Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Network ; : 1-21, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39224075

RESUMEN

Fault detection, classification, and location prediction are crucial for maintaining the stability and reliability of modern power systems, reducing economic losses, and enhancing system protection sensitivity. This paper presents a novel Hierarchical Deep Learning Approach (HDLA) for accurate and efficient fault diagnosis in transmission lines. HDLA leverages two-stage transformer-based classification and regression models to perform Fault Detection (FD), Fault Type Classification (FTC), and Fault Location Prediction (FLP) directly from synchronized raw three-phase current and voltage samples. By bypassing the need for feature extraction, HDLA significantly reduces computational complexity while achieving superior performance compared to existing deep learning methods. The efficacy of HDLA is validated on a comprehensive dataset encompassing various fault scenarios with diverse types, locations, resistances, inception angles, and noise levels. The results demonstrate significant improvements in accuracy, recall, precision, and F1-score metrics for classification, and Mean Absolute Errors (MAEs) and Root Mean Square Errors (RMSEs) for prediction, showcasing the effectiveness of HDLA for real-time fault diagnosis in power systems.

2.
Sensors (Basel) ; 24(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38894302

RESUMEN

In this article, the authors focus on the introduction of a hybrid method for risk-based fault detection (FD) using dynamic principal component analysis (DPCA) and failure method and effect analysis (FMEA) based Bayesian networks (BNs). The FD problem has garnered great interest in industrial application, yet methods for integrating process risk into the detection procedure are still scarce. It is, however, critical to assess the risk each possible process fault holds to differentiate between non-safety-critical and safety-critical abnormalities and thus minimize alarm rates. The proposed method utilizes a BN established through FMEA analysis of the supervised process and the results of dynamical principal component analysis to estimate a modified risk priority number (RPN) of different process states. The RPN is used parallel to the FD procedure, incorporating the results of both to differentiate between process abnormalities and highlight critical issues. The method is showcased using an industrial benchmark problem as well as the model of a reactor utilized in the emerging liquid organic hydrogen carrier (LOHC) technology.

3.
Sensors (Basel) ; 24(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793833

RESUMEN

Any bearing faults are a leading cause of motor damage and bring economic losses. Fast and accurate identification of bearing faults is valuable for preventing damaging the whole equipment and continuously running industrial processes without interruption. Vibration signals from a running motor can be utilized to diagnose a bearing health condition. This study proposes a detection method for bearing faults based on two types of neural networks from motor vibration data. The proposed method uses an autoencoder neural network for constructing a new motor vibration feature and a feed-forward neural network for the final detection. The constructed signal feature enhances the prediction performance by focusing more on a fault type that is difficult to detect. We conducted experiments on the CWRU bearing datasets. The experimental study shows that the proposed method improves the performance of the feed-forward neural network and outperforms the other machine learning algorithms.

4.
Sensors (Basel) ; 24(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39205042

RESUMEN

Solar panels may suffer from faults, which could yield high temperature and significantly degrade their power generation. To detect faults of solar panels in large photovoltaic plants, drones with infrared cameras have been implemented. Drones may capture a huge number of infrared images. It is not realistic to manually analyze such a huge number of infrared images. To solve this problem, we develop a Deep Edge-Based Fault Detection (DEBFD) method, which applies convolutional neural networks (CNNs) for edge detection and object detection according to the captured infrared images. Particularly, a machine learning-based contour filter is designed to eliminate incorrect background contours. Then faults of solar panels are detected. Based on these fault detection results, solar panels can be classified into two classes, i.e., normal and faulty ones (i.e., macro ones). We collected 2060 images in multiple scenes and achieved a high macro F1 score. Our method achieved a frame rate of 28 fps over infrared images of solar panels on an NVIDIA GeForce RTX 2080 Ti GPU.

5.
Sensors (Basel) ; 24(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38544088

RESUMEN

The use of fast transients for fault detection in long transmission networks makes the generation of controlled transients crucial. In order to maximise the information that can be extracted from the measured pressure time history (pressure signal), the transients must meet certain requirements. In particular, the manoeuvre that generates the transient must be fast and repeatable, and must produce a pressure wave that is as sharp as possible, without spurious pressure oscillations. This implies the use of small-diameter valves and often pneumatically operated automatic valves. In the present work, experimental transient tests are carried out at the Water Engineering Laboratory (WEL) of the University of Perugia using a butterfly valve and a ball pneumatic-driven valve to generate pressure waves in a pressurised copper pipe. A camera is used to monitor the valve displacement, while the pressure is measured by a pressure transducer close to the downstream end of the pipe where the pneumatic valve is installed. The experimental data are analysed to characterise the valve performance and to compare the two geometries in terms of valve closing dynamics, the sharpness of the generated pressure wave and the stability of the pressure time history. The present work demonstrates how the proposed approach can be very effective in easily characterising the transient dynamics.

6.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000865

RESUMEN

In the realm of special equipment, significant advancements have been achieved in fault detection. Nonetheless, faults originating in the equipment manifest with diverse morphological characteristics and varying scales. Certain faults necessitate the extrapolation from global information owing to their occurrence in localized areas. Simultaneously, the intricacies of the inspection area's background easily interfere with the intelligent detection processes. Hence, a refined YOLOv8 algorithm leveraging the Swin Transformer is proposed, tailored for detecting faults in special equipment. The Swin Transformer serves as the foundational network of the YOLOv8 framework, amplifying its capability to concentrate on comprehensive features during the feature extraction, crucial for fault analysis. A multi-head self-attention mechanism regulated by a sliding window is utilized to expand the observation window's scope. Moreover, an asymptotic feature pyramid network is introduced to augment spatial feature extraction for smaller targets. Within this network architecture, adjacent low-level features are merged, while high-level features are gradually integrated into the fusion process. This prevents loss or degradation of feature information during transmission and interaction, enabling accurate localization of smaller targets. Drawing from wheel-rail faults of lifting equipment as an illustration, the proposed method is employed to diagnose an expanded fault dataset generated through transfer learning. Experimental findings substantiate that the proposed method in adeptly addressing numerous challenges encountered in the intelligent fault detection of special equipment. Moreover, it outperforms mainstream target detection models, achieving real-time detection capabilities.

7.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38676087

RESUMEN

Rotary machines commonly use rolling element bearings to support rotation of the shafts. Most machine performance imperfections are related to bearing defects. Thus, reliable bearing condition monitoring systems are critically needed in industries to provide early warning of bearing fault so as to prevent machine performance degradation and reduce maintenance costs. The objective of this paper is to develop a smart monitoring system for real-time bearing fault detection and diagnostics. Firstly, a smart sensor-based data acquisition (DAQ) system is developed for wireless vibration signal collection. Secondly, a modified variational mode decomposition (MVMD) technique is proposed for nonstationary signal analysis and bearing fault detection. The proposed MVMD technique has several processing steps: (1) the signal is decomposed into a series of intrinsic mode functions (IMFs); (2) a correlation kurtosis method is suggested to choose the most representative IMFs and construct the analytical signal; (3) envelope spectrum analysis is performed to identify the representative features and to predict bearing fault. The effectiveness of the developed smart sensor DAQ system and the proposed MVMD technique is examined by systematic experimental tests.

8.
Sensors (Basel) ; 24(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38676272

RESUMEN

Fault-finding diagnostics is a model-driven approach that identifies a system's malfunctioning portion. It uses residual generators to identify faults, and various methods like isolation techniques and structural analysis are used. However, diagnostic equipment doesn't measure the remaining signal-to-noise ratio. Residual selection identifies fault-detecting generators. Fault detective diagnostic (FDD) approaches have been investigated and implemented for various industrial processes. However, industrial operations make it difficult to implement FDD techniques. To bridge the gap between theoretical methodologies and implementations, hybrid approaches and intelligent procedures are needed. Future research should focus on improving fault prognosis, allowing for accurate prediction of process failures and avoiding safety hazards. Real-time and comprehensive FDD strategies should be implemented in the age of big data.

9.
Sensors (Basel) ; 24(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732783

RESUMEN

This paper addresses the problem of fault detection in DC microgrids in the presence of denial-of-service (DoS) attacks. To deal with the nonlinear term in DC microgrids, a Takagi-Sugeno (T-S) model is employed. In contrast to the conventional approach of utilizing current sampling data in the traditional event-triggered mechanism (ETM), a novel integrated ETM employs historical information from measured data. This innovative strategy mitigates the generation of additional triggering packets resulting from random perturbations, thus reducing redundant transmission data. Under the assumption of faults occurring within a finite-frequency domain, a resilient event-based H-/H∞ fault detection filter (FDF) is designed to withstand DoS attacks. The exponential stability conditions are derived in the form of linear matrix inequalities to ensure the performance of fault detected systems. Finally, the simulation results are presented, demonstrating that the designed FDF effectively detects finite-frequency faults in time even under DoS attacks. Furthermore, the FDF exhibits superior fault detection sensitivity compared to the conventional H∞ method, thus confirming the efficacy of the proposed approach. Additionally, it is observed that a trade-off exists between fault detection performance and the data releasing rate (DRR).

10.
Sensors (Basel) ; 24(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39205003

RESUMEN

The Industrial Internet of Things has enabled the integration and analysis of vast volumes of data across various industries, with the maritime sector being no exception. Advances in cloud computing and deep learning (DL) are continuously reshaping the industry, particularly in optimizing maritime operations such as Predictive Maintenance (PdM). In this study, we propose a novel DL-based framework focusing on the fault detection task of PdM in marine operations, leveraging time-series data from sensors installed on shipboard machinery. The framework is designed as a scalable and cost-efficient software solution, encompassing all stages from data collection and pre-processing at the edge to the deployment and lifecycle management of DL models. The proposed DL architecture utilizes Graph Attention Networks (GATs) to extract spatio-temporal information from the time-series data and provides explainable predictions through a feature-wise scoring mechanism. Additionally, a custom evaluation metric with real-world applicability is employed, prioritizing both prediction accuracy and the timeliness of fault identification. To demonstrate the effectiveness of our framework, we conduct experiments on three types of open-source datasets relevant to PdM: electrical data, bearing datasets, and data from water circulation experiments.

11.
Sensors (Basel) ; 24(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38610508

RESUMEN

Ultrasonic diagnostics is the earliest way to predict industrial faults. Usually, a contact microphone is employed for detection, but the recording will be contaminated with noise. In this paper, a dataset that contains 10 main faults of pipelines and motors is analyzed from which 30 different features in the time and frequency domains are extracted. Afterward, for dimensionality reduction, principal component analysis (PCA), linear discriminant analysis (LDA), and t-distributed stochastic neighbor embedding (t-SNE) are performed. In the subsequent phase, recursive feature elimination (RFE) is employed as a strategic method to analyze and select the most relevant features for the classifiers. Next, predictive models consisting of k-Nearest Neighbor (KNN), Logistic Regression (LR), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Support Vector Machine (SVM) are employed. Then, in order to solve the classification problem, a stacking classifier based on a meta-classifier which combines multiple classification models is introduced. Furthermore, the k-fold cross-validation technique is employed to assess the effectiveness of the model in handling new data for the evaluation of experimental results in ultrasonic fault detection. With the proposed method, the accuracy is around 5% higher over five cross folds with the least amount of variation. The timing evaluation of the meta model on the 64 MHz Cortex M4 microcontroller unit (MCU) revealed an execution time of 11 ms, indicating it could be a promising solution for real-time monitoring.

12.
Sensors (Basel) ; 24(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257667

RESUMEN

Aiming to address the issues of parameter complexity and high computational load in existing fault detection algorithms for transmission lines, which hinder their deployment on devices like drones, this study proposes a novel lightweight model called Leaner YOLOv7-Tiny. The primary goal is to swiftly and accurately detect typical faults in transmission lines from aerial images. This algorithm inherits the ELAN structure from YOLOv7-Tiny network and replaces its backbone with depthwise separable convolutions to reduce model parameters. By integrating the SP attention mechanism, it fuses multi-scale information, capturing features across various scales to enhance small target recognition. Finally, an improved FCIoU Loss function is introduced to balance the contribution of high-quality and low-quality samples to the loss function, expediting model convergence and boosting detection accuracy. Experimental results demonstrate a 20% reduction in model size compared to the original YOLOv7-Tiny algorithm. Detection accuracy for small targets surpasses that of current mainstream lightweight object detection algorithms. This approach holds practical significance for transmission line fault detection.

13.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38610421

RESUMEN

Classifying the flow subsequences of sensor networks is an effective way for fault detection in the Industrial Internet of Things (IIoT). Traditional fault detection algorithms identify exceptions by a single abnormal dataset and do not pay attention to the factors such as electromagnetic interference, network delay, sensor sample delay, and so on. This paper focuses on fault detection by continuous abnormal points. We proposed a fault detection algorithm within the module of sequence state generated by unsupervised learning (SSGBUL) and the module of integrated encoding sequence classification (IESC). Firstly, we built a network module based on unsupervised learning to encode the flow sequence of the different network cards in the IIoT gateway, and then combined the multiple code sequences into one integrated sequence. Next, we classified the integrated sequence by comparing the integrated sequence with the encoding fault type. The results obtained from the three IIoT datasets of a sewage treatment plant show that the accuracy of the SSGBUL-IESC algorithm exceeds 90% with subsequence length 10, which is significantly higher than the accuracies of the dynamic time warping (DTW) algorithm and the time series forest (TSF) algorithm. The proposed algorithm reaches the classification requirements for fault detection for the IIoT.

14.
Sensors (Basel) ; 24(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38894129

RESUMEN

The current paper presents helical gearbox defect detection models built from raw vibration signals measured using a triaxial accelerometer. Gear faults, such as localized pitting, localized wear on helical pinion tooth flanks, and low lubricant level, are under observation for three rotating velocities of the actuator and three load levels at the speed reducer output. The emphasis is on the strong connection between the gear faults and the fundamental meshing frequency GMF, its harmonics, and the sidebands found in the vibration spectrum as an effect of the amplitude modulation (AM) and phase modulation (PM). Several sets of features representing powers on selected frequency bands or/and associated peak amplitudes from the vibration spectrum, and also, for comparison, time-domain and frequency-domain statistical feature sets, are proposed as predictors in the defect detection task. The best performing detection model, with a testing accuracy of 99.73%, is based on SVM (Support Vector Machine) with a cubic kernel, and the features used are the band powers associated with six GMF harmonics and two sideband pairs for all three accelerometer axes, regardless of the rotation velocities and the load levels.

15.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39123888

RESUMEN

The efficient fault detection (FD) of traction control systems (TCSs) is crucial for ensuring the safe operation of high-speed trains. Transient faults (TFs) can arise due to prolonged operation and harsh environmental conditions, often being masked by background noise, particularly during dynamic operating conditions. Moreover, acquiring a sufficient number of samples across the entire scenario presents a challenging task, resulting in imbalanced data for FD. To address these limitations, an unsupervised transfer learning (TL) method via federated Cycle-Flow adversarial networks (CFANs) is proposed to effectively detect TFs under various operating conditions. Firstly, a CFAN is specifically designed for extracting latent features and reconstructing data in the source domain. Subsequently, a transfer learning framework employing federated CFANs collectively adjusts the modified knowledge resulting from domain alterations. Finally, the designed federated CFANs execute transient FD by constructing residuals in the target domain. The efficacy of the proposed methodology is demonstrated through comparative experiments.

16.
Sensors (Basel) ; 24(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124060

RESUMEN

This research paper explores the realm of fault detection in distributed motors through the vision of the Internet of electrical drives. This paper aims at employing artificial neural networks supported by the data collected by the Internet of distributed devices. Cross-verification of results offers reliable diagnosis of industrial motor faults. The proposed methodology involves the development of a cyber-physical system architecture and mathematical modeling framework for efficient fault detection. The mathematical model is designed to capture the intricate relationships within the cyber-physical system, incorporating the dynamic interactions between distributed motors and their edge controllers. Fast Fourier transform is employed for signal processing, enabling the extraction of meaningful frequency features that serve as indicators of potential faults. The artificial neural network based fault detection system is integrated with the solution, utilizing its ability to learn complex patterns and adapt to varying motor conditions. The effectiveness of the proposed framework and model is demonstrated through experimental results. The experimental setup involves diverse fault scenarios, and the system's performance is evaluated in terms of accuracy, sensitivity, and false positive rates.

17.
Sensors (Basel) ; 24(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39066135

RESUMEN

An optimal spatio-temporal hybrid model (STHM) based on wavelet transform (WT) is proposed to improve the sensitivity and accuracy of detecting slowly evolving faults that occur in the early stage and easily submerge with noise in complex industrial production systems. Specifically, a WT is performed to denoise the original data, thus reducing the influence of background noise. Then, a principal component analysis (PCA) and the sliding window algorithm are used to acquire the nearest neighbors in both spatial and time dimensions. Subsequently, the cumulative sum (CUSUM) and the mahalanobis distance (MD) are used to reconstruct the hybrid statistic with spatial and temporal sequences. It helps to enhance the correlation between high-frequency temporal dynamics and space and improves fault detection precision. Moreover, the kernel density estimation (KDE) method is used to estimate the upper threshold of the hybrid statistic so as to optimize the fault detection process. Finally, simulations are conducted by applying the WT-based optimal STHM in the early fault detection of the Tennessee Eastman (TE) process, with the aim of proving that the fault detection method proposed has a high fault detection rate (FDR) and a low false alarm rate (FAR), and it can improve both production safety and product quality.

18.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732902

RESUMEN

This study introduces a fault diagnosis algorithm based on particle filtering for open-cycle liquid-propellant rocket engines (LPREs). The algorithm serves as a model-based method for the startup process, accounting for more than 30% of engine failures. Similar to the previous fault detection and diagnosis (FDD) algorithm for the startup process, the algorithm in this study is composed of a nonlinear filter to generate residuals, a residual analysis, and a multiple-model (MM) approach to detect and diagnose faults from the residuals. In contrast to the previous study, this study makes use of the modified cumulative sum (CUSUM) algorithm, widely used in change-detection monitoring, and a particle filter (PF), which is theoretically the most accurate nonlinear filter. The algorithm is confirmed numerically using the CUSUM and MM methods. Subsequently, the FDD algorithm is compared with an algorithm from a previous study using a Monte Carlo simulation. Through a comparative analysis of algorithmic performance, this study demonstrates that the current PF-based FDD algorithm outperforms the algorithm based on other nonlinear filters.

19.
Sensors (Basel) ; 24(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39204883

RESUMEN

Induction machines (IMs) are commonly used in various industrial sectors. It is essential to recognize IM defects at their earliest stage so as to prevent machine performance degradation and improve production quality and safety. This work will focus on IM broken rotor bar (BRB) fault detection, as BRB fault could generate extra heating, vibration, acoustic noise, or even sparks in IMs. In this paper, a modified empirical mode decomposition (EMD) technique, or MEMD, is proposed for BRB fault detection using motor current signature analysis. A smart sensor-based data acquisition (DAQ) system is developed by our research team and is used to collect current signals wirelessly. The MEMD takes several processing steps. Firstly, correlation-based EMD analysis is undertaken to select the most representative intrinsic mode function (IMF). Secondly, an adaptive window function is suggested for spectral operation and analysis to detect the BRB fault. Thirdly, a new reference function is proposed to generate the fault index for fault severity diagnosis analytically. The effectiveness of the proposed MEMD technique is verified experimentally.

20.
Water Sci Technol ; 90(3): 731-757, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39141032

RESUMEN

Artificial intelligence (AI) is increasingly being applied to wastewater treatment to enhance efficiency, improve processes, and optimize resource utilization. This review focuses on objectives, advantages, outputs, and major findings of various AI models in the three key aspects: the prediction of removal efficiency for both organic and inorganic pollutants, real-time monitoring of essential water quality parameters (such as pH, COD, BOD, turbidity, TDS, and conductivity), and fault detection in the processes and equipment integral to wastewater treatment. The prediction accuracy (R2 value) of AI technologies for pollutant removal has been reported to vary between 0.64 and 1.00. A critical aspect explored in this review is the cost-effectiveness of implementing AI systems in wastewater treatment. Numerous countries and municipalities are actively engaging in pilot projects and demonstrations to assess the feasibility and effectiveness of AI applications in wastewater treatment. Notably, the review highlights successful outcomes from these initiatives across diverse geographical contexts, showcasing the adaptability and positive impact of AI in revolutionizing wastewater treatment on a global scale. Further, insights on the ethical considerations and potential future directions for the use of AI in wastewater treatment plants have also been provided.


Asunto(s)
Inteligencia Artificial , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA