monooxygenase (NicC) is a bacterial enzyme involved in the degradation of nicotinic acid. This enzyme is a Class A flavin-dependent monooxygenase that catalyzes a unique decarboxylative hydroxylation. The unliganded structure of this enzyme has previously been reported and studied using steady- and transient-state kinetics to support a comprehensive kinetic mechanism. Here we report the crystal structure of the H47Q NicC variant in both a ligand-bound (solved to 2.17 Å resolution) and unliganded (1.51 Å resolution) form. Interestingly, in the liganded form, H47Q NicC is bound to 2-mercaptopyridine (2-MP), a contaminant present in the commercial stock of 6-mercaptopyridine-3-carboxylic acid(6-MNA), a substrate analogue. 2-MP binds weakly to H47Q NicC and is not a substrate for the enzyme. Based on kinetic and thermodynamic characterization, we have fortuitously captured a catalytically inactive H47Q NicCâ¢2-MP complex in our crystal structure. This complex reveals interesting mechanistic details about the reaction catalyzed by 6-hydroxynicotinic acid 3-monooxygenase.
Asunto(s)
Flavina-Adenina Dinucleótido , Oxigenasas de Función Mixta , Ligandos , Flavina-Adenina Dinucleótido/química , Oxigenasas de Función Mixta/química , CinéticaRESUMEN
Thioredoxin/glutathione reductase from Schistosoma mansoni (SmTGR) is a multifunctional enzyme that catalyzes the reduction of glutathione (GSSG) and thioredoxin, as well as the deglutathionylation of peptide and non-peptide substrates. SmTGR structurally resembles known glutathione reductases (GR) and thioredoxin reductases (TrxR) but with an appended N-terminal domain that has a typical glutaredoxin (Grx) fold. Despite structural homology with known GRs, the site of glutathione reduction has frequently been reported as the Grx domain, based primarily on aerobic, steady-state kinetic measurements and x-ray crystallography. Here, we present an anaerobic characterization of a series of variant SmTGRs to establish the site of GSSG reduction as the cysteine pair most proximal to the FAD, Cys154/Cys159, equivalent to the site of GSSG reduction in GRs. Anaerobic steady-state analysis of U597C, U597S, U597C+C31S, and I592STOP SmTGR demonstrate that the Grx domain is not involved in the catalytic reduction of GSSG, as redox silencing of the C-terminus results in no modulation of the observed turnover number (â¼0.025 s-1) and redox silencing of the Grx domain results in an increased observed turnover number (â¼0.08 s-1). Transient-state single turnover analysis of these variants corroborates this, as the slowest rate observed titrates hyperbolically with GSSG concentration and approaches a limit that coincides with the respective steady-state turnover number for each variant. Numerical integration fitting of the transient state data can only account for the observed trends when competitive binding of the C-terminus is included, indicating that the partitioning of electrons to either substrate occurs at the Cys154/Cys159 disulfide rather than the previously proposed Cys596/Sec597 sulfide/selenide. Paradoxically, truncating the C-terminus at Ile592 results in a loss of GR activity, indicating a crucial non-redox role for the C-terminus.
RESUMEN
Flavin adenine dinucleotide (FAD) binding sites play an increasingly important role as useful targets for inhibiting bacterial infections. To reveal protein topological structural information as a reasonable complement for the identification FAD-binding sites, we designed a novel fusion technology according to sequence and complex network. The specially designed feature vectors were combined and fed into CatBoost for model construction. Moreover, due to the minority class (positive samples) is more significant for biological researches, a random under-sampling technique was applied to solve the imbalance. Compared with the previous methods, our methods achieved the best results for two independent test datasets. Especially, the MCC obtained by FADsite and FADsite_seq were 14.37 %-53.37 % and 21.81 %-60.81 % higher than the results of existing methods on Test6; and they showed improvements ranging from 6.03 % to 21.96 % and 19.77 %-35.70 % on Test4. Meanwhile, statistical tests show that our methods significantly differ from the state-of-the-art methods and the cross-entropy loss shows that our methods have high certainty. The excellent results demonstrated the effectiveness of using sequence and complex network information in identifying FAD-binding sites. It may be complementary to other biological studies. The data and resource codes are available at https://github.com/Kangxiaoneuq/FADsite.
Asunto(s)
Flavina-Adenina Dinucleótido , Proteínas , Sitios de Unión , Proteínas/químicaRESUMEN
Males and females of many species store sperm for extended periods. During storage, sperm are predicted to undergo cellular and functional changes, especially towards glycolytic energy metabolism because oxygen radicals derived from oxidative phosphorylation can affect sperm motility and fertilisation ability. However, not all species can use both major energy metabolism pathways. Here, we examined the fruit fly Drosophila melanogaster and asked whether sperm metabolism can be fuelled by both glycolysis and oxidative phosphorylation, and to what extent metabolism changes during storage. Inhibiting glycolysis in vitro led to a more oxidative state of sperm; inhibiting oxidative phosphorylation increased the glycolytic component, assessed by multi-photon autofluorescence lifetime imaging (FLIM) of NAD(P)H. We further examined sperm in male and female sperm storage organs using FLIM of NAD(P)H and FAD. In intact storage organs, we found that, unexpectedly, (i) sperm were more oxidative in females than in males, and (ii) oxidative phosphorylation increased with storage duration in females. Our observation that the relative contribution of the two major energy metabolic pathways in D. melanogaster sperm differs in males and females and over storage time has important evolutionary implications.
Asunto(s)
Drosophila melanogaster , Glucólisis , Fosforilación Oxidativa , Espermatozoides , Animales , Drosophila melanogaster/fisiología , Drosophila melanogaster/metabolismo , Femenino , Masculino , Espermatozoides/metabolismo , Espermatozoides/fisiología , Oxidación-Reducción , Metabolismo EnergéticoRESUMEN
In this article, Fluorescence spectroscopy has been employed for the identification of Pseudomonas aeruginosa (PA) and Escherichia coli (E. coli) in water suspension. Emission spectra of PA and E. coli suspensions have been acquired by using excitation wavelengths from 270 to 420 nm with steps of 10 nm to explore their spectral features. It has been found that the emission spectra of tryptophan, tyrosine, NADH and FAD, being the intracellular biomolecules present in both bacteria, can be used as fingerprints for their identification, differentiation and quantification. Both bacterial strains can clearly be differentiated from water and from each other by using λex 270-290 nm through spectral analysis and from λex: 300-500 nm by applying statistical analysis. Furthermore, calibration curves for different bacterial loads of PA and E. coli suspensions have been produced between colonies forming units per ml (CFUs/ml) the integrated intensities of their emission spectra. CFUs/ml of both bacterial suspensions have been determined through plate count method which was used as cross-reference for the analysis of emission spectra of both bacterial suspensions. These curves may be used to estimate CFU/ml of both PA and E. coli in unknown water suspensions by determining the integrating intensity of their emission spectra.
RESUMEN
The impact of Flavin adenine dinucleotide (FAD) on sulfate-reducing bacteria (SRB) corrosion of a pipeline welded joint (WJ) was investigated under anaerobic condition in this paper. The results showed that the thickness of the corrosion product on heat affected zone (HAZ) was lower than that on base metal (BM) and welded zone (WZ), and the FAD addition enhanced the development of the protruding microbial tubercles on the WJ. The local corrosion degrees of the BM and WZ coupons were significantly higher than that of the HAZ coupon. Besides, the FAD addition simultaneously promoted local corrosion of all three zones of the WJ in the SRB inoculated environment, and the promotion role was much more pronounced on the WZ coupons. The selective promotion effect of FAD on SRB corrosion in the WJ was attributed to the special structure of the WZ, the selected SRB attachment and the FAD/FADH2 redox feedback cycle.
Asunto(s)
Desulfovibrio desulfuricans , Flavina-Adenina Dinucleótido , Corrosión , Flavina-Adenina Dinucleótido/metabolismo , Flavina-Adenina Dinucleótido/química , Desulfovibrio desulfuricans/metabolismo , Oxidación-Reducción , BiopelículasRESUMEN
Endophytic fungi are an important source of novel antitumor substances. Previously, we isolated an endophytic fungus, Alternaria alstroemeria, from the medicinal plant Artemisia artemisia, whose crude extracts strongly inhibited A549 tumor cells. We obtained a transformant, namely AaLaeAOE26 , which completely loses its antitumor activity due to overexpression of the global regulator AaLaeA. Re-sequencing analysis of the genome revealed that the insertion site was in the noncoding region and did not destroy any other genes. Metabolomics analysis revealed that the level of secondary antitumor metabolic substances was significantly lower in AaLaeAOE26 compared with the wild strain, in particular flavonoids were more downregulated according to the metabolomics analysis. A further comparative transcriptome analysis revealed that a gene encoding FAD-binding domain protein (Fla1) was significantly downregulated. On the other hand, overexpression of AaFla1 led to significant enhancement of antitumor activity against A549 with a sevenfold higher inhibition ratio than the wild strain. At the same time, we also found a significant increase in the accumulation of antitumor metabolites including quercetin, gitogenin, rhodioloside, liensinine, ginsenoside Rg2 and cinobufagin. Our data suggest that the global regulator AaLaeA negatively affects the production of antitumor compounds via controlling the transcription of AaFla1 in endophytic A. alstroemeria.
Asunto(s)
Alstroemeria , Alternaria , Alternaria/genética , Metabolismo Secundario , Flavonoides/metabolismo , EndófitosRESUMEN
The pelagic zone of the ocean can be a challenging environment in which to conduct research and as a result we lack the robust baseline abundance and diversity data, compared to what is available in more accessible coastal habitats, to be able to track changes or stressors to the biota in this environment. Many large-scale fisheries target pelagic fish, and much of the information available on these species is based on fisheries-dependent data that may be biased towards hotspots and commercially valuable fishes. Here, a long-term video and visual fish survey was conducted on two subsurface moored fish aggregating devices (FADs) in the pelagic waters of the central Bahamas to determine the feasibility of using moored pelagic FADs as tools for collecting fish abundance and diversity data. A wide range of species was documented, including large migratory fish that are the focus of commercial and recreational fisheries, and smaller often overlooked species on which little abundance or seasonality information exists. We found that FADs colonize quickly and reach a peak stable (albeit seasonally cyclical) abundance and diversity within the first several months after deployment. Species richness was higher in video surveys, but abundance was higher in visual surveys, except for sharks. Our results highlight the need to tailor survey methods to fit the context and study objective, and provide further evidence for the importance of fisheries-independent data in monitoring pelagic species.
Asunto(s)
Peces , Tiburones , Animales , Ecosistema , Biota , Explotaciones PesquerasRESUMEN
Bioinert materials such as the zirconium dioxide and aluminum oxide are widely used in surgery and dentistry due to the absence of cytotoxicity of the materials in relation to the surrounding cells of the body. However, little attention has been paid to the study of metabolic processes occurring at the implant-cell interface. The metabolic activity of mouse 3T3 fibroblasts incubated on yttrium-stabilized zirconium ceramics cured with aluminum oxide (ATZ) and stabilized zirconium ceramics (Y-TZP) was analyzed based on the ratio of the free/bound forms of cofactors NAD(P)H and FAD obtained using two-photon microscopy. The results show that fibroblasts incubated on ceramics demonstrate a shift towards the free form of NAD(P)H, which is observed during the glycolysis process, which, according to our assumptions, is related to the porosity of the surface of ceramic structures. Consequently, despite the high viability and good proliferation of fibroblasts assessed using an MTT test and a scanning electron microscope, the cells are in a state of hypoxia during incubation on ceramic structures. The FLIM results obtained in this work can be used as additional information for scientists who are interested in manufacturing osteoimplants.
Asunto(s)
Interfase Hueso-Implante , NAD , Circonio , Animales , Ratones , Óxido de Aluminio , Cerámica/química , Fibroblastos/metabolismo , Ensayo de Materiales , NAD/metabolismo , Propiedades de Superficie , Itrio , Circonio/químicaRESUMEN
Family functioning plays an important role in explaining the high prevalence of depressive symptoms in adolescents and it is necessary to identify the family functioning characteristics responsible for this relationship. In turn, while socioeconomic status (SES) is associated with adolescent depressive symptoms, the mechanisms that explain this relationship are largely unknown. In this study, we used the McMaster Family Assessment Device (FAD) to obtain a picture of the family functioning dimensions that genuinely contribute to explaining the relationship between family functioning and adolescent depressive symptoms and analyzed the mediating effect of family functioning on the impact of SES on depressive symptoms. Regression-based conditional process analysis was used with a sample of 636 adolescents aged 12-17 years. Pratt's measures in regression analyses showed that 95% of the variance in depressive symptoms was accounted for by three of the six FAD dimensions: the ability to experience and express emotions appropriately-Affective Responsiveness-the ability to maintain adequate involvement among family members-Affective Involvement-and the ability to set and abide by rules and standards of behavior-Behavioral Control. Results also showed that the impact of SES on depressive symptoms was mediated by the existence of clear expectations about standards of behavior and behavioral patterns for handling family tasks-Behavioral Control and Roles-and, for the boys, by experiencing and expressing emotions appropriately. The results emphasize the importance of affect and clear-cut family rules to prevent adolescent depressive symptoms and suggest that the existence of family rules and roles buffer the impact of SES on adolescent wellbeing.
Asunto(s)
Depresión , Familia , Masculino , Humanos , Adolescente , Depresión/psicología , Familia/psicología , Emociones , Composición Familiar , Clase SocialRESUMEN
FTIR spectroscopy accompanied by quantum chemical simulations can reveal important information about molecular structure and intermolecular interactions in the condensed phase. Simulations typically account for the solvent either through cluster quantum mechanical (QM) models, polarizable continuum models (PCM), or hybrid quantum mechanical/molecular mechanical (QM/MM) models. Recently, we studied the effect of aqueous solvent interactions on the vibrational frequencies of lumiflavin, a minimal flavin model, using cluster QM and PCM models. Those models successfully reproduced the relative frequencies of four prominent stretching modes of flavin's isoalloxazine ring in the diagnostic 1450-1750 cm-1 range but poorly reproduced the relative band intensities. Here, we extend our studies on this system and account for solvation through a series of increasingly sophisticated models. Only by combining elements of QM clusters, QM/MM, and PCM approaches do we obtain an improved agreement with the experiment. The study sheds light more generally on factors that can impact the computed frequencies and intensities of IR bands in solution.
RESUMEN
Plant NADPH-dependent cytochrome P450 reductase (CPR) is a multidomain enzyme that donates electrons for hydroxylation reactions catalyzed by class II cytochrome P450 monooxygenases involved in the synthesis of many primary and secondary metabolites. These P450 enzymes include trans-cinnamate-4-hydroxylase, p-coumarate-3'-hydroxylase, and ferulate-5-hydroxylase involved in monolignol biosynthesis. Because of its role in monolignol biosynthesis, alterations in CPR activity could change the composition and overall output of lignin. Therefore, to understand the structure and function of three CPR subunits from sorghum, recombinant subunits SbCPR2a, SbCPR2b, and SbCPR2c were subjected to X-ray crystallography and kinetic assays. Steady-state kinetic analyses demonstrated that all three CPR subunits supported the oxidation reactions catalyzed by SbC4H1 (CYP73A33) and SbC3'H (CYP98A1). Furthermore, comparing the SbCPR2b structure with the well-investigated CPRs from mammals enabled us to identify critical residues of functional importance and suggested that the plant flavin mononucleotide-binding domain might be more flexible than mammalian homologs. In addition, the elucidated structure of SbCPR2b included the first observation of NADP+ in a native CPR. Overall, we conclude that the connecting domain of SbCPR2, especially its hinge region, could serve as a target to alter biomass composition in bioenergy and forage sorghums through protein engineering.