Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.782
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 174(1): 59-71.e14, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29804835

RESUMEN

Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments.


Asunto(s)
Potenciación a Largo Plazo , Memoria , Neuronas/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Calcio/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Hipocampo/citología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Optogenética , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Estrés Psicológico , Potenciales Sinápticos/efectos de los fármacos
2.
Cell ; 167(4): 961-972.e16, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773481

RESUMEN

Memories about sensory experiences are tightly linked to the context in which they were formed. Memory contextualization is fundamental for the selection of appropriate behavioral reactions needed for survival, yet the underlying neuronal circuits are poorly understood. By combining trans-synaptic viral tracing and optogenetic manipulation, we found that the ventral hippocampus (vHC) and the amygdala, two key brain structures encoding context and emotional experiences, interact via multiple parallel pathways. A projection from the vHC to the basal amygdala mediates fear behavior elicited by a conditioned context, whereas a parallel projection from a distinct subset of vHC neurons onto midbrain-projecting neurons in the central amygdala is necessary for context-dependent retrieval of cued fear memories. Our findings demonstrate that two fundamentally distinct roles of context in fear memory retrieval are processed by distinct vHC output pathways, thereby allowing for the formation of robust contextual fear memories while preserving context-dependent behavioral flexibility.


Asunto(s)
Amígdala del Cerebelo/fisiología , Hipocampo/fisiología , Memoria , Vías Nerviosas , Animales , Condicionamiento Psicológico , Fenómenos Electrofisiológicos , Miedo , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/fisiología , Optogenética , Virus de la Rabia/genética , Sinapsis
3.
J Neurosci ; 44(9)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38286626

RESUMEN

It is widely accepted that fear memories are consolidated through protein synthesis-dependent changes in the basolateral amygdala complex (BLA). However, recent studies show that protein synthesis is not required to consolidate the memory of a new dangerous experience when it is similar to a prior experience. Here, we examined whether the protein synthesis requirement for consolidating the new experience varies with its spatial and temporal distance from the prior experience. Female and male rats were conditioned to fear a stimulus (S1, e.g., light) paired with shock in stage 1 and a second stimulus (S2, e.g., tone) that preceded additional S1-shock pairings (S2-S1-shock) in stage 2. The latter stage was followed by a BLA infusion of a protein synthesis inhibitor, cycloheximide, or vehicle. Subsequent testing with S2 revealed that protein synthesis in the BLA was not required to consolidate fear to S2 when the training stages occurred 48 h apart in the same context; was required when they were separated by 14 d or occurred in different contexts; but was again not required if S1 was re-presented after the delay or in the different context. Similarly, protein synthesis in the BLA was not required to reconsolidate fear to S2 when the training stages occurred 48 h apart but was required when they occurred 14 d apart. Thus, the protein synthesis requirement for consolidating/reconsolidating fear memories in the BLA is determined by similarity between present and past experiences, the time and place in which they occur, and reminders of the past experiences.


Asunto(s)
Complejo Nuclear Basolateral , Consolidación de la Memoria , Ratas , Masculino , Femenino , Animales , Complejo Nuclear Basolateral/fisiología , Consolidación de la Memoria/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Cicloheximida/farmacología , Miedo/fisiología
4.
Proc Natl Acad Sci U S A ; 119(32): e2114758119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35921439

RESUMEN

Histone acetylation is a key component in the consolidation of long-term fear memories. Histone acetylation is fueled by acetyl-coenzyme A (acetyl-CoA), and recently, nuclear-localized metabolic enzymes that produce this metabolite have emerged as direct and local regulators of chromatin. In particular, acetyl-CoA synthetase 2 (ACSS2) mediates histone acetylation in the mouse hippocampus. However, whether ACSS2 regulates long-term fear memory remains to be determined. Here, we show that Acss2 knockout is well tolerated in mice, yet the Acss2-null mouse exhibits reduced acquisition of long-term fear memory. Loss of Acss2 leads to reductions in both histone acetylation and expression of critical learning and memory-related genes in the dorsal hippocampus, specifically following fear conditioning. Furthermore, systemic administration of blood-brain barrier-permeable Acss2 inhibitors during the consolidation window reduces fear-memory formation in mice and rats and reduces anxiety in a predator-scent stress paradigm. Our findings suggest that nuclear acetyl-CoA metabolism via ACSS2 plays a critical, previously unappreciated, role in the formation of fear memories.


Asunto(s)
Acetato CoA Ligasa , Acetilcoenzima A , Condicionamiento Clásico , Miedo , Histonas , Consolidación de la Memoria , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Animales , Condicionamiento Clásico/fisiología , Miedo/fisiología , Hipocampo/enzimología , Histonas/metabolismo , Ratones , Ratones Noqueados , Ratas
5.
J Neurosci ; 43(17): 3061-3080, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36977583

RESUMEN

The amygdala, hippocampus, and subgenual cortex area 25 (A25) are engaged in complex cognitive-emotional processes. Yet pathway interactions from hippocampus and A25 with postsynaptic sites in amygdala remain largely unknown. In rhesus monkeys of both sexes, we studied with neural tracers how pathways from A25 and hippocampus interface with excitatory and inhibitory microcircuits in amygdala at multiple scales. We found that both hippocampus and A25 innervate distinct as well as overlapping sites of the basolateral (BL) amygdalar nucleus. Unique hippocampal pathways heavily innervated the intrinsic paralaminar basolateral nucleus, which is associated with plasticity. In contrast, orbital A25 preferentially innervated another intrinsic network, the intercalated masses, an inhibitory reticulum that gates amygdalar autonomic output and inhibits fear-related behaviors. Finally, using high-resolution confocal and electron microscopy (EM), we found that among inhibitory postsynaptic targets in BL, both hippocampal and A25 pathways preferentially formed synapses with calretinin (CR) neurons, which are known for disinhibition and may enhance excitatory drive in the amygdala. Among other inhibitory postsynaptic sites, A25 pathways innervated the powerful parvalbumin (PV) neurons which may flexibly regulate the gain of neuronal assemblies in the BL that affect the internal state. In contrast, hippocampal pathways innervated calbindin (CB) inhibitory neurons, which modulate specific excitatory inputs for processing context and learning correct associations. Common and unique patterns of innervation in amygdala by hippocampus and A25 have implications for how complex cognitive and emotional processes may be selectively disrupted in psychiatric disorders.SIGNIFICANCE STATEMENT The hippocampus, subgenual A25, and amygdala are associated with learning, memory, and emotions. We found that A25 is poised to affect diverse amygdalar processes, from emotional expression to fear learning by innervating the basal complex and the intrinsic intercalated masses. Hippocampal pathways uniquely interacted with another intrinsic amygdalar nucleus which is associated with plasticity, suggesting flexible processing of signals in context for learning. In the basolateral (BL) amygdala, which has a role in fear learning, both hippocampal and A25 interacted preferentially with disinhibitory neurons, suggesting a boost in excitation. The two pathways diverged in innervating other classes of inhibitory neurons, suggesting circuit specificities that could become perturbed in psychiatric diseases.


Asunto(s)
Amígdala del Cerebelo , Corteza Prefrontal , Masculino , Femenino , Animales , Amígdala del Cerebelo/fisiología , Corteza Prefrontal/fisiología , Hipocampo , Corteza Cerebral , Vías Nerviosas/fisiología
6.
J Neurosci ; 43(16): 2934-2949, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36927572

RESUMEN

This study examined the effect of danger on consolidation of neutral information in two regions of the rat (male and female) medial temporal lobe: the perirhinal cortex (PRh) and basolateral amygdala complex (BLA). The neutral information was the association that forms between an auditory stimulus and a visual stimulus (labeled S2 and S1) across their pairings in sensory preconditioning. We show that, when the sensory preconditioning session is followed by a shocked context exposure, the danger shifts consolidation of the S2-S1 association from the PRh to the BLA; and does so by interacting with processes involved in encoding of the S2-S1 pairings. Specifically, we show that the initial S2-S1 pairing in sensory preconditioning is encoded in the BLA and not the PRh; whereas the later S2-S1 pairings are encoded in the PRh and not the BLA. When the sensory preconditioning session is followed by a context alone exposure, the BLA-dependent trace of the early S2-S1 pairings decays and the PRh-dependent trace of the later S2-S1 pairings is consolidated in memory. However, when the sensory preconditioning session is followed by a shocked context exposure, the PRh-dependent trace of the later S2-S1 pairings is suppressed and the BLA-dependent trace of the initial S2-S1 pairing is consolidated in memory. These findings are discussed with respect to mutually inhibitory interactions between the PRh and BLA, and the way that these regions support memory in other protocols, including recognition memory in people.SIGNIFICANCE STATEMENT The perirhinal cortex (PRh) and basolateral amygdala complex (BLA) process the pairings of neutral auditory and visual stimuli in sensory preconditioning. The involvement of each region in this processing is determined by the novelty/familiarity of the stimuli as well as events that occur immediately after the preconditioning session. Novel stimuli are represented in the BLA; however, as these stimuli are repeatedly presented without consequence, they come to be represented in the PRh. Whether the BLA- or PRh-dependent representation is consolidated in memory depends on what happens next. When nothing of significance occurs, the PRh-dependent representation is consolidated and the BLA-dependent representation decays; but when danger is encountered, the PRh-dependent representation is inhibited and the BLA-dependent representation is selected for consolidation.


Asunto(s)
Complejo Nuclear Basolateral , Miedo , Femenino , Ratas , Masculino , Animales , Condicionamiento Psicológico , Lóbulo Temporal , Reconocimiento en Psicología
7.
J Neurosci ; 43(39): 6679-6696, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37607821

RESUMEN

It is widely accepted that Pavlovian fear conditioning requires activation of NMDA receptors (NMDARs) in the basolateral amygdala complex (BLA). However, it was recently shown that activation of NMDAR in the BLA is only required for fear conditioning when danger occurs unexpectedly; it is not required for fear conditioning when danger occurs as expected. This study tested the hypothesis that NMDARs in the BLA are engaged for Pavlovian fear conditioning when an animal's predictions regarding danger are in error. In each experiment, rats (females in Experiment 1 and males in Experiments 2-5) were conditioned to fear one stimulus, S1, when it was paired with foot-shock (S1→shock), and 48 h later, a second stimulus, S2, when it was presented in sequence with the already-conditioned S1 and foot-shock (S2→S1→shock). Conditioning to S2 occurred under a BLA infusion of the NMDAR antagonist, D-AP5 or vehicle. The subsequent tests of freezing to S2 alone and S1 alone revealed that the antagonist had no effect on conditioning to S2 when the shock occurred exactly as predicted by the S1, but disrupted this conditioning when the shock occurred earlier/later than predicted by S1, or at a stronger/weaker intensity. These results imply that errors in the timing or intensity of a predicted foot-shock engage NMDARs in the BLA for Pavlovian fear conditioning. They are discussed in relation to theories which propose a role for prediction error in determining how experiences are organized in memory and how activation of NMDAR in the BLA might contribute to this organization.SIGNIFICANCE STATEMENT This study is significant in showing that prediction error determines how a new experience is encoded with respect to a past experience and, thereby, whether NMDA receptors (NMDARs) in the basolateral amygdala complex (BLA) encode the new experience. When prediction error is small (e.g., danger occurs as and when expected), the new experience is encoded together with a past experience as part of the same "mental model," and NMDAR activation in the BLA is not needed for this encoding. By contrast, when prediction error is large (e.g., danger occurs at an unexpected intensity or time), the new experience is encoded separately from the past experience as part of a new mental model, and NMDAR activation in the BLA is needed for this encoding.


Asunto(s)
Complejo Nuclear Basolateral , Masculino , Ratas , Animales , Complejo Nuclear Basolateral/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Amígdala del Cerebelo/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología
8.
J Biol Chem ; 299(5): 104693, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037305

RESUMEN

The Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with the neuroprotective peptide tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories. These results were obtained with ≥500-fold of the dose that protected hippocampal neurons from cell death after a highly clinically relevant pig model of transient global cerebral ischemia: ventricular fibrillation followed by advanced life support and electrical defibrillation to induce the return of spontaneous circulation. Of additional importance for therapy development, our preliminary cardiovascular safety studies in mice and pig did not indicate any concerns with acute tatCN19o injection. Taken together, although prolonged interference with CaMKII signaling can erase memory, acute short-term CaMKII inhibition with tatCN19o did not cause such retrograde amnesia that would pose a contraindication for therapy.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Memoria , Animales , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Memoria/efectos de los fármacos , Memoria/fisiología , Neuronas/metabolismo , Fosforilación/fisiología , Porcinos , Péptidos/farmacología
9.
Hippocampus ; 34(5): 218-229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362938

RESUMEN

Brain-derived neurotrophic factor (Bdnf) plays a critical role in brain development, dendritic growth, synaptic plasticity, as well as learning and memory. The rodent Bdnf gene contains nine 5' non-coding exons (I-IXa), which are spliced to a common 3' coding exon (IX). Transcription of individual Bdnf variants, which all encode the same BDNF protein, is initiated at unique promoters upstream of each non-coding exon, enabling precise spatiotemporal and activity-dependent regulation of Bdnf expression. Although prior evidence suggests that Bdnf transcripts containing exon I (Bdnf I) or exon IV (Bdnf IV) are uniquely regulated by neuronal activity, the functional significance of different Bdnf transcript variants remains unclear. To investigate functional roles of activity-dependent Bdnf I and IV transcripts, we used a CRISPR activation system in which catalytically dead Cas9 fused to a transcriptional activator (VPR) is targeted to individual Bdnf promoters with single guide RNAs, resulting in transcript-specific Bdnf upregulation. Bdnf I upregulation is associated with gene expression changes linked to dendritic growth, while Bdnf IV upregulation is associated with genes that regulate protein catabolism. Upregulation of Bdnf I, but not Bdnf IV, increased mushroom spine density, volume, length, and head diameter, and also produced more complex dendritic arbors in cultured rat hippocampal neurons. In contrast, upregulation of Bdnf IV, but not Bdnf I, in the rat hippocampus attenuated contextual fear expression. Our data suggest that while Bdnf I and IV are both activity-dependent, BDNF produced from these promoters may serve unique cellular, synaptic, and behavioral functions.

10.
Eur J Neurosci ; 59(6): 1099-1140, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37848184

RESUMEN

Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.


Asunto(s)
Dopamina , Extinción Psicológica , Dopamina/fisiología , Extinción Psicológica/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Corteza Prefrontal/fisiología , Reacción de Prevención
11.
Biochem Biophys Res Commun ; 718: 150071, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38735136

RESUMEN

Inducing fear memory extinction by re-presenting a conditioned stimulus (CS) is the foundation of exposure therapy for post-traumatic stress disorder (PTSD). Investigating differences in the ability of different CS presentation patterns to induce extinction learning is crucial for improving this type of therapy. Using a trace fear conditioning paradigm in mice, we demonstrate that spaced presentation of the CS facilitated the extinction of a strong fear memory to a greater extent than continuous CS presentation. These results lay the groundwork for developing more effective exposure therapy techniques for PTSD.


Asunto(s)
Condicionamiento Clásico , Extinción Psicológica , Miedo , Memoria , Ratones Endogámicos C57BL , Animales , Miedo/fisiología , Miedo/psicología , Extinción Psicológica/fisiología , Memoria/fisiología , Masculino , Ratones , Condicionamiento Clásico/fisiología , Trastornos por Estrés Postraumático/psicología , Trastornos por Estrés Postraumático/fisiopatología , Condicionamiento Psicológico/fisiología
12.
Neurobiol Learn Mem ; 213: 107943, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821256

RESUMEN

Aversive learning can produce a wide variety of defensive behavioral responses depending on the circumstances, ranging from reactive responses like freezing to proactive avoidance responses. While most of this initial learning is behaviorally supported by an expectancy of an aversive outcome and neurally supported by activity within the basolateral amygdala, activity in other brain regions become necessary for the execution of defensive strategies that emerge in other aversive learning paradigms such as active avoidance. Here, we review the neural circuits that support both reactive and proactive defensive behaviors that are motivated by aversive learning, and identify commonalities between the neural substrates of these distinct (and often exclusive) behavioral strategies.

13.
Neurobiol Learn Mem ; 207: 107879, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081536

RESUMEN

This series of experiments examined the effects of extinction and an explicitly unpaired treatment on the ability of a conditioned stimulus (CS) to function as a reinforcer. Rats were trained to lever press for food, exposed to pairings of a noise CS and food, and, finally, tested for their willingness to lever press for the CS in the absence of the food. Experiment 1 provided a demonstration of conditioned reinforcement (using controls that were only exposed to unpaired presentations of the CS and food) and showed that it was equivalent after one or four sessions of CS-food pairings. Experiments 2 and 3 showed that, after one session of CS-food pairings, repeated presentations of the CS alone reduced its reinforcing properties; but after four sessions of CS-food pairings, repeated presentations of the CS alone had no effect on these properties. Experiment 4 showed that, after four sessions of CS-food pairings, explicitly unpaired presentations of the CS and food completely undermined conditioned reinforcement. Finally, Experiment 5 provided within-experiment evidence that, after four sessions of CS-food pairings, the reinforcing properties of the CS were disrupted by explicitly unpaired presentations of the CS and food but spared by repeated presentations of the CS alone. Together, these findings indicate that the effectiveness of extinction in undermining the reinforcing properties of a CS depends on its level of conditioning; and that, where extinction fails to disrupt these properties, they are successfully undermined by an explicitly unpaired treatment. They are discussed with respect to findings in the literature on Pavlovian-to-instrumental transfer; and the Rescorla-Wagner model, which anticipates that an explicitly unpaired treatment will be more effective than extinction in reversing the effects of conditioning.


Asunto(s)
Condicionamiento Operante , Refuerzo en Psicología , Ratas , Animales , Condicionamiento Clásico , Extinción Psicológica
14.
Neurobiol Learn Mem ; 214: 107963, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39059760

RESUMEN

Contextual fear conditioning is a protocol used to assess associative learning across species, including fish. Here, our goal was to expand the analysis of behavioral parameters that may reflect aversive behaviors in a contextual fear conditioning protocol using adult zebrafish (Danio rerio) and to verify how such parameters can be modulated. First, we analyzed the influence of an aversive stimulus (3 mild electric shocks for 5 s each at frequencies of 10, 100 or 1000 Hz) on fish behavior, and their ability to elicit fear responses in the absence of shock during a test session. To confirm whether the aversive responses are context-dependent, behaviors were also measured in a different experimental environment in a test session. Furthermore, we investigated the effects of dizocilpine (MK-801, 2 mg/kg, i.p.) on fear-related responses. Zebrafish showed significant changes in baseline activity immediately after shock exposure in the training session, in which 100 Hz induced robust contextual fear responses during the test session. Importantly, when introduced to a different environment, animals exposed to the aversive stimulus did not show any differences in locomotion and immobility-related parameters. MK-801 administered after the training session reduced fear responses during the test, indicating that glutamate NMDA-receptors play a key role in the consolidation of contextual fear-related memory in zebrafish. In conclusion, by further exploring fear-related behaviors in a contextual fear conditioning task, we show the effects of different shock frequencies and confirm the importance of context on aversive responses for associative learning in zebrafish. Additionally, our data support the use of zebrafish in contextual fear conditioning tasks, as well as for advancing pharmacological studies related to associative learning in translational neurobehavioral research.

15.
Psychol Med ; 54(1): 159-168, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37129070

RESUMEN

BACKGROUND: Difficulties in the context-dependent modulation of conditioned fear are known for posttraumatic stress disorder and may explain the occurrence of intrusive memories in safe contexts. The current study therefore investigated if reduced context-dependent modulation of conditioned fear and its underlying neural circuitry constitute risk factors for the development of analog intrusions in response to an experimental trauma. METHODS: Eighty-five healthy women participated in the trauma film paradigm to investigate the development of analog intrusions as well as explicit memory for an experimental trauma after one week and three months, respectively. Before, participants underwent a context-dependent fear conditioning paradigm during functional magnetic resonance imaging with fear acquisition in context A and extinction training in context B on a first day, as well as extinction recall in context B and fear renewal in a novel context C one day later. Skin conductance responses (SCRs) and blood oxygen level dependent responses were main outcome measures. RESULTS: In addition to stronger fear acquisition in context A, stronger conditioned fear responses in the safe context B, as indicated by stronger conditioned SCRs or stronger activation of fear expressing regions during extinction learning and recall, predicted the development of long-term analog intrusions. CONCLUSIONS: Stronger fear responses in safe and danger contexts were risk factors for the development of long-term analog intrusions and point to decontextualized fear memories and difficulties in the context-dependent modulation of conditioned fear. Altered fear conditioning processes and reduced storage of contextual information may cause the occurrence of fear independent of context.


Asunto(s)
Extinción Psicológica , Respuesta Galvánica de la Piel , Humanos , Femenino , Extinción Psicológica/fisiología , Miedo/fisiología , Condicionamiento Clásico/fisiología , Recuerdo Mental/fisiología , Imagen por Resonancia Magnética
16.
Psychol Med ; 54(3): 548-557, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37553977

RESUMEN

BACKGROUND: There are phenomenological similarities between social anxiety disorder (SAD) and posttraumatic stress disorder, such as a provoking aversive event, posttraumatic stress symptoms (e.g. intrusions) in response to these events and deficient (context-dependent) fear conditioning processes. This study investigated the neural correlates of context-dependent extinction recall and fear renewal in SAD, specifically in patients with intrusions in response to an etiologically relevant aversive social event. METHODS: During functional magnetic resonance imaging a two-day context-dependent fear conditioning paradigm was conducted in 54 patients with SAD and 54 healthy controls (HC). This included fear acquisition (context A) and extinction learning (context B) on one day, and extinction recall (context B) as well as fear renewal (contexts C and A) one day later. The main outcome measures were blood oxygen level-dependent responses in regions of interest and skin conductance responses. RESULTS: Patients with SAD showed reduced differential conditioned amygdala activation during extinction recall in the safe extinction context and during fear renewal in the acquisition context compared to HC. Patients with clinically relevant intrusions moreover exhibited hypoactivation of the ventromedial prefrontal cortex (vmPFC) during extinction learning, extinction recall, and fear renewal in a novel context, while amygdala activation more strongly decreased during extinction learning and increased during fear renewal in the acquisition context compared with patients without intrusions. CONCLUSIONS: Our study provides first evidence that intrusions in SAD are associated with similar deficits in context-dependent regulation of conditioned fear via the vmPFC as previously demonstrated in posttraumatic stress disorder.


Asunto(s)
Fobia Social , Humanos , Fobia Social/diagnóstico por imagen , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Respuesta Galvánica de la Piel , Recuerdo Mental/fisiología , Imagen por Resonancia Magnética/métodos
17.
Cell Mol Neurobiol ; 44(1): 17, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285192

RESUMEN

Exercise can promote adult neurogenesis and improve symptoms associated with schizophrenia and other mental disorders via parvalbumin (PV)-positive GABAergic interneurons in the dentate gyrus ErbB4 is the receptor of neurotrophic factor neuregulin 1, expressed mostly in PV-positive interneurons. Whether ErbB4 in PV-positive neurons mediates the beneficial effect of exercise and adult neurogenesis on mental disorder needs to be further investigation. Here, we first conducted a four-week study on the effects of AG1478, an ErbB4 inhibitor, on memory and neurogenesis. AG1478 significantly impaired the performance in several memory tasks, including the T-maze, Morris water maze, and contextual fear conditioning, downregulated the expression of total ErbB4 (T-ErbB4) and the ratio of phosphate-ErbB4 (p-ErbB4) to T-ErbB4, and associated with neurogenesis impairment. Interestingly, AG1478 also appeared to decrease intracellular calcium levels in PV neurons, which could be reversed by exercise. These results suggest exercise may regulate adult neurogenesis and PV neuron activity through ErbB4 signaling. Overall, these findings provide further evidence of the importance of exercise for neurogenesis and suggest that targeting ErbB4 may be a promising strategy for improving memory and other cognitive functions in individuals with mental disorders.


Asunto(s)
Actividad Motora , Neurogénesis , Parvalbúminas , Tirfostinos , Adulto , Humanos , Neuronas , Quinazolinas
18.
Brain Behav Immun ; 120: 315-326, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852762

RESUMEN

Social anxiety disorder is a common psychiatric condition that severely affects quality of life of individuals and is a significant societal burden. Although many risk factors for social anxiety exist, it is currently unknown how social fear sensitivity manifests biologically. Furthermore, since some individuals are resilient and others are susceptible to social fear, it is important to interrogate the mechanisms underpinning individual response to social fear situations. The microbiota-gut-brain axis has been associated with social behaviour, has recently been linked with social anxiety disorder, and may serve as a therapeutic target for modulation. Here, we assess the potential of this axis to be linked with social fear extinction processes in a murine model of social anxiety disorder. To this end, we correlated differential social fear responses with microbiota composition, central gene expression, and immune responses. Our data provide evidence that microbiota variability is strongly correlated with alterations in social fear behaviour. Moreover, we identified altered gene candidates by amygdalar transcriptomics that are linked with social fear sensitivity. These include genes associated with social behaviour (Armcx1, Fam69b, Kcnj9, Maoa, Serinc5, Slc6a17, Spata2, and Syngr1), inflammation and immunity (Cars, Ckmt1, Klf5, Maoa, Map3k12, Pex5, Serinc5, Sidt1, Spata2), and microbe-host interaction (Klf5, Map3k12, Serinc5, Sidt1). Together, these data provide further evidence for a role of the microbiota-gut-brain axis in social fear responses.


Asunto(s)
Eje Cerebro-Intestino , Extinción Psicológica , Miedo , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Animales , Miedo/fisiología , Ratones , Microbioma Gastrointestinal/fisiología , Extinción Psicológica/fisiología , Masculino , Eje Cerebro-Intestino/fisiología , Encéfalo/metabolismo , Conducta Social , Fobia Social/metabolismo , Fobia Social/psicología , Amígdala del Cerebelo/metabolismo , Modelos Animales de Enfermedad , Ansiedad/metabolismo
19.
Brain Behav Immun ; 116: 385-401, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38145855

RESUMEN

Post-operative cognitive dysfunction (POCD) is an abrupt decline in neurocognitive function arising shortly after surgery and persisting for weeks to months, increasing the risk of dementia diagnosis. Advanced age, obesity, and comorbidities linked to high-fat diet (HFD) consumption such as diabetes and hypertension have been identified as risk factors for POCD, although underlying mechanisms remain unclear. We have previously shown that surgery alone, or 3-days of HFD can each evoke sufficient neuroinflammation to cause memory deficits in aged, but not young rats. The aim of the present study was to determine if HFD consumption before surgery would potentiate and prolong the subsequent neuroinflammatory response and memory deficits, and if so, to determine the extent to which these effects depend on activation of the innate immune receptor TLR4, which both insults are known to stimulate. Young-adult (3mo) & aged (24mo) male F344xBN F1 rats were fed standard chow or HFD for 3-days immediately before sham surgery or laparotomy. In aged rats, the combination of HFD and surgery caused persistent deficits in contextual memory and cued-fear memory, though it was determined that HFD alone was sufficient to cause the long-lasting cued-fear memory deficits. In young adult rats, HFD + surgery caused only cued-fear memory deficits. Elevated proinflammatory gene expression in the hippocampus of both young and aged rats that received HFD + surgery persisted for at least 3-weeks after surgery. In a separate experiment, rats were administered the TLR4-specific antagonist, LPS-RS, immediately before HFD onset, which ameliorated the HFD + surgery-associated neuroinflammation and memory deficits. Similarly, dietary DHA supplementation for 4 weeks prior to HFD onset blunted the neuroinflammatory response to surgery and prevented development of persistent memory deficits. These results suggest that HFD 1) increases risk of persistent POCD-associated memory impairments following surgery in male rats in 2) a TLR4-dependent manner, which 3) can be targeted by DHA supplementation to mitigate development of persistent POCD.


Asunto(s)
Disfunción Cognitiva , Complicaciones Cognitivas Postoperatorias , Ratas , Masculino , Animales , Receptor Toll-Like 4/metabolismo , Dieta Alta en Grasa/efectos adversos , Enfermedades Neuroinflamatorias , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo , Complicaciones Cognitivas Postoperatorias/metabolismo , Suplementos Dietéticos , Disfunción Cognitiva/metabolismo
20.
Psychophysiology ; 61(7): e14551, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38516942

RESUMEN

The Predatory Imminence Continuum Theory proposes that defensive behaviors depend on the proximity of a threat. While the neural mechanisms underlying this proposal are well studied in animal models, it remains poorly understood in humans. To address this issue, we recorded EEG from 24 (15 female) young adults engaged in a first-person virtual reality Risk-Reward interaction task. On each trial, participants were placed in a virtual room and presented with either a threat or reward conditioned stimulus (CS) in the same room location (proximal) or different room location (distal). Behaviorally, all participants learned to avoid the threat-CS, with most using the optimal behavior to actively avoid the proximal threat-CS (88% accuracy) and passively avoid the distal threat-CS (69% accuracy). Similarly, participants learned to actively approach the distal reward-CS (82% accuracy) and to remain passive to the proximal reward-CS (72% accuracy). At an electrophysiological level, we observed a general increase in theta power (4-8 Hz) over the right posterior channel P8 across all conditions, with the proximal threat-CS evoking the largest theta response. By contrast, distal cues induced two bursts of gamma (30-60 Hz) power over midline-parietal channel Pz (200 msec post-cue) and right frontal channel Fp2 (300 msec post-cue). Interestingly, the first burst of gamma power was sensitive to the distal threat-CS and the second burst at channel Fp2 was sensitive to the distal reward-CS. Together, these findings demonstrate that oscillatory processes differentiate between the spatial proximity information during threat and reward encoding, likely optimizing the selection of the appropriate behavioral response.


Asunto(s)
Electroencefalografía , Recompensa , Realidad Virtual , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Navegación Espacial/fisiología , Miedo/fisiología , Ritmo Teta/fisiología , Condicionamiento Clásico/fisiología , Adolescente , Ondas Encefálicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA