RESUMEN
The winter of 2020-2021 in South Korea witnessed severe outbreaks of Highly Pathogenic Avian Influenza (HPAI) viruses, specifically multiple genotypes of the H5N8 subtype. These outbreaks prompted an extensive investigation into the genetic characteristics and evolutionary dynamics of these viruses. Under the auspices of the National Institute of Wildlife Disease Control and Prevention (NIWDC), we conducted a nationwide surveillance program, collecting 7588 specimens from diverse wild bird habitats. Influenza A viruses were isolated at a rate of 5.0%, with HPAI H5N8 viruses accounting for 38.5% of isolates, predominantly found in wild bird carcasses (97.3%). Genetic analysis revealed the emergence of novel HPAI genotypes due to genetic reassortment events. G1 and G2 viruses were separately introduced into Korea, with G1 viruses displaying dynamic behavior, resulting in diverse sub-genotypes (G1-1 to G1-5) and mainly isolated from clinical specimens. Conversely, the G2 virus, introduced later, became the dominant strain consistently isolated mainly from bird carcasses (88.9%). These findings underscore the emergence of numerous novel HPAI genotypes shaped by multiple reassortment events in high-density wintering grounds of migratory birds. These sites act as hotspots for genetic exchanges, significantly influencing avian ecology, including resident bird species, and contributing to HPAI H5N8 evolution. The genetic diversity and ongoing evolution of these viruses highlight the need for vigilant surveillance and adaptive control measures. Recognizing the potential spillover to human populations, a One Health approach is essential to mitigate the evolving threats posed by avian influenza.
RESUMEN
Understanding the mammalian pathogenesis and interspecies transmission of HPAI H5N8 virus hinges on mapping its adaptive markers. We used deep sequencing to track these markers over five passages in murine lung tissue. Subsequently, we evaluated the growth, selection, and RNA load of eight recombinant viruses with mammalian adaptive markers. By leveraging an integrated non-linear regression model, we quantitatively determined the influence of these markers on growth, adaptation, and RNA expression in mammalian hosts. Furthermore, our findings revealed that the interplay of these markers can lead to synergistic, additive, or antagonistic effects when combined. The elucidation distance method then transformed these results into distinct values, facilitating the derivation of a risk score for each marker. In vivo tests affirmed the accuracy of scores. As more mutations were incorporated, the overall risk score of virus heightened, and the optimal interplay between markers became essential for risk augmentation. Our study provides a robust model to assess risk from adaptive markers of HPAI H5N8, guiding strategies against future influenza threats.
Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Ratones , Subtipo H5N8 del Virus de la Influenza A/genética , Pulmón , ARN , MamíferosRESUMEN
During the 2021/2022 winter season, we isolated highly pathogenic avian influenza (HPAI) H5N1 viruses harbouring an amino acid substitution from Asparagine(N) to Aspartic acid (D) at residue 193 of the hemagglutinin (HA) receptor binding domain (RBD) from migratory birds in South Korea. Herein, we investigated the characteristics of the N193D HA-RBD substitution in the A/CommonTeal/Korea/W811/2021[CT/W811] virus by using recombinant viruses engineered via reverse genetics (RG). A receptor affinity assay revealed that the N193D HA-RBD substitution in CT/W811 increases α2,6 sialic acid receptor binding affinity. The rCT/W811-HA193N virus caused rapid lethality with high virus titres in chickens compared with the rCT/W811-HA193D virus, while the rCT/W811-HA193D virus exhibited enhanced virulence in mammalian hosts with multiple tissue tropism. Surprisingly, a ferret-to-ferret transmission assay revealed that rCT/W811-HA193D virus replicates well in the respiratory tract, at a rate about 10 times higher than that of rCT/W811-HA193N, and all rCT/W811-HA193D direct contact ferrets were seroconverted at 10 days post-contact. Further, competition transmission assay of the two viruses revealed that rCT/W811-HA193D has enhanced growth kinetics compared with the rCT/W811-HA193N, eventually becoming the dominant strain in nasal turbinates. Further, rCT/W811-HA193D exhibits high infectivity in primary human bronchial epithelial (HBE) cells, suggesting the potential for human infection. Taken together, the HA-193D containing HPAI H5N1 virus from migratory birds showed enhanced virulence in mammalian hosts, but not in avian hosts, with multi-organ replication and ferret-to-ferret transmission. Thus, this suggests that HA-193D change increases the probability of HPAI H5N1 infection and transmission in humans.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Hemaglutininas , Virulencia , Hurones , PollosRESUMEN
On 14 November 2016, an outbreak of highly pathogenic avian influenza (HPA) was reported from a commercial layer farm located in Malard, Tehran Province, Iran. This study aimed to investigate the HPAI H5N8 outbreaks in Iran. The questionnaire was prepared and completed through interviews with farm owners or field observations at the time of disease onset from November 2016 to February 2017. The HPAI H5N8 infection was confirmed in 30 different locations including 10 villages (33.3%), nine-layer farms (33%), two broiler breeder farms (6.67%), one layer breeder farm (3.3%), one turkey farm (3.3%), one partridge farm (3.3%), five national parks (16.7%), and one wetland (3.3%) in 12 provinces of Iran. The cumulative incidence rates of disease in villages, layer farms, broiler breeder farms, layer breeder farms, partridge farms, and turkey farms were 0.02%, 0.87%, 0.55%, 6.25%, 7.14%, and 0.69%, respectively. The findings reflect that among the investigated variables at infected locations, new birds entering the home in villages, live bird markets, inappropriate biosecurity conditions, transporting manure during the breeding period, close proximity of a common road to infected farms, and poultry movement inside (pullet) and outside were the most frequently observed possible risk factors for these outbreaks. In conclusion, attention should be focused on the study of the dynamics and movements of domestic poultry, investigation and modification of the structure of industrial poultry farms, training for all related people, enhancement of passive surveillance, an increase in biosecurity, raising the awareness of the authorities on the importance of the infection, and provision of the required credits and facilities.
Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Pollos , Brotes de Enfermedades/veterinaria , Femenino , Gripe Aviar/epidemiología , Irán/epidemiología , Enfermedades de las Aves de Corral/epidemiologíaRESUMEN
Highly pathogenic avian influenza (HPAI) H5N8 is currently causing an epizootic in Europe, infecting many poultry holdings as well as captive and wild bird species in more than 10 countries. Given the clear clinical manifestation, passive surveillance is considered the most effective means of detecting infected wild and domestic birds. Testing samples from new species and non-previously reported areas is key to determine the geographic spread of HPAIV H5N8 2016 in wild birds. Testing limited numbers of dead wild birds in previously reported areas is useful when it is relevant to know whether the virus is still present in the area or not, e.g. before restrictive measures in poultry are to be lifted. To prevent introduction of HPAIV from wild birds into poultry, strict biosecurity implemented and maintained by the poultry farmers is the most important measure. Providing holding-specific biosecurity guidance is strongly recommended as it is expected to have a high impact on the achieved biosecurity level of the holding. This is preferably done during peace time to increase preparedness for future outbreaks. The location and size of control and in particular monitoring areas for poultry associated with positive wild bird findings are best based on knowledge of the wider habitat and flight distance of the affected wild bird species. It is recommended to increase awareness among poultry farmers in these established areas in order to enhance passive surveillance and to implement enhanced biosecurity measures including poultry confinement. There is no scientific evidence suggesting a different effectiveness of the protection measures on the introduction into poultry holdings and subsequent spread of HPAIV when applied to H5N8, H5N1 or other notifiable HPAI viruses.
RESUMEN
During the outbreaks of highly pathogenic avian influenza (HPAI) H5N6 viruses in 2016 in South Korea, novel H5N8 viruses were also isolated from migratory birds. Phylogenetic analysis revealed that the HA gene of these H5N8 viruses belonged to clade 2.3.4.4, similarly to recent H5Nx viruses, and originated from A/Brk/Korea/Gochang1/14(H5N8), a minor lineage of H5N8 that appeared in 2014 and then disappeared. At least four reassortment events occurred with different subtypes (H5N8, H7N7, H3N8 and H10N7) and a chicken challenge study revealed that they were classified as HPAI viruses according to OIE criteria.
Asunto(s)
Brotes de Enfermedades/veterinaria , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia , Virus Reordenados/genética , Animales , Animales Salvajes , Aves/virología , Pollos , Genotipo , Subtipo H10N7 del Virus de la Influenza A/clasificación , Subtipo H10N7 del Virus de la Influenza A/genética , Subtipo H10N7 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N8 del Virus de la Influenza A/clasificación , Subtipo H3N8 del Virus de la Influenza A/genética , Subtipo H3N8 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/clasificación , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N7 del Virus de la Influenza A/clasificación , Subtipo H7N7 del Virus de la Influenza A/genética , Subtipo H7N7 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Filogeografía , Virus Reordenados/clasificación , Virus Reordenados/aislamiento & purificación , República de Corea/epidemiologíaRESUMEN
Outbreaks of highly pathogenic avian influenza A virus (HPAIV) subtype H5N8, clade 2.3.4.4, were first reported in January 2014 from South Korea. These viruses spread rapidly to Europe and the North American continent during autumn 2014 and caused, in Germany, five outbreaks in poultry holdings until February 2015. In addition, birds kept in a zoo in north-eastern Germany were affected. Only a few individual white storks (Ciconia ciconia) showed clinical symptoms and eventually died in the course of the infection, although subsequent in-depth diagnostic investigations showed that other birds kept in the same compound of the white storks were acutely positive for or had undergone asymptomatic infection with HPAIV H5N8. An exception from culling all of the 500 remaining zoo birds was granted by the competent authority. Restriction measures included grouping the zoo birds into eight epidemiological units in which 60 birds of each unit tested repeatedly negative for H5N8. Epidemiological and phylogenetical investigations revealed that the most likely source of introduction was direct or indirect contact with infected wild birds as the white storks had access to a small pond frequented by wild mallards and other aquatic wild birds during a period of 10 days in December 2014. Median network analysis showed that the zoo bird viruses segregated into a distinct cluster of clade 2.3.4.4 with closest ties to H5N8 isolates obtained from mute swans (Cygnus olor) in Sweden in April 2015. This case demonstrates that alternatives to culling exist to rescue valuable avifaunistic collections after incursions of HPAIV.