Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurol ; : e16416, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051710

RESUMEN

BACKGROUND AND PURPOSE: Pathogenic variants of the glycyl-tRNA synthetase 1 (GARS1) gene have been described as a cause of Charcot-Marie-Tooth disease type 2D, motor axonal neuropathy with upper limb predominance (distal hereditary motor neuropathy [dHMN] type V), and infantile spinal muscular atrophy. METHODS: This cross-sectional, retrospective, observational study was carried out on 12 patients harboring the c.794C>T (p.Ser265Phe) missense pathogenic variant in GARS1. The patients' clinical data, nerve conduction studies, magnetic resonance imaging (MRI), and intraepidermal nerve fiber density in skin biopsies were reviewed. RESULTS: The mean age at onset was 9.5 years; the intrinsic hand muscles were affected before or at the same time as the distal leg musculature. The clinical examination revealed greater weakness of the distal muscles, with a more pronounced involvement of the thenar complex and the first dorsal interosseous in upper limbs. Electrophysiological studies were concordant with an exclusively motor axonal neuropathy. A pathologic split hand index was found in six patients. Muscle MRI showed predominant fatty infiltration and atrophy of the anterolateral and superficial posterior compartment of the legs. Most patients reported distal pinprick sensory loss. A reduced intraepidermal nerve fiber density was evident in skin biopsies from proximal and distal sites in nine patients. CONCLUSIONS: GARS1 variants may produce a dHMN phenotype with "split hand" and sensory disturbances, even when sensory nerve conduction studies are normal. This could be explained by a dysfunction of sensory neurons in the dorsal ganglion that is reflected as a reduction of dermal nerve endings in skin biopsies without a distal gradient.

2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901698

RESUMEN

Glycyl-tRNA synthetase (GARS) is a potential oncogene associated with poor overall survival in various cancers. However, its role in prostate cancer (PCa) has not been investigated. Protein expression of GARS was investigated in benign, incidental, advanced, and castrate-resistant PCa (CRPC) patient samples. We also investigated the role of GARS in vitro and validated GARS clinical outcomes and its underlying mechanism, utilizing The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA PRAD) database. Our data revealed a significant association between GARS protein expression and Gleason groups. Knockdown of GARS in PC3 cell lines attenuated cell migration and invasion and resulted in early apoptosis signs and cellular arrest in S phase. Bioinformatically, higher GARS expression was observed in TCGA PRAD cohort, and there was significant association with higher Gleason groups, pathological stage, and lymph nodes metastasis. High GARS expression was also significantly correlated with high-risk genomic aberrations such as PTEN, TP53, FXA1, IDH1, SPOP mutations, and ERG, ETV1, and ETV4 gene fusions. Gene Set Enrichment Analysis (GSEA) of GARS through the TCGA PRAD database provided evidence for upregulation of biological processes such as cellular proliferation. Our findings support the oncogenic role of GARS involved in cellular proliferation and poor clinical outcome and provide further evidence for its use as a potential biomarker in PCa.


Asunto(s)
Glicina-ARNt Ligasa , Neoplasias de la Próstata , Humanos , Masculino , Glicina-ARNt Ligasa/genética , Mutación , Proteínas Nucleares/genética , Próstata/patología , Neoplasias de la Próstata/metabolismo , Proteínas Represoras/genética
3.
Hum Mutat ; 43(7): 869-876, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35332613

RESUMEN

Heterozygosity for missense variants and small in-frame deletions in GARS1 has been reported in patients with a range of genetic neuropathies including Charcot-Marie-Tooth disease type 2D (CMT2D), distal hereditary motor neuropathy type V (dHMN-V), and infantile spinal muscular atrophy (iSMA). We identified two unrelated patients who are each heterozygous for a previously unreported missense variant modifying amino-acid position 336 in the catalytic domain of GARS1. One patient was a 20-year-old woman with iSMA, and the second was a 41-year-old man with CMT2D. Functional studies using yeast complementation assays support a loss-of-function effect for both variants; however, this did not reveal variable effects that might explain the phenotypic differences. These cases expand the mutational spectrum of GARS1-related disorders and demonstrate phenotypic variability based on the specific substitution at a single residue.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Glicina-ARNt Ligasa , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Codón , Glicina-ARNt Ligasa/genética , Mutación , Fenotipo
4.
J Peripher Nerv Syst ; 27(1): 38-49, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34813128

RESUMEN

Charcot-Marie-Tooth disease (CMT) and related diseases are a genetically and clinically heterogeneous group of peripheral neuropathies. Particularly, mutations in several aminoacyl-tRNA synthetase (ARS) genes have been reported to cause axonal CMT (CMT2) or distal hereditary motor neuropathy (dHMN). However, the common pathogenesis among CMT subtypes by different ARS gene defects is not well understood. This study was performed to investigate ARS gene mutations in a CMT cohort of 710 Korean families. Whole-exome sequencing was applied to 710 CMT patients who were negative for PMP22 duplication. We identified 12 disease-causing variants (from 13 families) in GARS1, AARS1, HARS1, WARS1, and YARS1 genes. Seven variants were determined to be novel. The frequency of overall ARS gene mutations was 1.22% among all independent patients diagnosed with CMT and 1.83% in patients negative for PMP22 duplication. WARS1 mutations have been reported to cause dHMN; however, in our patients with WARS1 variants, CMT was associated with sensory involvement. We analyzed genotype-phenotype correlations and expanded the phenotypic spectrum of patients with CMT possessing ARS gene variants. We also characterized clinical phenotypes according to ARS genes. This study will be useful for performing exact molecular and clinical diagnoses and providing reference data for other population studies.


Asunto(s)
Aminoacil-ARNt Sintetasas , Enfermedad de Charcot-Marie-Tooth , Aminoacil-ARNt Sintetasas/genética , Enfermedad de Charcot-Marie-Tooth/patología , Estudios de Cohortes , Humanos , Mutación/genética , Fenotipo , Proteínas/genética , República de Corea
5.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555135

RESUMEN

The phenomenon of internal initiation of translation was discovered in 1988 on poliovirus mRNA. The prototypic cis-acting element in the 5' untranslated region (5'UTR) of poliovirus mRNA, which is able to direct initiation at an internal start codon without the involvement of a cap structure, has been called an IRES (Internal Ribosome Entry Site or Segment). Despite its early discovery, poliovirus and other related IRES elements of type I are poorly characterized, and it is not yet clear which host proteins (a.k.a. IRES trans-acting factors, ITAFs) are required for their full activity in vivo. Here we discuss recent and old results devoted to type I IRESes and provide evidence that Poly(rC) binding protein 2 (PCBP2), Glycyl-tRNA synthetase (GARS), and Cold Shock Domain Containing E1 (CSDE1, also known as UNR) are major regulators of type I IRES activity.


Asunto(s)
Poliovirus , Poliovirus/genética , Poliovirus/metabolismo , Sitios Internos de Entrada al Ribosoma/genética , Transactivadores/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Codón Iniciador/metabolismo , ARN Mensajero/metabolismo , Biosíntesis de Proteínas , Regiones no Traducidas 5' , ARN Viral/metabolismo
6.
Biochemistry (Mosc) ; 86(Suppl 1): S12-S23, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33827397

RESUMEN

Aminoacyl-RNA synthetases (aaRSs) are among the key enzymes of protein biosynthesis. They are responsible for conducting the first step in the protein biosynthesis, namely attaching amino acids to the corresponding tRNA molecules both in cytoplasm and mitochondria. More and more research demonstrates that mutations in the genes encoding aaRSs lead to the development of various neurodegenerative diseases, such as incurable Charcot-Marie-Tooth disease (CMT) and distal spinal muscular atrophy. Some mutations result in the loss of tRNA aminoacylation activity, while other mutants retain their classical enzyme activity. In the latter case, disease manifestations are associated with additional neuron-specific functions of aaRSs. At present, seven aaRSs (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, MetRS, and LysRS) are known to be involved in the CMT etiology with glycyl-tRNA synthetase (GlyRS) being the most studied of them.


Asunto(s)
Glicina-ARNt Ligasa/genética , Mutación , Enfermedades del Sistema Nervioso/enzimología , Enfermedad de Charcot-Marie-Tooth/enzimología , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Femenino , Humanos , Masculino , Atrofia Muscular Espinal/enzimología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Neuronas/enzimología , Neuronas/fisiología
7.
Am J Med Genet A ; 182(5): 1167-1176, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32181591

RESUMEN

The majority of patients with spinal muscular atrophy (SMA) identified to date harbor a biallelic exonic deletion of SMN1. However, there have been reports of SMA-like disorders that are independent of SMN1, including those due to pathogenic variants in the glycyl-tRNA synthetase gene (GARS1). We report three unrelated patients with de novo variants in GARS1 that are associated with infantile-onset SMA (iSMA). Patients were ascertained during inpatient hospital evaluations for complications of neuropathy. Evaluations were completed as indicated for clinical care and management and informed consent for publication was obtained. One newly identified, disease-associated GARS1 variant, identified in two out of three patients, was analyzed by functional studies in yeast complementation assays. Genomic analyses by exome and/or gene panel and SMN1 copy number analysis of three patients identified two previously undescribed de novo missense variants in GARS1 and excluded SMN1 as the causative gene. Functional studies in yeast revealed that one of the de novo GARS1 variants results in a loss-of-function effect, consistent with other pathogenic GARS1 alleles. In sum, the patients' clinical presentation, assessments of previously identified GARS1 variants and functional assays in yeast suggest that the GARS1 variants described here cause iSMA. GARS1 variants have been previously associated with Charcot-Marie-Tooth disease (CMT2D) and distal SMA type V (dSMAV). Our findings expand the allelic heterogeneity of GARS-associated disease and support that severe early-onset SMA can be caused by variants in this gene. Distinguishing the SMA phenotype caused by SMN1 variants from that due to pathogenic variants in other genes such as GARS1 significantly alters approaches to treatment.


Asunto(s)
Predisposición Genética a la Enfermedad , Glicina-ARNt Ligasa/genética , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Mutación Missense/genética , Fenotipo , Atrofias Musculares Espinales de la Infancia/diagnóstico por imagen , Atrofias Musculares Espinales de la Infancia/fisiopatología
8.
J Peripher Nerv Syst ; 24(1): 156-160, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30394614

RESUMEN

We report the first family with a glycyl-tRNA synthetase (GARS) mutation with autosomal dominant intermediate Charcot-Marie-Tooth disease (DI-CMT). The proband and the proband's father presented with gait disturbance and hand weakness. Both patients displayed moderately decreased conduction velocities (MNCV) (ranging from 29.2 to 37.8 m/s). A sural nerve biopsy of the father revealed evidence of both axonal loss and demyelination. On exome sequencing, in both the proband and his father, we identified a novel missense mutation (c.643G > C, p.Asp215His) in the GARS gene in a heterozygous state, which is considered to be pathogenic for this DI-CMT family. The present study broadens current knowledge about intermediate CMT and the phenotypic spectrum of defects associated with GARS.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Glicina-ARNt Ligasa/genética , Adulto , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Conducción Nerviosa/fisiología , Linaje , Nervio Sural/patología , Adulto Joven
9.
Plant Cell Rep ; 38(2): 183-194, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30499032

RESUMEN

KEY MESSAGE: GARS encodes an enzyme catalyzing the second step of purine nucleotide biosynthesis and plays an important role to maintain the development of chloroplasts in juvenile plants by affecting the expression of plastid-encoded genes. A series of rice white striped mutants were previously described. In this research, we characterized a novel gars mutant with white striped leaves at the seedling stage. By positional cloning, we identified the mutated gene, which encodes a glycinamide ribonucleotide synthetase (GARS) that catalyzes the second step of purine nucleotide biosynthesis. Thylakoid membranes were less abundant in the albinic sectors of mutant seedling leaves compared to the wild type. The expression levels of genes involved in chlorophyll synthesis and photosynthesis were changed. Contents of ATP, ADP, AMP, GTP and GDP, which are crucial for plant growth and development, were decreased in the mutant seedlings. Complementation and CrispR tests confirmed the role of the GARS allele, which was expressed in all rice tissues, especially in the leaves. GARS protein displayed a typical chloroplast location pattern in rice protoplasts. Our results indicated that GARS was involved in chloroplast development at early leaf development by affecting the expression of plastid-encoded genes.


Asunto(s)
Ligasas de Carbono-Nitrógeno/genética , Cloroplastos/metabolismo , Genes de Plantas , Oryza/enzimología , Oryza/genética , Nucleótidos de Purina/biosíntesis , Vías Biosintéticas/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Clorofila/biosíntesis , Cloroplastos/ultraestructura , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fenotipo , Fotosíntesis/genética , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
G Ital Med Lav Ergon ; 41(1): 52-57, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30946549

RESUMEN

OBJECTIVES: The Groningen Activity Restriction Scale (GARS) is a self-reported non-diseasespecific instrument for measuring patients' disability in Activity of Daily Living (ADL) and Instrumental Activity of Daily Living (IADL). In literature, several studies have demonstrated high psychometric properties of GARS for disability assessment. The aim of this study was to evaluate the use of GARS administered and scored by the occupational therapists, rather than self-reported by the patient, as a tool for measuring disability in adult patients treated with occupational therapy. METHODS: A inter-operator reliability and correlation study was conducted among 31 people (mean age 70.6±13.1 years), admitted to inpatient Occupational Therapy rehabilitation service of ICS Maugeri, Pavia, from May through September 2018. ADL and IADL dependency indices were measured with GARS, which was assessed by three independent occupational therapists during admission of patients to occupational therapy rehabilitation service. Other measures included demographic characteristics and healthcare resource utilization. Therefore, a single occupational therapist performed a second evaluation of patient's performance using GARS at the discharge from treatment, in order to identify any changes in patient's functional abilities after rehabilitation treatment; the results obtained were compared with those detected by the functional independence measures (FIM). Statistical analysis was conducted by Cohen's k coefficient and Pearson's p correlation coefficient. RESULTS: The statistical analysis showed a discrete reliability and responsiveness of GARS (Coen's k = 0.531), due to a moderate correlation between GARS and FIM instruments (Pearson's p = 0.359) for evaluating the effectiveness of occupational therapy interventions. CONCLUSIONS: Even if conducted by occupational therapists, GARS is a useful tool for measuring disability in ADL and IADL, which can help clinicians to develop a customized plan of care in occupational therapy, improving patient's management and clinical outcome.


Asunto(s)
Actividades Cotidianas , Evaluación de la Discapacidad , Terapia Ocupacional/métodos , Rehabilitación/métodos , Encuestas y Cuestionarios , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad , Variaciones Dependientes del Observador , Psicometría , Reproducibilidad de los Resultados , Autoinforme
11.
Biochem Biophys Res Commun ; 501(2): 408-414, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29727602

RESUMEN

G protein-coupled receptor 25 (GPR25) is an orphan G protein-coupled receptor in vertebrates, that has been implicated to be associated with autoimmune diseases and regulate blood pressure in humans. However, the endogenous ligand of GPR25 remains unknown in vertebrates. Here, we reported that in non-mammalian vertebrates (zebrafish, spotted gars, and pigeons), GPR25 could be activated by Apelin and Apela peptides, which are also the two endogenous ligands of vertebrate Apelin receptor (APLNR). Using the pGL3-CRE-luciferase reporter assay and confocal microscopy, we first demonstrated that like APLNR, zebrafish GPR25 expressing in HEK293 cells could be effectively activated by zebrafish Apelin and Apela peptides, leading to the inhibition of forskolin-stimulated cAMP production and receptor internalization. Like zebrafish GPR25, pigeon and spotted gar GPR25 could also be activated by Apelin and Apela, and their activation could inhibit forskolin-induced cAMP accumulation. Interestingly, unlike zebrafish (/spotted gar/pigeon) GPR25, human GPR25 could not be activated by Apelin and Apela under the same experimental conditions. RNA-seq analysis further revealed that GPR25 is expressed in a variety of tissues, including the testes and intestine of zebrafish/spotted gars/humans, implying the potential roles of GPR25 signaling in many physiological processes in vertebrates. Taken together, our data not only provides the first proof that the orphan receptor GPR25 possesses two potential ligands 'Apelin and Apela' and its activation decreases intracellular cAMP levels in non-mammalian vertebrates, but also facilitates to unravel the physiological roles of GPR25 signaling in vertebrates.


Asunto(s)
Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas de Pez Cebra/metabolismo , Animales , Quimiocinas/genética , Clonación Molecular , Columbidae/genética , AMP Cíclico/metabolismo , Proteínas de Peces/genética , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Vertebrados/genética , Proteínas de Pez Cebra/genética
12.
RNA ; 22(8): 1215-27, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27268418

RESUMEN

Survival motor neuron (SMN) functions in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) that catalyze pre-mRNA splicing. Here, we used disruptions in Smn and two additional snRNP biogenesis genes, Phax and Ars2, to classify RNA processing differences as snRNP-dependent or gene-specific in Drosophila Phax and Smn mutants exhibited comparable reductions in snRNAs, and comparison of their transcriptomes uncovered shared sets of RNA processing changes. In contrast, Ars2 mutants displayed only small decreases in snRNA levels, and RNA processing changes in these mutants were generally distinct from those identified in Phax and Smn animals. Instead, RNA processing changes in Ars2 mutants support the known interaction of Ars2 protein with the cap-binding complex, as splicing changes showed a clear bias toward the first intron. Bypassing disruptions in snRNP biogenesis, direct knockdown of spliceosomal proteins caused similar changes in the splicing of snRNP-dependent events. However, these snRNP-dependent events were largely unaltered in three Smn mutants expressing missense mutations that were originally identified in human spinal muscular atrophy (SMA) patients. Hence, findings here clarify the contributions of Phax, Smn, and Ars2 to snRNP biogenesis in Drosophila, and loss-of-function mutants for these proteins reveal differences that help disentangle cause and effect in SMA model flies.


Asunto(s)
Drosophila/metabolismo , Atrofia Muscular Espinal/genética , Mutación Missense , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Transcriptoma , Empalme Alternativo , Animales
13.
Hum Mutat ; 38(10): 1412-1420, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28675565

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycyl-tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcot-Marie-Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. Whole-exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a loss-of-function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARS-related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Discapacidades del Desarrollo/genética , Genes Recesivos , Glicina-ARNt Ligasa/genética , Enfermedad de Charcot-Marie-Tooth/diagnóstico por imagen , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Citoplasma/enzimología , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/fisiopatología , Femenino , Variación Genética , Humanos , Mitocondrias/enzimología , Secuenciación del Exoma
14.
Hum Mutat ; 35(11): 1363-71, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25168514

RESUMEN

Charcot-Marie-Tooth disease type 2D (CMT2D) is an autosomal-dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl-tRNA synthetase (GARS) gene cause CMT2D. GARS is a member of the ubiquitously expressed aminoacyl-tRNA synthetase (ARS) family and is responsible for charging tRNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss-of-function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT-associated GARS mutations in tRNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT-associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p.Ser581Leu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease-causing mutation. Together, our data indicate that impaired function is a key component of GARS-mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset.


Asunto(s)
Estudios de Asociación Genética , Glicina-ARNt Ligasa/genética , Glicina-ARNt Ligasa/metabolismo , Mutación , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Secuencia de Aminoácidos , Aminoacilación , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Secuencia Conservada , Análisis Mutacional de ADN , Femenino , Expresión Génica , Glicina-ARNt Ligasa/química , Humanos , Cinética , Masculino , Ratones , Neuronas/metabolismo , Linaje , Transporte de Proteínas , Levaduras/genética , Levaduras/metabolismo
15.
Evolution ; 78(5): 821-834, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437861

RESUMEN

Evolutionary stasis characterizes lineages that seldom speciate and show little phenotypic change over long stretches of geological time. Although lineages that appear to exhibit evolutionary stasis are often called living fossils, no single mechanism is thought to be responsible for their slow rates of morphological evolution and low species diversity. Some analyses of molecular evolutionary rates in a handful of living fossil lineages have indicated that these clades exhibit slow rates of genomic change. Here, we investigate mechanisms of evolutionary stasis using a dataset of 1,105 exons for 481 vertebrate species. We demonstrate that two ancient clades of ray-finned fishes classically called living fossils, gars and sturgeons, exhibit the lowest rates of molecular substitution in protein-coding genes among all jawed vertebrates. Comparably low rates of evolution are observed at fourfold degenerate sites in gars and sturgeons, implying a mechanism of stasis decoupled from selection that we speculate is linked to a highly effective DNA repair apparatus. We show that two gar species last sharing common ancestry over 100 million years ago produce morphologically intermediate and fertile hybrids in the wild. This makes gars the oldest naturally hybridizing divergence among eukaryotes and supports a theoretical prediction that slow rates of nucleotide substitution across the genome slow the accumulation of genetic incompatibilities, enabling hybridization across deeply divergent lineages and slowing the rate of speciation over geological timescales. Our results help establish molecular stasis as a barrier to speciation and phenotypic innovation and provide a mechanism to explain the low species diversity in living fossil lineages.


Asunto(s)
Peces , Fósiles , Animales , Peces/genética , Genoma , Evolución Molecular , Evolución Biológica , Filogenia
16.
Transl Cancer Res ; 13(6): 2825-2846, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988909

RESUMEN

Background: Bladder cancer (BC), as a common type of cancer, has a poor prognosis, also some common invasive prognostic or therapeutic markers are difficult to obtain, which makes further treatment of BC difficult. Glycyl-tRNA synthetase (GARS), as one of the aminoacyl-tRNA synthetases that charge tRNAs with their cognate amino acids, has been identified as a target in many diseases, including tumors. Methods: Bioassay analysis revealed that GARS was in high expression in most cancer tissues. The expression of GARS gene in BC tissues could assess the prognosis of BC patients, and the expression in urinary extracellular vesicles (uEVs) of patients was positively correlated with the expression in tissues. In addition to this, we analyzed GARS-related differential gene expression, copy number variation (CNV) and mutation profiles, potential biological functions, immune cell infiltration and drug sensitivity. In vivo and vitro tumorigenic experiments were performed to validate the function of GARS. Single-cell data were used to further analyze its role in the microenvironment. Results: In our study, we found that GARS was highly expressed in 30 cancer tissues including BC, and high GARS expression was negatively correlated with the prognosis of BC patients. To address this phenomenon, we analyzed the differential genes between high and low GARS groups by enrichment analysis, and identified the biological signaling pathways that were mainly enriched for their functions, and found that the enrichment was found in immune-related signaling pathways and regulation of cell-cell adhesion. Then we found that GARS was positively associated with immune cell infiltration in BC, and some common immune checkpoints were significantly overexpressed in the GARS-high group. Besides, we found that GARS was enriched in myofibroblasts in the tumor microenvironment, and the enrichment was positively correlated with epithelial-mesenchymal transition (EMT)-related genes. This study also showed a positive correlation between GARS and BC RNA stemness. Patients in the GARS-high group had considerably higher rates of P53 and Titin (TTN) mutations than those in the GARS-low group. Drug Sensitivity analysis screened for drugs that were more sensitive to GARS-high patients. Further, we found that knockdown of GARS significantly inhibited the proliferation, migration and invasion ability both in vivo and in vitro. Finally, we found that in patients with high GARS the expression in uEVs was also at a high level. Conclusions: In summary, this study provided evidence that GARS can be used as a prognostic and therapeutic marker for BC, we can detect GARS in uEVs instead of tissue, to provide a new, simple, noninvasive way to obtain prognostic and therapeutic markers for BC patients.

17.
Sci Rep ; 14(1): 19025, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152248

RESUMEN

Glycyl-tRNA synthetase (GARS1) is differentially expressed across cancers. In this study, the value of GARS1 in the diagnosis and prognosis of various cancers was comprehensively evaluated by multiple omics integrative pan-cancer analysis and experimental verification. Through Kaplan-Meier, ROC and multiple databases, we explored GARS1 expression and prognostic and diagnostic patterns across cancers. The GARS1 relative reaction network was identified in PPI, GO, KEGG, methylation models and the genetic mutation atlas. Further research on the GARS1 value in bladder urothelial carcinoma (BLCA) was conducted by regression and nomogram models. We further analyzed the correlation between GARS1 and immune markers and cells in BLCA. Finally, in vitro experiments were used to validate GARS1 the oncogenic function of GARS1 in BLCA. We found that GARS1 was highly expressed across cancers, especially in BLCA. GARS1 expression was correlated with poor survival and had high diagnostic value in most tumor types. GARS1 is significantly associated with tRNA-related pathways whose mutation sites are mainly located on tRNA synthetase. In addition, Upregulation of GARS1 was connected with immune cell infiltration and five key MMR genes. M2 macrophages, TAMs, Th1 and T-cell exhaustion, and marker sets associated with GARS1 expression indicated specific immune infiltration in BLCA. Finally, in vitro experiments validated that GARS1 expression promotes BLCA cell proliferation and metastasis and inhibits apoptosis. Overall, GARS1 can be a novel prognostic and immunological biomarker through multiple omics integrative pan-cancer analysis. The expression of GARS1 in BLCA was positively correlated with specific immune infiltration, indicating that GARS1 might be related to the tumor immune microenvironment.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/mortalidad , Biomarcadores de Tumor/genética , Pronóstico , Línea Celular Tumoral , Proliferación Celular/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética
18.
Children (Basel) ; 11(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38671690

RESUMEN

Autism spectrum disorder (ASD) exhibits diverse manifestations influenced by demographic factors. This study evaluates these variations within Saudi Arabia, aiming to investigate language, speech and behaviour characteristics across different demographics in Saudi Arabia using the Arabic Version of the Gilliam Autism Rating Scale-Third Edition (A-GARS-3). Employing a cross-sectional design, 178 participants were stratified by developmental status (n = 124 school settings, n = 54 clinical setting), sex (Females = 77, Males =101), age (range = 3-22), and geographical region (different provinces in Saudi Arabia). The A-GARS-3 measured ASD manifestations across six subscales. The study identified significant differences in ASD manifestations by developmental status, with higher ASD likelihood and severity in clinical settings. Younger children showed more pronounced ASD characteristics, and males were slightly more likely to be diagnosed with ASD. Geographical analysis revealed regional differences in severity. The findings underline the importance of demographic considerations in ASD assessment and diagnosis, suggesting the need for age-specific and culturally sensitive approaches. The A-GARS-3 is a reliable tool for the Saudi context. Regional disparities in ASD prevalence and severity indicate a need for tailored health policies and resources across Saudi provinces.

19.
Front Immunol ; 14: 1169588, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404826

RESUMEN

Background: Glycyl-tRNA synthetase 1 (GARS1) belongs to the aminoacyl-tRNA synthetase family, playing a crucial role in protein synthesis. Previous studies have reported a close association between GARS1 and various tumors. However, the role of GARS1 in human cancer prognosis and its impact on immunology remain largely unexplored. Methods: In this study, we comprehensively analyzed GARS1 expression at the mRNA and protein levels, examined genetic alterations, and assessed its prognostic implications in pan-cancer, with a specific emphasis on the immune landscape. Furthermore, we investigated the functional enrichment of genes related to GARS1 and explored its biological functions using single-cell data. Finally, we conducted cellular experiments to validate the biological significance of GARS1 in bladder cancer cells. Results: In general, GARS1 expression was significantly upregulated across multiple cancer types, and it demonstrated prognostic value in various cancers. Gene Set Enrichment Analysis (GSEA) revealed the association of GARS1 expression with multiple immune regulatory pathways. Moreover, GARS1 exhibited significant correlations with immune infiltrating cells (such as DC, CD8+T cells, Neutrophils, and Macrophages), immune checkpoint genes (CD274, CD276), and immune regulatory factors in tumors. Additionally, we observed that GARS1 could effectively predict the response to anti-PD-L1 therapy. Notably, Ifosfamide, auranofin, DMAPT, and A-1331852 emerged as potential therapeutic agents for GARS1-upregulated tumors. Our experimental findings strongly suggest that GARS1 promotes the proliferation and migration of bladder cancer cells. Conclusion: GARS1 holds promise as a potential prognostic marker and therapeutic target for pan-cancer immunotherapy, offering valuable insights for the development of more precise and personalized approaches to tumor treatment in the future.


Asunto(s)
Glicina-ARNt Ligasa , Neoplasias de la Vejiga Urinaria , Humanos , Pronóstico , Transcriptoma , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Biomarcadores , Antígenos B7
20.
Curr Med Sci ; 43(2): 261-267, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36932303

RESUMEN

OBJECTIVE: Charcot-Marie-Tooth disease (CMT) severely affects patient activity, and may cause disability. However, no clinical treatment is available to reverse the disease course. The combination of CRISPR/Cas9 and iPSCs may have therapeutic potential against nervous diseases, such as CMT. METHODS: In the present study, the skin fibroblasts of CMT type 2D (CMT2D) patients with the c.880G>A heterozygous nucleotide mutation in the GARS gene were reprogrammed into iPSCs using three plasmids (pCXLE-hSK, pCXLE-hUL and pCXLE-hOCT3/4-shp5-F). Then, CRISPR/Cas9 technology was used to repair the mutated gene sites at the iPSC level. RESULTS: An iPSC line derived from the GARS (G294R) family with fibular atrophy was successfully induced, and the mutated gene loci were repaired at the iPSC level using CRISPR/Cas9 technology. These findings lay the foundation for future research on drug screening and cell therapy. CONCLUSION: iPSCs can differentiate into different cell types, and originate from autologous cells. Therefore, they are promising for the development of autologous cell therapies for degenerative diseases. The combination of CRISPR/Cas9 and iPSCs may open a new avenue for the treatment of nervous diseases, such as CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células Madre Pluripotentes Inducidas , Reparación del Gen Blanco , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Reparación del Gen Blanco/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA