Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(44): 17144-17153, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37877900

RESUMEN

Recent research has primarily focused on the utilization of reductants as activators for Fe(VI) to generate high-valent iron species (Fe(IV)/Fe(V)) for the degradation of emerging organic contaminants (EOCs). However, a significant drawback of this approach arises from the reaction between reductants and ferrates, leading to a decrease in oxidation capacity. This study introduces a novel discovery that highlights the potential of the iron(III)-(1,10-phenanthroline) (Fe(III)-Phen) complex as an activator, effectively enhancing the degradation of EOCs by Fe(VI) and augmenting the overall oxidation capacity of Fe(VI). The degradation of EOCs in the Fe(VI)/Fe(III)-Phen system is facilitated through two mechanisms: a direct electron transfer (DET) process and electron shuttle action. The DET process involves the formation of a Phen-Fe(III)-Fe(VI)* complex, which exhibits a stronger oxidation ability than Fe(VI) alone and can accept electrons directly from EOCs. On the other hand, the electron shuttle process utilizes Fe(III)-Phen as a redox mediator to transfer electrons from EOCs to Fe(VI) through the Fe(IV)/Fe(III) or Fe(IV)/Fe(II)/Fe(III) cycle. Moreover, the Fe(III)-Phen complex can improve the utilization efficiency of Fe(V) by preventing its self-decay. This study's findings may present a viable option for utilizing an effective catalyst to enhance the oxidation of EOCs by Fe(VI) and Fe(V).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Compuestos Férricos , Electrones , Sustancias Reductoras , Oxidación-Reducción , Hierro
2.
J Environ Manage ; 329: 116904, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528943

RESUMEN

The apparent second-order rate constant with hexavalent ferrate (Fe(VI)) (kFe(VI)) is a key indicator to evaluate the removal efficiency of a molecule by Fe(VI) oxidation. kFe(VI) is often determined by experiment, but such measurements can hardly catch up with the rapid growth of organic compounds (OCs). To address this issue, in this study, a total of 437 experimental second-order kFe(VI) rate constants at a range of conditions (pH and temperature) were used to train four machine learning (ML) algorithms (lasso regression (LR), ridge regression (RR), extreme gradient boosting (XGBoost), and the light gradient boosting machine (LightGBM)). Using the Morgan fingerprint (MF)) of a range of organic compounds (OCs) as the input, the performance of the four algorithms was comprehensively compared with respect to the coefficient of determination (R2) and root-mean-square error (RMSE). It is shown that the RR, XGBoost, and LightGBM models displayed generally acceptable performance kFe(VI) (R2test > 0.7). In addition, the shapely additive explanation (SHAP) and feature importance methods were employed to interpret the XGBoost/LightGBM and RR models, respectively. The results showed that the XGBoost/LightGBM and RR models suggestd pH as the most important predictor and the tree-based models elucidate how electron-donating and electron-withdrawing groups influence the reactivity of the Fe(VI) species. In addition, the RR model share eight common features, including pH, with the two tree-based models. This work provides a fast and acceptable method for predicting kFe(VI) values and can help researchers better understand the degradation behavior of OCs by Fe(VI) oxidation from the perspective of molecular structure.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Cinética , Hierro/química , Oxidación-Reducción , Agua , Compuestos Orgánicos , Contaminantes Químicos del Agua/química
3.
Angew Chem Int Ed Engl ; 62(9): e202218738, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36583473

RESUMEN

In situ detection of highly-oxidized metal intermediates is the key to identifying the active center of an oxygen evolution reaction (OER) catalyst, but it remains challenging for NiFe-based catalysts in an aqueous solution under working conditions. Here, by utilizing the dynamic stability of the FeVI O4 2- intermediates in a self-healing water oxidation cycle of NiFe-based catalyst, the highly-oxidized FeVI intermediates leached into the electrolyte are directly detected by simple spectroelectrochemistry. Our results provide direct evidence that Fe is the active center in NiFe-based OER catalysts. Furthermore, it is revealed that the incorporation of Co into NiFe-based catalyst facilitates the formation of FeVI active species, thus enhancing the OER activity of NiCoFe-based catalyst. The insights into the mechanisms for the sustainable generation of FeVI active species in these NiFe-based catalysts lay the foundation for the design of more efficient and stable OER catalysts.

4.
J Environ Manage ; 316: 115328, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35658263

RESUMEN

Microorganic pollutants (MOPs) in aquatic environment with low levels but high toxicity are harmful to ecosystem and human health. Fe(VI) has a dual-functional role in oxidation and coagulation, and can effectively remove MOPs, heavy metal, phosphate, particulates and colloids. Moreover, Fe(VI) can combine with traditional coagulants, or use as a pretreatment for membrane treatment because of its characters to generate nanoparticles by degradation in water. Based on the relevant toxicity experiments, Fe(VI) had been proved to be safe for the efficient treatment of MOPs. For better utilization of Fe(VI), its oxidation and coagulation mechanisms are summarized, and the knowledge about the control parameters, utilization methods, and toxicity effect for Fe(VI) application are reviewed in this paper. pH, different valences of iron, environmental substances, and other parameters are summarized in this study to clarify the important factors in the treatment of MOPs with Fe(VI). In the future study, aiming at cost reduction in Fe(VI) preparation, transportation and storage, enhancement of oxidation in the intermediate state, and better understanding the mechanism between interface and Fe(VI) oxidation will help promote the application of Fe(VI) in the removal of MOPs. This study offers guidelines for the application and development of Fe(VI) for the treatment of MOPs in aquatic environment.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Ecosistema , Humanos , Hierro/química , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
5.
Environ Sci Technol ; 55(17): 11733-11744, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34369153

RESUMEN

Chemical reactivity, kinetics, degradation pathways and mechanisms, and ecotoxicity of the oxidation of 1-vinyl-3-ethylimidazolium bromide ([VEIm]Br), the most common alternative to organic solvents, by Fe(VI) (HFeO4-) were studied by lab experiments and theoretical calculations. Results show that Fe(VI) can efficiently remove VEIm through the dioxygen transfer-hydrolysis mechanism, which has not been reported yet. The reactivity of VEIm toward Fe(VI) mainly depends on the double bonds in the side chain of VEIm. The second-order rate constant for VEIm was 629.45 M-1 s-1 at pH 7.0 and 25 °C. Typical water constituents, except for SO32-, Cl-, and Cu2+, had no obvious effects on the oxidation. The oxidation products were determined by high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry, which proves that there were interactions between the oxidation intermediates of the anion and cation parts of [VEIm]Br during the degradation process. The structures of related products and oxidation mechanisms were further rationalized by theoretical calculations. The ecotoxicity of products from the three oxidation pathways all showed a trend of increase after the initial decrease. We hope that the findings of this work can give researchers some new inspirations on Fe(VI) degradation of other alkene-containing contaminants.


Asunto(s)
Líquidos Iónicos , Contaminantes Químicos del Agua , Purificación del Agua , Alquenos , Imidazoles , Hierro , Cinética , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
6.
J Environ Manage ; 255: 109927, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32063308

RESUMEN

This study was aimed at the degradation of sulfonamides (SNs) via oxidation with Fe(VI). The reaction kinetics, identification of degradation byproducts and their toxicity were investigated. The pH solution and Fe(VI) loading had significant effects on the degradation of the sulfonamides. The maximum degradation rate occurred at pH 3.0 with a 6:1 ratio Fe(VI): sulfonamide, obtaining 100% degradation of 15 mg L-1 SN within 5 min. Although Fe(VI) also showed an appreciable reactivity towards SNs (kapp = 9.85-19.63 × 102 M-1 s-1) at pH 7. The influence of solution pH on the values of kapp can be explained considering the specific reaction between Fe(VI) and SNs. Degradation rates are also influenced by the presence of inorganic ions in different water matrixes. For this reason, ions present in groundwater enhanced the SNs degradation through a synergistic effect among carbonates, sulfates and Fe(VI). Degradation byproducts identified, through UPLC analysis, allowed us to proposed three degradation pathways depending on pH. At acid pH there is a cleavage of C-S and S-N bonds. At neutral pH nitroso and nitro-derivates are formed. At basic pH hydroxylation is the main reaction. The cytotoxicity assay of HEK-293 and J774 cell lines exposed to Fe(VI) indicated that transformation byproducts had a lower toxicity than SNs as baseline products. Accordingly, this research suggests that Fe(VI) can act as a chemical oxidant to remove SNs antibiotics and it can be used to treat antibiotic pollution in wastewater.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Hierro , Cinética , Oxidación-Reducción , Sulfonamidas
7.
J Environ Sci (China) ; 30: 55-64, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25872709

RESUMEN

A novel ferruginous active absorbent, prepared by fly ash, industrial lime and the additive Fe(VI), was introduced for synchronous abatement of binary mixtures of SO2-NOx from simulated coal-fired flue gas. The synergistic action of various factors on the absorption of SO2 and NOx was investigated. The results show that a strong synergistic effect exists between Fe(VI) dose and reaction temperature for the desulfurization. It was observed that in the denitration process, the synergy of Fe(VI) dose and Ca/(S+N) had the most significant impact on the removal of NO, followed by the synergy of Fe(VI) and reaction temperature, and then the synergy of reaction temperature and flue gas humidity. A scanning electron microscope (SEM) and an accessory X-ray energy spectrometer (EDS) were used to observe the surface characteristics of the raw and spent absorbent as well as fly ash. A reaction mechanism was proposed based on chemical analysis of sulfur and nitrogen species concentrations in the spent absorbent. The Gibbs free energy, equilibrium constants and partial pressures of the SO2-NOx binary system were determined by thermodynamics.


Asunto(s)
Contaminantes Atmosféricos/química , Contaminación del Aire/prevención & control , Compuestos de Hierro/química , Óxidos de Nitrógeno/química , Dióxido de Azufre/química , Absorción Fisicoquímica , Adsorción , Gases , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X , Difracción de Rayos X
8.
Water Res ; 251: 121100, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38198974

RESUMEN

Studies on the Fe(VI)/S(IV) process have focused on improving the efficiency of emerging contaminants (ECs) degradation under alkaline conditions. However, the performance and mechanisms under varying pH levels remain insufficiently investigated. This tudy delved into the efficiency and mechanism of Fe(VI)/S(IV) process using sulfamethoxazole (SMX) and ibuprofen (IBU) as model contaminants. We found that pH was crucial in governing the generation of reactive species, and both Fe(V/IV) and SO4•- were identified in the reaction system. Specifically, an increase in pH favored the formation of SO4•-, while the formation of Fe(VI) to Fe(V/IV) became more significant at lower pH. At pH 3.2, Fe(III) resulting from the Fe(VI) self-decay reactedwith HSO3-to produce SO4•-and •OH. Under near-neutral conditions, the coexistance of Fe(V/IV) and SO4•- in abundance contributed to the optimal oxidation of both pollutants in the Fe(VI)/S(IV) process, with the removal exceeding 74% in 5 min. Competitive quenching experiments showed that the contributions of Fe(V/IV) to SMX and IBU destruction dimished, while the contributions of radicals increased with an increase in pH. However, this evolution was slower during SMX degradation compared to IBU degradation. A comprehensive understnding of pH as the key factor is essential for the optimization of the sulfite-activated Fe(VI) oxidation process in water treatment.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Purificación del Agua , Compuestos Férricos , Contaminantes Químicos del Agua/análisis , Cinética , Oxidación-Reducción , Sulfametoxazol , Purificación del Agua/métodos , Ibuprofeno
9.
J Hazard Mater ; 476: 134980, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38905978

RESUMEN

In this investigation, we conducted a detailed analysis of the oxidation of 16 imidazole ionic liquid variants by Fe(VI) under uniform experimental setups, thereby securing a dataset of second-order reaction rate constants (kobs). This methodology ensures superior data consistency and comparability over traditional methods that amalgamate disparate data from varied studies. Utilizing 16 chemical structural parameters obtained via Density Functional Theory (DFT) as descriptors, we developed a Quantitative Structure Activity Relationship (QSAR) model. Through rigorous correlation analysis, Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Applicability Domain (AD) evaluation, we identified a pronounced negative correlation between the molecular orbital gap energy (Egap) and kobs. MLR analysis further underscored Egap as a pivotal predictive variable, with its lower values indicating heightened oxidative reactivity towards Fe(VI) in the ionic liquids, leading the QSAR model to achieve a predictive accuracy of 0.95. Furthermore, we integrated an advanced machine learning approach - Random Forest Regression (RFR), which adeptly highlighted the critical factors influencing the oxidation efficiency of imidazole ionic liquids by Fe(VI) through elaborate decision trees, feature importance assessment, Recursive Feature Elimination (RFE), and cross-validation strategies. The RFR model demonstrated a remarkable predictive performance of 0.98. Both QSAR and RFR models pinpointed Egap as a key descriptor significantly affecting oxidation efficiency, with the RFR model presenting lower root mean square errors, establishing it as a more reliable predictive tool. The application of the RFR model in this study significantly improved the model's stability and the intuitive display of key influencing factors, introducing promising advanced analytical tools to the field of environmental chemistry.

10.
Water Res ; 261: 122013, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981354

RESUMEN

Ultrafiltration (UF) is increasingly used in the pretreatment of shale gas produced water (SGPW), whereas severe membrane fouling hampers its actual operation. In this work, ferrate(VI)-based oxidation was proposed for membrane fouling alleviation in SGPW pretreatment, and the activation strategies of calcium peroxide (CaO2) and ultraviolet (UV) were selected for comparison. The findings indicated that UV/Fe(VI) was more effective in removing fluorescent components, and the concentration of dissolved organic carbon was reduced by 24.1 %. With pretreatments of CaO2/Fe(VI) and UV/Fe(VI), the terminal specific membrane flux was elevated from 0.196 to 0.385 and 0.512, and the total fouling resistance diminished by 52.7 % and 76.2 %, respectively. Interfacial free energy analysis indicated that the repulsive interactions between pollutants and membrane were notably enhanced by Fe(VI)-based oxidation, thereby delaying the deposition of cake layers on the membrane surface. Quenching and probe experiments revealed that high-valent iron intermediates (Fe(IV)/Fe(V)) played significant roles in both CaO2/Fe(VI) and UV/Fe(VI) processes. Besides, hydroxyl radicals (•OH) were also important reactive species in the UV/Fe(VI) treatment, and the synergistic effect of Fe(IV)/Fe(V) and •OH showed a positive influence on SGPW fouling mitigation. In general, these findings establish a theoretical underpinning for the application of Fe(VI)-based oxidation for UF membrane fouling mitigation in SGPW pretreatment.


Asunto(s)
Radical Hidroxilo , Hierro , Membranas Artificiales , Oxidación-Reducción , Ultrafiltración , Hierro/química , Radical Hidroxilo/química , Purificación del Agua/métodos
11.
Water Res ; 260: 121907, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878318

RESUMEN

The combination of ozone (O3) and ferrate (Fe(VI)) oxidation technology demonstrates substantial potential for practical applications, though it has been underreported, resulting in gaps in comprehensive activity assessments and thorough exploration of its mechanisms. This study reveals that the previous use of a borate buffer solution obscured certain synergistic reactions between O3 and Fe(VI), causing a reduction of activity by ∼40 % when oxidizing the electron-deficient pollutant atrazine. Consequently, we reassessed the activity and mechanisms using a buffer-salt-free O3/Fe(VI) system. Our findings showed that the hydroxyl radical (·OH) served as the predominant active species, responsible for an impressive 95.9 % of the oxidation activity against electron-deficient pollutants. Additional experiments demonstrated that the rapid production of neglected and really important superoxide radicals (·O2-) could facilitate the decomposition of O3 to generate ·OH and accelerate the reduction of Fe(VI) to Fe(V), reactivating O3 to produce ·OH anew. Intriguingly, as the reaction progressed, the initially depleted Fe(VI) was partially regenerated, stabilizing at over 50 %, highlighting the significant potential of this combined system. Moreover, this combined system could achieve a high mineralization efficiency of 80.4 % in treating actual coking wastewater, complemented by extensive toxicity assessments using Escherichia coli, wheat seeds, and zebrafish embryos, showcasing its robust application potential. This study revisits and amends previous research on the O3/Fe(VI) system, providing new insights into its activity and synergistic mechanisms. Such a combined technology has potential for the treatment of difficult-to-degrade industrial wastewater.


Asunto(s)
Hierro , Oxidación-Reducción , Ozono , Contaminantes Químicos del Agua , Ozono/química , Hierro/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Animales , Radical Hidroxilo/química , Atrazina/química , Atrazina/toxicidad , Electrones , Pez Cebra
12.
J Hazard Mater ; 469: 133982, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460256

RESUMEN

Enhancing Fe(VI) oxidation ability by generating high-valent iron-oxo species (Fe(IV)/Fe(V)) has attracted continuous interest. This work for the first time reports the efficient activation of Fe(VI) by a well-known aza-aromatic chelating agent 2,2'-bipyridyl (BPY) for micropollutant degradation. The presence of BPY increased the degradation constants of six model compounds (i.e., sulfamethoxazole (SMX), diclofenac (DCF), atenolol (ATL), flumequine (FLU), 4-chlorophenol (4-CP), carbamazepine (CBZ)) with Fe(VI) by 2 - 6 folds compared to those by Fe(VI) alone at pH 8.0. Lines of evidence indicated the dominant role of Fe(IV)/Fe(V) intermediates. Density functional theory calculations suggested that the binding of Fe(III) to one or two BPY molecules initiated the oxidation of Fe(III) to Fe(IV) by Fe(VI), while Fe(VI) was reduced to Fe(V). The increased exposures of Fe(IV)/Fe(V) were experimentally verified by the pre-generated Fe(III) complex with BPY and using methyl phenyl sulfoxide as the probe compound. The presence of chloride and bicarbonate slightly affected model compound degradation by Fe(VI) in the presence of BPY, while a negative effect of humic acid was obtained under the same conditions. This work demonstrates the potential of N-donor heterocyclic ligand to activate Fe(VI) for micropollutant degradation, which is instructive for the Fe(VI)-based oxidation processes.

13.
Chemosphere ; 340: 139809, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37579819

RESUMEN

In this study, the occurrence and removal of ten selected antibiotics from aquaculture wastewater by the process solar + Fe(VI)+oxone were investigated. The detection levels of the antibiotics in the aquaculture wastewater samples were at ng/L. The degradation of the selected antibiotics under the process solar + Fe(VI)+oxone followed pseudo-first-order kinetics. As the most abundant antibiotic in the studied aquaculture wastewater, norfloxacin (NFX) was used as the model compound to study the reaction mechanism and detoxification ability of the treatment system, as well as the effects of reaction parameters and environmental factors. The active species including O2•-, O21, and Fe(V)/Fe(IV) contributed to NFX degradation in the process solar + Fe(VI)+oxone. Decarboxylation, the piprazine ring opening, defluorination of the benzene ring, oxygen addition and the cleavage of the quinolone/benzene ring were main degradation pathways of NFX. Around 20% mineralization was reached and the inhibition rate of the bacteria (Escherichia Coli) growth was reduced from 95.5% to 47.1% after the NFX degradation for 60 min. Despite the suppression of NFX degradation by NO2-, PO43- and humic acid, the NFX degradation in three aquaculture wastewater samples was faster than that in ultrapure water due to the positive effect of Br-and other factors. The above results demonstrate the treatment process solar-driven Fe(VI)/oxone has a good potential in antibiotics removal from the aquaculture wastewater.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Aguas Residuales , Benceno , Oxidación-Reducción , Norfloxacino , Acuicultura/métodos , Contaminantes Químicos del Agua/análisis
14.
J Hazard Mater ; 452: 131274, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989796

RESUMEN

Ferrate (Fe(VI), FeO42-) has been widely used in the degradation of micropollutants with the advantages of high redox potential, no secondary pollution and inhibition of disinfection byproducts. However, the low transformation of Fe(V) and/or Fe(IV) by Fe(VI) and incomplete mineralization of pollutants limit their application. In this work, we designed a photo electric cell with TiO2 nanotubes (TNTs) and Pt serving as the anode and cathode to enhance the utilization of Fe(VI) (Fe(VI)-TNTs system). TNTs accelerated the generation of •OH via hVB+ oxidation of OH- and photogenerated electrons at Pt boosted the transformation of Fe(VI) to Fe(V) and/or Fe(IV), resulting in a 22.2 % enhancement of chloroquine (CLQ) removal compared to Fe(VI) alone. The results from EPR and quenching tests showed that Fe(VI), Fe(V), Fe(IV), •OH, O2•- and hVB+ coexisted in the Fe(VI)-TNTs system, among which Fe(V) and Fe(IV) were testified as the primary reactive substances accounting for 59 % of CLQ removal. The performance tests and recycling tests demonstrated that the Fe(VI)-TNTs system maintained excellent performance in an authentic water environment. The plausible degradation pathway of CLQ oxidized in the Fe(VI)-TNTs system was proposed with nine identified oxidation products via N-C cleavage, electrophilic addition and carboxylation processes. Based on the ECOSAR calculation, the constructed reaction system allowed a decrease in acute and chronic toxicity. Our findings provide a highly efficient and cost-effective strategy to enhance Fe(VI) application for micropollutant degradation in the future.

15.
Rev Clin Esp (Barc) ; 223(2): 90-95, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36564003

RESUMEN

BACKGROUND AND OBJECTIVES: An improvement in left ventricular ejection fraction (LVEF) in patients with heart failure (HF) is associated with a better prognosis. Identifying these subjects early after an episode of decompensation, the necessary threshold of LVEF improvement, and its predictive factors are of great interest. PATIENTS AND METHODS: One hundred and ten patients hospitalized for HF were prospectively reassessed at an early outpatient visit (mean of 38 days). RESULTS AND CONCLUSIONS: In subjects with depressed LVEF (<50%), 50.7% presented an improvement in LVEF≥5% between the acute episode and the outpatient visit. This improvement in depressed LVEF was found to be useful for identifying patients with a good prognosis (readmission due to HF+cardiovascular mortality, p=0.022) but not in patients with preserved LVEF (≥50%). Patients with improved LVEF were significantly younger and had new-onset HF, a better global longitudinal strain (GLS), and better renal function. A multivariate logistic regression model found GLS, new-onset HF, and a lower LV mass index as predictors of LVEF improvement ≥5% (AUC 0.85).


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Humanos , Pronóstico , Volumen Sistólico , Función Ventricular Izquierda , Insuficiencia Cardíaca/diagnóstico
16.
Water Res ; 247: 120840, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37950954

RESUMEN

The presence of manganese(II) in drinking water sources poses a significant treatment difficulty for water utilities, thus necessitating the development of effective removal strategies. Treatment by Fe(VI), a combined oxidant and coagulant, has been identified as a potential green solution; however, its effectiveness is hampered by natural organic matter (NOM), and this underlying mechanism is not fully understood. Here, we investigated the inhibitory effect of three different types of NOM, representing terrestrial, aquatic, and microbial origins, on Mn(II) removal and floc growth during Fe(VI) coagulation. Results revealed that Fe(VI) coagulation effectively removes Mn(II), but NOM could inhibit its effectiveness by competing in oxidation reactions, forming NOM-Fe complexes, and altering floc aggregation. Humic acid was found to exhibit the strongest inhibition due to its unsaturated heterocyclic species that strongly bond to flocs and react with Fe(VI). For the first time, this study has presented a comprehensive elucidation of the atomic-level structure of Fe(VI) hydrolysis products by employing Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS). Results demonstrated that NOM strengthened single-corner and double-corner coordination between FeO6 octahedrons that were consumed by Mn(II), resulting in an increased contribution of γ-FeOOH in the core-shell structure (γ-FeOOH shell and γ-F2O3 core), thereby inhibiting coagulation effects. Furthermore, NOM impeded the formation of stable manganite, resulting in more low-valence Mn(III) being incorporated in the form of an unstable intermediate. These findings provide a deeper understanding of the complex interplay between Fe coagulants, heavy metal pollution, and NOM in water treatment and offer insight into the limitations of Fe(VI) in practical applications.


Asunto(s)
Manganeso , Purificación del Agua , Oxidación-Reducción , Manganeso/química , Purificación del Agua/métodos
17.
Chemosphere ; 336: 139165, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37295684

RESUMEN

Potassium ferrate (K2FeO4) containing hexavalent iron [Fe(VI)] is an environmentally friendly oxidant, which possesses strong oxidizing power to treat wastewater and sludge. Therefore, the present study investigated degradation of selected antibiotics, namely levofloxacin (LEV), ciprofloxacin (CIP), oxytetracycline (OTC), and azithromycin (AZI), in water and anaerobically digested sewage sludge samples using Fe(VI). The effects of different Fe(VI) concentrations and initial pH values on antibiotic removal efficiency were evaluated. Under the studied conditions, LEV and CIP were almost completely removed from water samples, following second-order kinetics. In addition, over 60% of the four selected antibiotics were removed from sludge samples using 1 g L-1 Fe(VI). Furthermore, P phytoavailability and compostability of Fe(VI)-treated sludge were evaluated using different extraction reagents and a small composting unit. The extraction efficiency of phytoavailable P using 2% citric acid and neutral ammonium citrate was approximately 40% and 70%, respectively. The mixture of Fe(VI)-treated sludge and rice husk was self-heated in a closed composting reactor through the biodegradation of organic matter derived from the treated sludge. Therefore, Fe(VI)-treated sludge may be used as an organic material containing phytoavailable P for compost.


Asunto(s)
Antibacterianos , Aguas del Alcantarillado , Agua , Cinética , Hierro
18.
Sci Total Environ ; 864: 161080, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36574852

RESUMEN

Ferrate(VI) is a green oxidant and can effectively oxidize micropollutants. However, the instability of Fe(VI), i.e., self-decomposition, in the aqueous solution limited its application. Herein, it was found that the degradation of phenolic substances had been substantially improved through the combination of Fe(VI) with NaClO. At the condition of pH 8.0, 50 µM of Fe(VI) degraded 18.66 % of BPA (bisphenol A) at 0.5 min or 21.67 % of phenol at 2 min. By contrast, Fe(VI)/NaClO (50/10 µM) oxidized 38.21 % of BPA at 0.5 min or 38.08 % of phenol at 2 min with a synergistic effect. At the end of the reaction, the concentration of Fe(VI) in Fe(VI)/NaClO (50/10 µM) was 28.97 µM for BPA degradation, higher than the 25.62 µM of Fe(VI) group. By active species analysis, intermediate iron species [i.e., Fe(V) and Fe(IV)] played a vital role in the synergistic effect in Fe(VI)/NaClO system, which would react with the applied NaClO to regenerate Fe(VI). In natural water, the Fe(VI)/NaClO could also degrade phenolic substances of natural organic matter (NOM). Although the NaClO reagent was applied, disinfection by-products (DBPs) formation potential decreased by 22.75 % of the raw sample after Fe(VI)/NaClO treatment. Significantly, THMs, mainly caused by phenolic substances of NOM, even declined by 29.18 % of raw sample. Based on that, this study explored a novel ferrate(VI) oxidation system using the cheap NaClO reagent, which would present a new insight on ferrate(VI) application.

19.
Med Clin (Barc) ; 161(1): 1-10, 2023 07 07.
Artículo en Inglés, Español | MEDLINE | ID: mdl-37019757

RESUMEN

BACKGROUND: A percentage of patients with heart failure with reduced ejection fraction (HFrEF) improve left ventricular ejection fraction (LVEF) in the evolution. This entity, defined for the first time in an international consensus as heart failure with improved ejection fraction (HFimpEF), could have a different clinical profile and prognosis than HFrEF. Our main aim was to analyze the differential clinical profile between the two entities, as well as the mid-term prognosis. MATERIAL-METHODS: Prospective study of a cohort of patients with HFrEF who had echocardiographic data at baseline and follow-up. A comparative analysis of patients who improved LVEF with those who did not was made. Clinical, echocardiographic and therapeutic variables were analyzed, and the mid-term impact in terms of mortality and hospital readmissions for HF was assessed. RESULTS: Ninety patients were analyzed. Mean age was 66.5(10.4) years, with a male predominance (72.2%). Forty five patients (50%) improved LVEF (Group-1,HFimpEF) and forty five patients (50%) sustained reduced LVEF (Group-2,HFsrEF). The mean time to LVEF improvement in Group-1 was 12.6(5.7) months. Group-1 had a more favorable clinical profile: lower prevalence of cardiovascular risk factors, higher prevalence of de novo HF (75.6% vs. 42.2%; p<0.05), lower prevalence of ischemic etiology (22.2% vs. 42.2%; p<0.05), with less basal dilatation of the left ventricle. At the end of follow-up (mean 19(1) months) Group-1 had a lower hospital readmission rate (3.1% vs. 26.7%; p<0.01), as well as lower mortality (0% vs. 24.4%; p<0.01). CONCLUSION: Patients with HFimpEF seem to have a better mid-term prognosis in terms of reduced mortality and hospital admissions. This improvement could be conditioned by the clinical profile of patients HFimpEF.


Asunto(s)
Insuficiencia Cardíaca , Función Ventricular Izquierda , Humanos , Masculino , Anciano , Femenino , Volumen Sistólico , Estudios Prospectivos , Pronóstico
20.
J Environ Health Sci Eng ; 20(1): 205-218, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35669795

RESUMEN

Sulfamethoxazole (SMX) is a typical antibiotic in the world, which is frequently detected in the aquatic environment. The current study was aimed to investigate the SMX degradation in secondary treated wastewater using potassium Ferrate [Fe(VI)]. The effects of various experimental conditions, EDTA and phosphate as chelating agents, and toxicity assessment were also considered. Secondary treated effluent was spiked with predefined SMX concentrations, and after desired reaction time with Fe(VI), residual SMX was measured using HPLC. Results indicated that SMX degradation by Fe(VI) was favored under acidic condition, where 90% of SMX degradation was achieved after 120 min. Fe(VI) and SMX reaction obeyed first-order kinetic; meantime, the SMX degradation rate under pH 3 was 7.6 times higher than pH 7. The presence of phosphate (Na2HPO4) and EDTA declined SMX degradation, while Fe (III) effect was contradictory. In addition to promising demolition, 10% TOC removal was achieved. Eighteen major intermediates were identified using LC-MS/MS and the degradation pathways were suggested. Transformation products (TPs) were formed due to hydroxylation, bond cleavage, transformation after bond cleavage, and oxidation reactions. The ECOSAR analysis showed that some of the SMX oxidation products were toxic to aquatic organisms (fish, daphnia and green algae). Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-021-00769-9.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA