Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(5): 877-895, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38614076

RESUMEN

Infertility, affecting ∼10% of men, is predominantly caused by primary spermatogenic failure (SPGF). We screened likely pathogenic and pathogenic (LP/P) variants in 638 candidate genes for male infertility in 521 individuals presenting idiopathic SPGF and 323 normozoospermic men in the ESTAND cohort. Molecular diagnosis was reached for 64 men with SPGF (12%), with findings in 39 genes (6%). The yield did not differ significantly between the subgroups with azoospermia (20/185, 11%), oligozoospermia (18/181, 10%), and primary cryptorchidism with SPGF (26/155, 17%). Notably, 19 of 64 LP/P variants (30%) identified in 28 subjects represented recurrent findings in this study and/or with other male infertility cohorts. NR5A1 was the most frequently affected gene, with seven LP/P variants in six SPGF-affected men and two normozoospermic men. The link to SPGF was validated for recently proposed candidate genes ACTRT1, ASZ1, GLUD2, GREB1L, LEO1, RBM5, ROS1, and TGIF2LY. Heterozygous truncating variants in BNC1, reported in female infertility, emerged as plausible causes of severe oligozoospermia. Data suggested that several infertile men may present congenital conditions with less pronounced or pleiotropic phenotypes affecting the development and function of the reproductive system. Genes regulating the hypothalamic-pituitary-gonadal axis were affected in >30% of subjects with LP/P variants. Six individuals had more than one LP/P variant, including five with two findings from the gene panel. A 4-fold increased prevalence of cancer was observed in men with genetic infertility compared to the general male population (8% vs. 2%; p = 4.4 × 10-3). Expanding genetic testing in andrology will contribute to the multidisciplinary management of SPGF.


Asunto(s)
Infertilidad Masculina , Humanos , Masculino , Infertilidad Masculina/genética , Adulto , Secuenciación del Exoma , Factor Esteroidogénico 1/genética , Azoospermia/genética , Oligospermia/genética , Mutación , Espermatogénesis/genética , Estudios de Cohortes
2.
Genes Chromosomes Cancer ; 63(7): e23257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031442

RESUMEN

Gene panel sequencing has become a common diagnostic tool for detecting somatically acquired mutations in myeloid neoplasms. However, many panels have restricted content, provide insufficient sensitivity levels, or lack clinically validated workflows. We here describe the development and validation of the Genomic Medicine Sweden myeloid gene panel (GMS-MGP), a capture-based 191 gene panel including mandatory genes in contemporary guidelines as well as emerging candidates. The GMS-MGP displayed uniform coverage across all targets, including recognized difficult GC-rich areas. The validation of 117 previously described somatic variants showed a 100% concordance with a limit-of-detection of a 0.5% variant allele frequency (VAF), achieved by utilizing error correction and filtering against a panel-of-normals. A national interlaboratory comparison investigating 56 somatic variants demonstrated highly concordant results in both detection rate and reported VAFs. In addition, prospective analysis of 323 patients analyzed with the GMS-MGP as part of standard-of-care identified clinically significant genes as well as recurrent mutations in less well-studied genes. In conclusion, the GMS-MGP workflow supports sensitive detection of all clinically relevant genes, facilitates novel findings, and is, based on the capture-based design, easy to update once new guidelines become available. The GMS-MGP provides an important step toward nationally harmonized precision diagnostics of myeloid malignancies.


Asunto(s)
Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Mutación , Suecia , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Frecuencia de los Genes
3.
Genes Chromosomes Cancer ; 63(9): e23275, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39324485

RESUMEN

Concurrent testing of numerous genes for hereditary breast cancer (BC) is available but can result in management difficulties. We evaluated use of an expanded BC gene panel in women of diverse South African ancestries and assessed use of African genomic data to reclassify variants of uncertain significance (VUS). A total of 331 women of White, Black African, or Mixed Ancestry with BC had a 9-gene panel test, with an additional 75 genes tested in those without a pathogenic/likely pathogenic (P/LP) variant. The proportion of VUS reclassified using ClinGen gene-specific allele frequency (AF) thresholds or an AF > 0.001 in nonguidelines genes in African genomic data was determined. The 9-gene panel identified 58 P/LP variants, but only two of the P/LP variants detected using the 75-gene panel were in confirmed BC genes, resulting in a total of 60 (18.1%) in all participants. P/LP variant prevalence was similar across ancestry groups, but VUS prevalence was higher in Black African and Mixed Ancestry than in White participants. In total, 611 VUS were detected, representing 324 distinct variants. 10.8% (9/83) of VUS met ClinGen AF thresholds in genomic data while 10.8% (26/240) in nonguideline genes had an AF > 0.001. Overall, 27.0% of VUS occurrences could potentially be reclassified using African genomic data. Thus, expanding the gene panel yielded few clinically actionable variants but many VUS, particularly in participants of Black African and Mixed Ancestry. However, use of African genomic data has the potential to reclassify a significant proportion of VUS.


Asunto(s)
Población Negra , Neoplasias de la Mama , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/etnología , Femenino , Sudáfrica/epidemiología , Persona de Mediana Edad , Adulto , Población Negra/genética , Prevalencia , Variación Genética , Anciano , Predisposición Genética a la Enfermedad , Frecuencia de los Genes , Pruebas Genéticas/métodos , Población Blanca/genética
4.
Neurogenetics ; 25(3): 165-177, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499745

RESUMEN

Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with a high genetic and clinical heterogeneity. Numerous HSP patients remain genetically undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel variants and genes is needed. Our previous study analyzed 74 adult Serbian HSP patients from 65 families using panel of the 13 most common HSP genes in combination with a copy number variation analysis. Conclusive genetic findings were established in 23 patients from 19 families (29%). In the present study, nine patients from nine families previously negative on the HSP gene panel were selected for the whole exome sequencing (WES). Further, 44 newly diagnosed adult HSP patients from 44 families were sent to WES directly, since many studies showed WES may be used as the first step in HSP diagnosis. WES analysis of cohort 1 revealed a likely genetic cause in five (56%) of nine HSP families, including variants in the ETHE1, ZFYVE26, RNF170, CAPN1, and WASHC5 genes. In cohort 2, possible causative variants were found in seven (16%) of 44 patients (later updated to 27% when other diagnosis were excluded), comprising six different genes: SPAST, SPG11, WASCH5, KIF1A, KIF5A, and ABCD1. These results expand the genetic spectrum of HSP patients in Serbia and the region with implications for molecular genetic diagnosis and future causative therapies. Wide HSP panel can be the first step in diagnosis, alongside with the copy number variation (CNV) analysis, while WES should be performed after.


Asunto(s)
Secuenciación del Exoma , Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Masculino , Serbia , Femenino , Secuenciación del Exoma/métodos , Adulto , Persona de Mediana Edad , Variaciones en el Número de Copia de ADN , Linaje , Adulto Joven , Mutación , Estudios de Cohortes
5.
Neurogenetics ; 25(3): 233-247, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38758368

RESUMEN

Neuromuscular disorders (NMDs) include a wide range of diseases affecting the peripheral nervous system. The genetic diagnoses are increasingly obtained with using the next generation sequencing (NGS). We applied the custom-design targeted NGS panel including 89 genes, together with genotyping and multiplex ligation-dependent probe amplification (MLPA) to identify a genetic spectrum of NMDs in 52 Polish patients. As a result, the genetic diagnosis was determined by NGS panel in 29 patients so its diagnostic utility is estimated at 55.8%. The most pathogenic variants were found in CLCN1, followed by CAPN3, SCN4A, and SGCA genes. Genotyping of myotonic dystrophy type 1 and 2 (DM1 and DM2) as a secondary approach has been performed. The co-occurrence of CAPN3 and CNBP mutations in one patient as well as DYSF and CNBP mutations in another suggests possibly more complex inheritance as well as expression of a phenotype. In 7 individuals with single nucleotide variant found in NGS testing, the MLPA of the CAPN3 gene was performed detecting the deletion encompassing exons 2-8 in the CAPN3 gene in one patient, confirming recessive limb-girdle muscular dystrophy type 1 (LGMDR1). Thirty patients obtained a genetic diagnosis (57.7%) after using NGS testing, genotyping and MLPA analysis. The study allowed for the identification of 27 known and 4 novel pathogenic/likely pathogenic variants and variants of uncertain significance (VUS) associated with NMDs.In conclusion, the diagnostic approach with diverse molecular techniques enables to broaden the mutational spectrum and maximizes the diagnostic yield. Furthermore, the co-occurrence of DM2 and LGMD has been detected in 2 individuals.


Asunto(s)
Calpaína , Canales de Cloruro , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Musculares , Enfermedades Neuromusculares , Fenotipo , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/diagnóstico , Femenino , Pruebas Genéticas/métodos , Adulto , Persona de Mediana Edad , Calpaína/genética , Canales de Cloruro/genética , Proteínas Musculares/genética , Adolescente , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adulto Joven , Niño , Genotipo , Anciano , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Miotónica/genética , Distrofia Miotónica/diagnóstico , Preescolar
6.
Curr Issues Mol Biol ; 46(5): 5010-5022, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38785568

RESUMEN

Numerous hereditary ophthalmic diseases display significant genetic diversity. Consequently, the utilization of gene panel sequencing allows a greater number of patients to receive a genetic diagnosis for their clinical manifestations. We investigated how to improve the yield of genetic diagnosis through additional gene panel sequencing in hereditary ophthalmic diseases. A gene panel sequencing consisting of a customized hereditary retinopathy panel or hereditary retinitis pigmentosa (RP) panel was prescribed and referred to a CAP-accredited clinical laboratory. If no significant mutations associated with hereditary retinopathy and RP were detected in either panel, additional gene panel sequencing was requested for research use, utilizing the remaining panel. After additional gene panel sequencing, a total of 16 heterozygous or homozygous variants were identified in 15 different genes associated with hereditary ophthalmic diseases. Of 15 patients carrying any candidate variants, the clinical symptoms could be tentatively accounted for by genetic mutations in seven patients. However, in the remaining eight patients, given the in silico mutation predictive analysis, variant allele frequency in gnomAD, inheritance pattern, and genotype-phenotype correlation, fully elucidating the clinical manifestations with the identified rare variant was challenging. Our study highlights the utility of gene panel sequencing in achieving accurate diagnoses for hereditary ophthalmic diseases and enhancing the diagnostic yield through additional gene panel sequencing. Thus, gene panel sequencing can serve as a primary tool for the genetic diagnosis of hereditary ophthalmic diseases, even in cases where a single genetic cause is suspected. With a deeper comprehension of the genetic mechanisms underlying these diseases, it becomes feasible.

7.
Cancer Sci ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351646

RESUMEN

Accurate estimation of tumor mutational burden (TMB) as a predictor of responsiveness to immune checkpoint inhibitors in gene panel assays requires an adequate panel size. The current calculations of TMB only consider coding regions, while most of gene panel assays interrogate non-coding regions. Leveraging the non-coding regions is a potential solution to address this panel size limitation. However, the impact of including non-coding regions on the accuracy of TMB estimates remains unclear. This study investigated the validity of leveraging non-coding regions to supplement panel size using the OncoGuide NCC Oncopanel System (NOP). The aim of this study was to evaluate test performance against orthogonal assays and the association with responsiveness to immune checkpoint inhibitors was not included in the evaluation. We compared TMB status and values between TMB calculated only from coding regions (NOP-coding) and from both coding and non-coding regions (NOP-overall) using whole exome sequencing (WES) and FoundationOne®CDx (F1CDx) assay. Our findings revealed that NOP-overall significantly improved the overall percent agreement (OPA) with TMB status compared with NOP-coding for both WES (OPA: 96.7% vs. 73.3%, n = 30) and F1CDx (OPA: 90.0% vs. 73.3%). Additionally, the mean difference in TMB values compared with WES was lower for NOP-overall (3.55 [95% CI: 0.98-6.13]) than for NOP-coding (6.22 [95% CI: 3.73-8.70]). These results exemplify the utility of incorporating non-coding regions to maintain accurate TMB estimates in small-sized panels.

8.
Am J Hum Genet ; 108(4): 696-708, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33743207

RESUMEN

The complexities of gene expression pose challenges for the clinical interpretation of splicing variants. To better understand splicing variants and their contribution to hereditary disease, we evaluated their prevalence, clinical classifications, and associations with diseases, inheritance, and functional characteristics in a 689,321-person clinical cohort and two large public datasets. In the clinical cohort, splicing variants represented 13% of all variants classified as pathogenic (P), likely pathogenic (LP), or variants of uncertain significance (VUSs). Most splicing variants were outside essential splice sites and were classified as VUSs. Among all individuals tested, 5.4% had a splicing VUS. If RNA analysis were to contribute supporting evidence to variant interpretation, we estimated that splicing VUSs would be reclassified in 1.7% of individuals in our cohort. This would result in a clinically significant result (i.e., P/LP) in 0.1% of individuals overall because most reclassifications would change VUSs to likely benign. In ClinVar, splicing VUSs were 4.8% of reported variants and could benefit from RNA analysis. In the Genome Aggregation Database (gnomAD), splicing variants comprised 9.4% of variants in protein-coding genes; most were rare, precluding unambiguous classification as benign. Splicing variants were depleted in genes associated with dominant inheritance and haploinsufficiency, although some genes had rare variants at essential splice sites or had common splicing variants that were most likely compatible with normal gene function. Overall, we describe the contribution of splicing variants to hereditary disease, the potential utility of RNA analysis for reclassifying splicing VUSs, and how natural variation may confound clinical interpretation of splicing variants.


Asunto(s)
Empalme Alternativo/genética , Técnicas y Procedimientos Diagnósticos , Enfermedad/genética , ARN/análisis , Análisis de Secuencia de ARN , Incertidumbre , Estudios de Cohortes , Simulación por Computador , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN/genética , Sitios de Empalme de ARN/genética
9.
Genet Med ; 26(1): 101009, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37864479

RESUMEN

PURPOSE: Current and emerging treatments for Duchenne muscular dystrophy (DMD) position DMD as a candidate condition for newborn screening (NBS). In anticipation of the nomination of DMD for universal NBS, we conducted a prospective study under the Early Check voluntary NBS research program in North Carolina, United States. METHODS: We performed screening for creatine kinase-MM (CK-MM), a biomarker of muscle damage, on residual routine newborn dried blood spots (DBS) from participating newborns. Total creatine kinase testing and next generation sequencing of an 86-neuromuscular gene panel that included DMD were offered to parents of newborns who screened positive. Bivariate and multivariable analyses were performed to assess effects of biological and demographic predictors on CK-MM levels in DBS. RESULTS: We screened 13,354 newborns and identified 2 males with DMD. The provisional 1626 ng/mL cutoff was raised to 2032 ng/mL to improve specificity, and additional cutoffs (900 and 360 ng/mL) were implemented to improve sensitivity for older and low-birthweight newborns. CONCLUSION: Population-scale screening for elevated CK-MM in DBS is a feasible approach to identify newborns with DMD. Inclusion of birthweight- and age-specific cutoffs, repeat creatine kinase testing after 72 hours of age, and DMD sequencing improve sensitivity and specificity of screening.


Asunto(s)
Distrofia Muscular de Duchenne , Masculino , Humanos , Recién Nacido , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/epidemiología , Distrofia Muscular de Duchenne/genética , Tamizaje Neonatal , Peso al Nacer , North Carolina/epidemiología , Estudios Prospectivos , Creatina Quinasa
10.
Am J Kidney Dis ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972501

RESUMEN

RATIONALE & OBJECTIVE: Chronic kidney disease of unknown etiology (CKDUE) is one of the main global causes of kidney failure. Genetic studies may identify an etiology in these patients, but few studies have implemented genetic testing of CKDUE in a population-based series of patients, which was the focus of the GENSEN Study. STUDY DESIGN: Case series. SETTINGS & PARTICIPANTS: 818 patients aged≤45 years at 51 Spanish centers with CKDUE, and either an estimated glomerular filtration rate of<15mL/min/1.73m2 or treatment with maintenance dialysis or transplantation. OBSERVATIONS: Genetic testing for 529 genes associated with inherited nephropathies using high-throughput sequencing (HTS). Pathogenic and/or likely pathogenic (P/LP) gene variants concordant with the inheritance pattern were detected in 203 patients (24.8%). Variants in type IV collagen genes were the most frequent (COL4A5, COL4A4, COL4A3; 35% of total gene variants), followed by NPHP1, PAX2, UMOD, MUC1, and INF2 (7.3%, 5.9%, 2.5%, 2.5%, and 2.5%, respectively). Overall, 87 novel variants classified as P/LP were identified. The top 5 most common previously undiagnosed diseases were Alport syndrome spectrum (35% of total positive reports), genetic podocytopathies (19%), nephronophthisis (11%), autosomal dominant tubulointerstitial kidney disease (7%), and congenital anomalies of the kidney and urinary tract (CAKUT, 5%). A family history of kidney disease was reported by 191 participants (23.3%) and by 65 of 203 patients (32.0%) with P/LP variants. LIMITATIONS: Missing data, and selection bias resulting from voluntary enrollment. CONCLUSIONS: Genomic testing with HTS identified a genetic cause of kidney disease in approximately one quarter of young patients with CKDUE and advanced kidney disease. These findings suggest that genetic studies are a potentially useful tool for the evaluation of people with CKDUE. PLAIN-LANGUAGE SUMMARY: The cause of kidney disease is unknown for 1 in 5 patients requiring kidney replacement therapy, reflecting possible prior missed treatment opportunities. We assessed the diagnostic utility of genetic testing in children and adults aged≤45 years with either an estimated glomerular filtration rate of<15mL/min/1.73m2 or treatment with maintenance dialysis or transplantation. Genetic testing identified the cause of kidney disease in approximately 1 in 4 patients without a previously known cause of kidney disease, suggesting that genetic studies are a potentially useful tool for the evaluation of these patients.

11.
Am J Med Genet A ; 194(9): e63646, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38702915

RESUMEN

Molecular genetics enables more precise diagnoses of skeletal dysplasia and other skeletal disorders (SDs). We investigated the clinical utility of multigene panel testing for 5011 unrelated individuals with SD in the United States (December 2019-April 2022). Median (range) age was 8 (0-90) years, 70.5% had short stature and/or disproportionate growth, 27.4% had a positive molecular diagnosis (MDx), and 30 individuals received two MDx. Genes most commonly contributing to MDx were FGFR3 (16.9%), ALPL (13.0%), and COL1A1 (10.3%). Most of the 112 genes associated with ≥1 MDx were primarily involved in signal transduction (n = 35), metabolism (n = 23), or extracellular matrix organization (n = 17). There were implications associated with specific care/treatment options for 84.4% (1158/1372) of MDx-positive individuals; >50% were linked to conditions with targeted therapy approved or in clinical development, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and mucopolysaccharidosis. Forty individuals with initially inconclusive results became MDx-positive following family testing. Follow-up mucopolysaccharidosis enzyme activity testing was positive in 14 individuals (10 of these were not MDx-positive). Our findings showed that inclusion of metabolic genes associated with SD increased the clinical utility of a gene panel and confirmed that integrated use of comprehensive gene panel testing with orthogonal testing reduced the burden of inconclusive results.


Asunto(s)
Pruebas Genéticas , Humanos , Niño , Preescolar , Adolescente , Masculino , Femenino , Lactante , Adulto , Recién Nacido , Pruebas Genéticas/métodos , Persona de Mediana Edad , Adulto Joven , Anciano , Anciano de 80 o más Años , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/diagnóstico , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/diagnóstico , Osteogénesis Imperfecta/patología , Estudios de Cohortes
12.
Gynecol Oncol ; 191: 56-66, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342920

RESUMEN

BACKGROUND: Ovarian clear cell carcinoma (OCCC) is a unique subtype of epithelial ovarian cancer. Advanced OCCC display a poor prognosis. Therefore, we aimed to make risk stratification for precise medicine. METHODS: We performed a large next generation sequencing (NGS) gene panel on 44 patients with OCCC in FIGO stage II-IV. Then, by machine learning algorithms, including extreme gradient boosting (XGBoost), random survival forest (RSF), and Cox regression, we screened for feature genes associated with prognosis and constructed a 5-gene panel for risk stratification. The prediction efficacy of the 5-gene panel was compared with FIGO stage and residual disease by receiver operating characteristic curve and decision curve analysis. RESULTS: The feature mutated genes related to prognosis, selected by machine learning algorithms, include MUC16, ATM, NOTCH3, KMT2A, and CTNNA1. The 5-gene panel can effectively distinguish the prognosis, as well as platinum response, of advanced OCCC in both internal and external cohorts, with the predictive capability superior to FIGO stage and residual disease. CONCLUSIONS: Mutations in genes, including MUC16, ATM, NOTCH3, KMT2A, and CTNNA1, were associated with the poor prognosis of advanced OCCC. The risk stratification according to these genes demonstrated acceptable prediction power of prognosis and platinum response, suggesting the potential to be a novel target for precision medicine.

13.
Biometrics ; 80(2)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38819308

RESUMEN

Multi-gene panel testing allows many cancer susceptibility genes to be tested quickly at a lower cost making such testing accessible to a broader population. Thus, more patients carrying pathogenic germline mutations in various cancer-susceptibility genes are being identified. This creates a great opportunity, as well as an urgent need, to counsel these patients about appropriate risk-reducing management strategies. Counseling hinges on accurate estimates of age-specific risks of developing various cancers associated with mutations in a specific gene, ie, penetrance estimation. We propose a meta-analysis approach based on a Bayesian hierarchical random-effects model to obtain penetrance estimates by integrating studies reporting different types of risk measures (eg, penetrance, relative risk, odds ratio) while accounting for the associated uncertainties. After estimating posterior distributions of the parameters via a Markov chain Monte Carlo algorithm, we estimate penetrance and credible intervals. We investigate the proposed method and compare with an existing approach via simulations based on studies reporting risks for two moderate-risk breast cancer susceptibility genes, ATM and PALB2. Our proposed method is far superior in terms of coverage probability of credible intervals and mean square error of estimates. Finally, we apply our method to estimate the penetrance of breast cancer among carriers of pathogenic mutations in the ATM gene.


Asunto(s)
Teorema de Bayes , Predisposición Genética a la Enfermedad , Penetrancia , Humanos , Predisposición Genética a la Enfermedad/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama/genética , Femenino , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Simulación por Computador , Cadenas de Markov , Neoplasias/genética , Neoplasias/epidemiología , Proteínas Supresoras de Tumor/genética , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Método de Montecarlo , Metaanálisis como Asunto , Mutación de Línea Germinal , Modelos Estadísticos
14.
Mol Biol Rep ; 51(1): 820, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017860

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) has been implemented in clinical oncology as a personalized medicine tool to identify targetable genetic alterations and to guide treatment decisions. However, the optimal NGS test strategy and target genes for clinical use are still being discussed. The aim was to compare the performance of the Oncomine™ Comprehensive Assay v3 (OCAv3) (targeted gene panel) and whole-exome sequencing (WES) to investigate somatic single and multiple nucleotide variants and small indels in ovarian cancer patients. METHODS AND RESULTS: Genomic DNA was isolated from fresh frozen samples of five high-grade serous (HGSC) and three clear cell ovarian (oCCC) cancer patients. Exome sequencing libraries were prepared by using the Ion AmpliSeq Exome RDY kit, whereas libraries for OCAv3 were prepared using by Ion AmpliSeq™ Library Kit Plus. Sequencing was performed using the Ion S5XL System (Thermo Fisher Scientific). When including only variants classified as pathogenic, likely pathogenic or unknown significance based on ClinVar database verdicts and comparing overlapping regions covered both by the OCAv3 assay and WES, 23 variants were detected by both assays. However, OCAv3 detected additionally two variants: ARID1A: p.Gln563Ter and TP53: p.Ser261ValfsTer84 that have not passed WES filtering criteria due to low coverage. CONCLUSIONS: With the present treatment possibilities, OCAv3 panel testing provided higher diagnostic yield due to better coverage. Our study emphasizes that WES, although offering the potential to identify novel findings in genes not covered by OCAv3, might overlook variants in genes relevant for OC.


Asunto(s)
Secuenciación del Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/diagnóstico , Secuenciación del Exoma/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Persona de Mediana Edad , Anciano , Adulto , Factores de Transcripción/genética , Proteínas de Unión al ADN/genética , Mutación/genética
15.
Int J Clin Oncol ; 29(1): 1-19, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38019341

RESUMEN

With advances in gene and protein analysis technologies, many target molecules that may be useful in cancer diagnosis have been reported. Therefore, the "Tumor Marker Study Group" was established in 1981 with the aim of "discovering clinically" useful molecules. Later, the name was changed to "Japanese Society for Molecular Tumor Marker Research" in 2000 in response to the remarkable progress in gene-related research. Currently, the world of cancer treatment is shifting from the era of representative tumor markers of each cancer type used for tumor diagnosis and treatment evaluation to the study of companion markers for molecular-targeted therapeutics that target cancer cells. Therefore, the first edition of the Molecular Tumor Marker Guidelines, which summarizes tumor markers and companion markers in each cancer type, was published in 2016. After publication of the first edition, the gene panel testing using next-generation sequencing became available in Japan in June 2019 for insured patients. In addition, immune checkpoint inhibitors have been indicated for a wide range of cancer types. Therefore, the 2nd edition of the Molecular Tumor Marker Guidelines was published in September 2021 to address the need to revise the guidelines. Here, we present an English version of the review (Part 1) of the Molecular Tumor Marker Guidelines, Second Edition.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Humanos , Biomarcadores de Tumor/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Japón
16.
Int J Clin Oncol ; 29(10): 1407-1416, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38727852

RESUMEN

Cancer genome profiling has revealed important genetic alterations that serve as prognostic indicators and guides for treatment decisions, enabling precision medicine. The shift to molecular diagnosis of brain tumors, as reflected in the 2021 World Health Organization Classification of Tumors of the Central Nervous System, is a crucial role for treatment decision-making. This review discusses the significance and role of cancer genome profiling in precision medicine for malignant brain tumors, particularly gliomas. Furthermore, we explore the progress in cancer genome analysis, focusing on cancer gene panel testing, integration of genomic information in brain tumor classification, and hereditary tumors. Additionally, we discuss the transformative effect of genomic medicine on early detection, risk assessment, and precision medicine strategies. The tumor mutational burden in brain tumors is considered low, but the application of molecular targeted drugs, such as isocitrate dehydrogenase inhibitors, v-raf murine sarcoma viral oncogene homolog B1 inhibitors, fibroblast growth factor receptor inhibitors, neurotrophic tyrosine receptor kinase, mechanistic target of rapamycin inhibitors, and anti-programmed death receptor-1 antibody drugs are promising for glioma treatment. We also discuss the future prospects of molecular targeted drugs.


Asunto(s)
Neoplasias Encefálicas , Genómica , Terapia Molecular Dirigida , Medicina de Precisión , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Genómica/métodos , Glioma/genética , Glioma/terapia , Mutación
17.
Endocr J ; 71(1): 31-37, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38044137

RESUMEN

We analyzed the outcomes of genetic testing to study the frequency of mutations in advanced thyroid cancer in Japan. Patients (n = 96) with unresectable or metastatic thyroid carcinoma were included for retrospective chart review. Results of gene panel testing, which was performed between May 2020 and April 2023, were analyzed. The median age of the patients was 73.5 years (range, 17-88); 59 were women, and 39 were men. Overall, 17 patients had anaplastic thyroid carcinoma (ATC), 68 had papillary thyroid carcinoma (PTC), 7 had follicular thyroid carcinoma, and 6 had poorly differentiated thyroid carcinoma (PDTC). Of the 81 patients with differentiated thyroid carcinoma (DTC) and PDTC, 88.9% were radioactive iodine-refractory, and 32.7% of all cases had previously been treated with multiple kinase inhibitors. Of ATC cases, 52.9% had BRAF mutations, and 5.9% had RET fusion. Of PTC cases, 83.1% had BRAF mutations, 9.2% had RET fusion, and 1.5% had NTRK fusion. One case each of ATC and PTC had a tumor mutation burden of ≥10. ATC cases had a significantly higher prevalence of TP53 alterations than the other cases (82.3% vs. 11.8%), whereas the frequencies of TERT promoter mutations were 88.2% in ATC cases and 64.7% in the other cases, albeit without a significant difference. In conclusion, 58.8% of ATC, 93.8% of PTC, and 42.9% of PDTC had genetic alterations linked to therapeutic agents. Active gene panel testing is required to increase treatment options.


Asunto(s)
Adenocarcinoma , Prolina/análogos & derivados , Tiocarbamatos , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Masculino , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Proteínas Proto-Oncogénicas B-raf/genética , Estudios Retrospectivos , Radioisótopos de Yodo , Japón/epidemiología , Cáncer Papilar Tiroideo/genética , Mutación
18.
J Obstet Gynaecol Res ; 50(9): 1591-1597, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39077936

RESUMEN

AIM: Although BRCA1/2 is most frequently associated with hereditary breast and ovarian cancer (HBOC), many other related genes have been implicated. Therefore, we investigated the prevalence of non-BRCA1/2 genes associated with hereditary cancer predisposition in BRCA1/2-negative patients from the Department of Genetic Medicine and Services with breast and ovarian cancer using a multi-gene panel (MGP) analysis. METHODS: We conducted a retrospective MGP analysis (National Cancer Center Onco-Panel for Familial Cancer; NOP_FC) in BRCA1/2-negative patients with breast, ovarian, and overlapping breast/ovarian cancers who visited our genetic counseling between April 2004 and October 2022. RESULTS: NOP_FC was performed in 128 of the 390 BRCA test-negative cases (117 breast cancer, 9 ovarian cancer, and 2 overlapping breast/ovarian cancer cases). Among the BRCA1/2-negative patients, nine (7.7%) with breast cancer and one (11%) with ovarian cancer had pathogenic variants (PVs) in non-BRCA1/2 genes associated with breast and ovarian cancers, respectively. Five patients had PVs in RAD51D, two in PALB2, one in BARD1, one in ATM, and one in RAD51C. CONCLUSIONS: Additional MGP testing of germline genes associated with hereditary cancer predisposition syndrome in BRCA1/2-negative breast and ovarian cancer patients revealed PVs in non-BRCA1/2 breast cancer- and ovarian cancer-related genes in 7.7% of breast cancer and 11% of ovarian cancer. Therefore, additional testing may provide useful information for subsequent risk-reducing surgery and surveillance in BRCA1/2-negative patients.


Asunto(s)
Síndrome de Cáncer de Mama y Ovario Hereditario , Humanos , Femenino , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Pruebas Genéticas/métodos , Predisposición Genética a la Enfermedad , Proteína BRCA1/genética , Anciano , Neoplasias Ováricas/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética
19.
Ann Diagn Pathol ; 71: 152317, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38642470

RESUMEN

We report a series of patients with CSF3R-mutant (CSF3Rmut) atypical chronic myeloid leukemia (aCML), chronic neutrophilic leukemia (CNL) or other hematologic malignancies. We included 25 patients: 5 aCML and 4 CNL CSF3Rmut patients; 1 aCML, 2 CNL, and 2 myelodysplastic/myeloproliferative neoplasm, not otherwise specified patients without CSF3R mutation; and 11 CSF3Rmut patients with other diseases [8 acute myeloid leukemia (AML), 1 chronic myelomonocytic leukemia (CMML), 1 myelodysplastic syndrome (MDS), and 1 acute lymphoblastic leukemia (ALL)]. Patients with aCML or CNL were tested by Sanger sequencing and pyrosequencing to identify CSF3R T618I. Twenty-two patients underwent gene panel analysis. CSF3R mutations, mostly T618I (8/9), were found at high frequencies in both aCML and CNL patients [5/6 aCML and 4/6 CNL]. Two aCML patients in early adulthood with CSF3R T618I and biallelic or homozygous CEBPA mutations without other mutations presented with increased blasts and exhibited remission for >6 years after transplantation. The other 7 CSF3Rmut aCML or CNL patients were elderly adults who all had ASXL1 mutations and frequently presented with SEBP1 and SRSF2 mutations. Five AML patients had CSF3R exon 14 or 15 point mutations, and 6 other patients (3 AML, 1 CMML, 1 MDS, and 1 ALL) had truncating mutations, demonstrating differences in leukocyte counts and mutation status. In conclusion, CSF3R mutations were found at a higher frequency in aCML patients than in previous studies, which might reflect ethnic differences. Additional studies are needed to confirm these findings and the relationship between CSF3R and CEBPA mutations.


Asunto(s)
Leucemia Mieloide Crónica Atípica BCR-ABL Negativa , Mutación , Receptores del Factor Estimulante de Colonias , Humanos , Receptores del Factor Estimulante de Colonias/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/genética , Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/patología , Anciano de 80 o más Años , Leucemia Neutrofílica Crónica/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología
20.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928025

RESUMEN

Maturity-onset diabetes of the young (MODY) is part of the heterogeneous group of monogenic diabetes (MD) characterized by the non-immune dysfunction of pancreatic ß-cells. The diagnosis of MODY still remains a challenge for clinicians, with many cases being misdiagnosed as type 1 or type 2 diabetes mellitus (T1DM/T2DM), and over 80% of cases remaining undiagnosed. With the introduction of modern technologies, important progress has been made in deciphering the molecular mechanisms and heterogeneous etiology of MD, including MODY. The aim of our study was to identify genetic variants associated with MODY in a group of patients with early-onset diabetes/prediabetes in whom a form of MD was clinically suspected. Genetic testing, based on next-generation sequencing (NGS) technology, was carried out either in a targeted manner, using gene panels for monogenic diabetes, or by analyzing the entire exome (whole-exome sequencing). GKC-MODY 2 was the most frequently detected variant, but rare forms of KCNJ11-MODY 13, specifically, HNF4A-MODY 1, were also identified. We have emphasized the importance of genetic testing for early diagnosis, MODY subtype differentiation, and genetic counseling. We presented the genotype-phenotype correlations, especially related to the clinical evolution and personalized therapy, also emphasizing the particularities of each patient in the family context.


Asunto(s)
Diabetes Mellitus Tipo 2 , Asesoramiento Genético , Pruebas Genéticas , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Pruebas Genéticas/métodos , Masculino , Femenino , Adulto , Medicina de Precisión/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Adolescente , Canales de Potasio de Rectificación Interna/genética , Adulto Joven , Niño , Factor Nuclear 4 del Hepatocito/genética , Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA