Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(2): 300-313, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36706759

RESUMEN

While extensively studied in clinical cohorts, the phenotypic consequences of 22q11.2 copy-number variants (CNVs) in the general population remain understudied. To address this gap, we performed a phenome-wide association scan in 405,324 unrelated UK Biobank (UKBB) participants by using CNV calls from genotyping array. We mapped 236 Human Phenotype Ontology terms linked to any of the 90 genes encompassed by the region to 170 UKBB traits and assessed the association between these traits and the copy-number state of 504 genotyping array probes in the region. We found significant associations for eight continuous and nine binary traits associated under different models (duplication-only, deletion-only, U-shape, and mirror models). The causal effect of the expression level of 22q11.2 genes on associated traits was assessed through transcriptome-wide Mendelian randomization (TWMR), revealing that increased expression of ARVCF increased BMI. Similarly, increased DGCR6 expression causally reduced mean platelet volume, in line with the corresponding CNV effect. Furthermore, cross-trait multivariable Mendelian randomization (MVMR) suggested a predominant role of genuine (horizontal) pleiotropy in the CNV region. Our findings show that within the general population, 22q11.2 CNVs are associated with traits previously linked to genes in the region, and duplications and deletions act upon traits in different fashions. We also showed that gain or loss of distinct segments within 22q11.2 may impact a trait under different association models. Our results have provided new insights to help further the understanding of the complex 22q11.2 region.


Asunto(s)
Variaciones en el Número de Copia de ADN , Fenómica , Humanos , Variaciones en el Número de Copia de ADN/genética , Fenotipo , Cromosomas Humanos Par 22
2.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37248747

RESUMEN

Human Phenotype Ontology (HPO)-based approaches have gained popularity in recent times as a tool for genomic diagnostics of rare diseases. However, these approaches do not make full use of the available information on disease and patient phenotypes. We present a new method called Phen2Disease, which utilizes the bidirectional maximum matching semantic similarity between two phenotype sets of patients and diseases to prioritize diseases and genes. Our comprehensive experiments have been conducted on six real data cohorts with 2051 cases (Cohort 1, n = 384; Cohort 2, n = 281; Cohort 3, n = 185; Cohort 4, n = 784; Cohort 5, n = 208; and Cohort 6, n = 209) and two simulated data cohorts with 1000 cases. The results of the experiments showed that Phen2Disease outperforms the three state-of-the-art methods when only phenotype information and HPO knowledge base are used, particularly in cohorts with fewer average numbers of HPO terms. We also observed that patients with higher information content scores have more specific information, leading to more accurate predictions. Moreover, Phen2Disease provides high interpretability with ranked diseases and patient HPO terms presented. Our method provides a novel approach to utilizing phenotype data for genomic diagnostics of rare diseases, with potential for clinical impact. Phen2Disease is freely available on GitHub at https://github.com/ZhuLab-Fudan/Phen2Disease.


Asunto(s)
Ontologías Biológicas , Enfermedades Raras , Humanos , Semántica , Genómica , Fenotipo
3.
Am J Hum Genet ; 108(2): 346-356, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33513338

RESUMEN

Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/genética , Mutación , Trastornos del Neurodesarrollo/genética , Cromatina/metabolismo , Femenino , Estudios de Asociación Genética , Haploinsuficiencia , Humanos , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/química , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Modelos Moleculares , Mutación Missense , Unión Proteica , Dominios Proteicos , Transcripción Genética
4.
J Cell Sci ; 135(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36205125

RESUMEN

Hippo-Yorkie (Hpo-Yki) signaling is central to diverse developmental processes. Although its redeployment has been amply demonstrated, its context-specific regulation remains poorly understood. The Drosophila eye disc is a continuous epithelium folded into two layers, the peripodial epithelium (PE) and the retinal progenitor epithelium. Here, Yki acts in the PE, first to promote PE identity by suppressing retina fate, and subsequently to maintain proper disc morphology. In the latter process, loss of Yki results in the displacement of a portion of the differentiating retinal epithelium onto the PE side. We show that Protein Phosphatase 2A (PP2A) complexes comprising different substrate-specificity B-type subunits govern the Hpo-Yki axis in this context. These include holoenzymes containing the B‴ subunit Cka and those containing the B' subunits Wdb or Wrd. Whereas PP2A(Cka), as part of the STRIPAK complex, is known to regulate Hpo directly, PP2A(Wdb) acts genetically upstream of the antagonistic activities of the Hpo regulators Sav and Rassf. These in vivo data provide the first evidence of PP2A(B') heterotrimer function in Hpo pathway regulation and reveal pathway diversification at distinct developmental times in the same tissue.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
5.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35134823

RESUMEN

It's challenging work to identify disease-causing genes from the next-generation sequencing (NGS) data of patients with Mendelian disorders. To improve this situation, researchers have developed many phenotype-driven gene prioritization methods using a patient's genotype and phenotype information, or phenotype information only as input to rank the candidate's pathogenic genes. Evaluations of these ranking methods provide practitioners with convenience for choosing an appropriate tool for their workflows, but retrospective benchmarks are underpowered to provide statistically significant results in their attempt to differentiate. In this research, the performance of ten recognized causal-gene prioritization methods was benchmarked using 305 cases from the Deciphering Developmental Disorders (DDD) project and 209 in-house cases via a relatively unbiased methodology. The evaluation results show that methods using Human Phenotype Ontology (HPO) terms and Variant Call Format (VCF) files as input achieved better overall performance than those using phenotypic data alone. Besides, LIRICAL and AMELIE, two of the best methods in our benchmark experiments, complement each other in cases with the causal genes ranked highly, suggesting a possible integrative approach to further enhance the diagnostic efficiency. Our benchmarking provides valuable reference information to the computer-assisted rapid diagnosis in Mendelian diseases and sheds some light on the potential direction of future improvement on disease-causing gene prioritization methods.


Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Biología Computacional/métodos , Genotipo , Humanos , Fenotipo , Estudios Retrospectivos
6.
Genet Med ; 26(4): 101068, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38193396

RESUMEN

PURPOSE: Widespread application of next-generation sequencing, combined with data exchange platforms, has provided molecular diagnoses for countless families. To maximize diagnostic yield, we implemented an unbiased semi-automated genematching algorithm based on genotype and phenotype matching. METHODS: Rare homozygous variants identified in 2 or more affected individuals, but not in healthy individuals, were extracted from our local database of ∼12,000 exomes. Phenotype similarity scores (PSS), based on human phenotype ontology terms, were assigned to each pair of individuals matched at the genotype level using HPOsim. RESULTS: 33,792 genotype-matched pairs were discovered, representing variants in 7567 unique genes. There was an enrichment of PSS ≥0.1 among pathogenic/likely pathogenic variant-level pairs (94.3% in pathogenic/likely pathogenic variant-level matches vs 34.75% in all matches). We highlighted founder or region-specific variants as an internal positive control and proceeded to identify candidate disease genes. Variant-level matches were particularly helpful in cases involving inframe indels and splice region variants beyond the canonical splice sites, which may otherwise have been disregarded, allowing for detection of candidate disease genes, such as KAT2A, RPAIN, and LAMP3. CONCLUSION: Semi-automated genotype matching combined with PSS is a powerful tool to resolve variants of uncertain significance and to identify candidate disease genes.


Asunto(s)
Genotipo , Humanos , Fenotipo , Mutación , Homocigoto , Estudios de Asociación Genética
7.
J Fluoresc ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349482

RESUMEN

A novel coumarinylhydrazone fluorescent probe L was designed and synthesized from 4-(diethylamino)salicylaldehyde, its structure was characterized by NMR, IR. Fluorescence emission spectra showed that in ethanol solution, probe L could form a 1:1 complex L-Cu2+ with Cu2+ to realize the "turn-off" detection of Cu2+ with high specificity and sensitivity (3.7 × 10-7 mol/L). Meanwhile, the complex L-Cu2+ had a specific fluorescence-enhanced response to HPO42- with a detection limits down to 5.6 × 10-7 mol/L and was resistant to the effects of many common anions (NO2-, N3-, CO32-, SO32-, HPO42-, I-, Br-, F-, HCO3-, SO42-, NO3-, Cl-, CH3COO-, Cr2O72-, S2O32-, P2O74-). Detection mechanism could be HPO42- captured Cu2+ of the complex and released the free ligand L. At last, the complex L-Cu2+ was successfully applied to the determination of HPO42- in different environmental water samples, and the spiked recoveries ranged from 98.05% to 108.18% and the relative standard deviations of 0.75% ~ 2.9%, which had good application prospects.

8.
Molecules ; 29(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38338426

RESUMEN

Bismuth vanadate (BVO) is regarded as an exceptional photoanode material for photoelectrochemical (PEC) water splitting, but it is restricted by the severe photocorrosion and slow water oxidation kinetics. Herein, a synergistic strategy combined with a Co3(HPO4)2(OH)2 (CoPH) cocatalyst and an Al2O3 (ALO) passivation layer was proposed for enhanced PEC performance. The CoPH/ALO/BVO photoanode exhibits an impressive photocurrent density of 4.9 mA cm-2 at 1.23 VRHE and an applied bias photon-to-current efficiency (ABPE) of 1.47% at 0.76 VRHE. This outstanding PEC performance can be ascribed to the suppressed surface charge recombination, facilitated interfacial charge transfer, and accelerated water oxidation kinetics with the introduction of the CoPH cocatalyst and ALO passivation layer. This work provides a novel and synergistic approach to design an efficient and stable photoanode for PEC applications by combining an oxygen evolution cocatalyst and a passivation layer.

9.
Haemophilia ; 29(4): 1113-1120, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37252892

RESUMEN

INTRODUCTION: Dominant-negative effects have been described for 10 F11 variants in the literature. AIM: The current study aimed at identifying putative dominant-negative F11 variants. MATERIAL AND METHODS: This research consisted in a retrospective analysis of routine laboratory data. RESULTS: In a series of 170 patients with moderate/mild factor XI (FXI) deficiencies, we identified heterozygous carriers of previously reported dominant-negative variants (p.Ser243Phe, p.Cys416Tyr, and p.Gly418Val) with FXI activities inconsistent with a dominant-negative effect. Our findings also do not support a dominant-negative effect of p.Gly418Ala. We also identified a set of patients carrying heterozygous variants, among which five out of 11 are novel, with FXI activities suggesting a dominant-negative effect (p.His53Tyr, p.Cys110Gly, p.Cys140Tyr, p.Glu245Lys, p.Trp246Cys, p.Glu315Lys, p.Ile421Thr, p.Trp425Cys, p.Glu565Lys, p.Thr593Met, and p.Trp617Ter). However, for all but two of these variants, individuals with close to half normal FXI coagulant activity (FXI:C) were identified, indicating an inconstant dominant effect. CONCLUSION: Our data show that for some F11 variants recognized has having dominant-negative effects, such effects actually do not occur in many individuals. The present data suggest that for these patients, the intracellular quality control mechanisms eliminate the variant monomeric polypeptide before homodimer assembly, thereby allowing only the wild-type homodimer to assemble and resulting in half normal activities. In contrast, in patients with markedly decreased activities, some mutant polypeptides might escape this first quality control. In turn, assembly of heterodimeric molecules as well as mutant homodimers would result in activities closer to 1:4 of FXI:C normal range.


Asunto(s)
Deficiencia del Factor XI , Factor XI , Humanos , Factor XI/genética , Estudios Retrospectivos , Deficiencia del Factor XI/genética , Heterocigoto , Linaje
10.
Luminescence ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062653

RESUMEN

In this study, 5,10,15,20-(4-sulphonatophenyl)porphyrin (TPPS4 ) was selected as a fluorescent probe due to its excellent characteristics including high quantum yield, good water solubility, and exceptional biocompatibility. With an excitation wavelength set at 515 nm, the optimal fluorescence emission wavelength for TPPS4 was measured at 642 nm. At this moment, the fluorescence signal of TPPS4 pink solution was in the 'ON' state. The fluorescence intensity of TPPS4 was quenched when ascorbic acid (AA) was introduced, which was due to the electron transfer quenching effect between AA and TPPS4 . The colour of the corresponding solution changed from pink to green, and the fluorescence signal was in the 'OFF' state. When HPO4 2- was further introduced into the TPPS4 -AA system, the quenched fluorescence intensity of TPPS4 was recovered due to the unique interaction between HPO4 2- and AA. At this time, the colour of the corresponding solution changed from green to red, and the fluorescence signal was in the 'ON' state. Therefore, an 'ON-OFF-ON' signal-switchable fluorescent probe was constructed based on TPPS4 to detect HPO4 2- . The results showed that the linear range of HPO4 2- was 4.0 × 10-9 to 1.7 × 10-6  M, and the detection limit was 1.3 × 10-9  M (S/N = 3). The sensing system exhibited high accuracy and sensitivity, and it could be used successfully to detect HPO4 2- in real samples.

11.
J Allergy Clin Immunol ; 149(1): 369-378, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991581

RESUMEN

BACKGROUND: Accurate, detailed, and standardized phenotypic descriptions are essential to support diagnostic interpretation of genetic variants and to discover new diseases. The Human Phenotype Ontology (HPO), extensively used in rare disease research, provides a rich collection of vocabulary with standardized phenotypic descriptions in a hierarchical structure. However, to date, the use of HPO has not yet been widely implemented in the field of inborn errors of immunity (IEIs), mainly due to a lack of comprehensive IEI-related terms. OBJECTIVES: We sought to systematically review available terms in HPO for the depiction of IEIs, to expand HPO, yielding more comprehensive sets of terms, and to reannotate IEIs with HPO terms to provide accurate, standardized phenotypic descriptions. METHODS: We initiated a collaboration involving expert clinicians, geneticists, researchers working on IEIs, and bioinformaticians. Multiple branches of the HPO tree were restructured and extended on the basis of expert review. Our ontology-guided machine learning coupled with a 2-tier expert review was applied to reannotate defined subgroups of IEIs. RESULTS: We revised and expanded 4 main branches of the HPO tree. Here, we reannotated 73 diseases from 4 International Union of Immunological Societies-defined IEI disease subgroups with HPO terms. We achieved a 4.7-fold increase in the number of phenotypic terms per disease. Given the new HPO annotations, we demonstrated improved ability to computationally match selected IEI cases to their known diagnosis, and improved phenotype-driven disease classification. CONCLUSIONS: Our targeted expansion and reannotation presents enhanced precision of disease annotation, will enable superior HPO-based IEI characterization, and hence benefit both IEI diagnostic and research activities.


Asunto(s)
Enfermedades Genéticas Congénitas/clasificación , Enfermedades del Sistema Inmune/clasificación , Enfermedades Raras/clasificación , Ontologías Biológicas , Humanos , Fenotipo
12.
Hum Mutat ; 43(6): 734-742, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35143083

RESUMEN

Over 10,000 rare genetic diseases have been identified, and millions of newborns are affected by severe rare genetic diseases each year. A variety of Human Phenotype Ontology (HPO)-based clinical decision support systems (CDSS) and patient repositories have been developed to support clinicians in diagnosing patients with suspected rare genetic diseases. In September 2017, we released PubCaseFinder (https://pubcasefinder.dbcls.jp), a web-based CDSS that provides ranked lists of genetic and rare diseases using HPO-based phenotypic similarities, where top-listed diseases represent the most likely differential diagnosis. We also developed a Matchmaker Exchange (MME) application programming interface (API) to query PubCaseFinder, which has been adopted by several patient repositories. In this paper, we describe notable updates regarding PubCaseFinder, the GeneYenta matching algorithm implemented in PubCaseFinder, and the PubCaseFinder API. The updated GeneYenta matching algorithm improves the performance of the CDSS automated differential diagnosis function. Moreover, the updated PubCaseFinder and new API empower patient repositories participating in MME and medical professionals to actively use HPO-based resources.


Asunto(s)
Bases de Datos Genéticas , Programas Informáticos , Algoritmos , Humanos , Recién Nacido , Fenotipo , Enfermedades Raras/genética
13.
Hum Mutat ; 43(8): 1082-1088, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35266245

RESUMEN

The ACMG framework for variant interpretation is well-established and widely used. Although formal guidelines have been published on the establishment of the gene-disease relationships as well, these are not nearly as widely acknowledged or utilized, and implementation of these guidelines is lagging. In addition, for many genes so little information is available that the framework cannot be used in sufficient detail. In this manuscript, we highlight the importance of distinguishing between phenotype-first and genotype-first gene-disease relationships. We discuss the approaches currently available to establish gene-disease relationships and suggest a checklist to assist in evaluating gene-disease relationships for genes with very little available information. Several real-life examples from clinical practice are given to illustrate the importance of a thorough thought process on gene-disease relationships. We hope that these considerations and the checklist will provide help for clinicians and clinical scientists faced which variants in genes without robustly ascertained gene-disease relationships.


Asunto(s)
Enfermedades Raras , Humanos , Fenotipo , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética
14.
Hum Mutat ; 43(6): 674-681, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35165961

RESUMEN

A major challenge in validating genetic causes for patients with rare diseases (RDs) is the difficulty in identifying other RD patients with overlapping phenotypes and variants in the same candidate gene. This process, known as matchmaking, requires robust data sharing solutions to be effective. In 2014 we launched PhenomeCentral, a RD data repository capable of collecting computer-readable genotypic and phenotypic data for the purposes of RD matchmaking. Over the past 7 years PhenomeCentral's features have been expanded and its data set has consistently grown. There are currently 1615 users registered on PhenomeCentral, which have contributed over 12,000 patient cases. Most of these cases contain detailed phenotypic terms, with a significant portion also providing genomic sequence data or other forms of clinical information. Matchmaking within PhenomeCentral, and with connections to other data repositories in the Matchmaker Exchange, have collectively resulted in over 60,000 matches, which have facilitated multiple gene discoveries. The collection of deep phenotypic and genotypic data has also positioned PhenomeCentral well to support next generation of matchmaking initiatives that utilize genome sequencing data, ensuring that PhenomeCentral will remain a useful tool in solving undiagnosed RD cases in the years to come.


Asunto(s)
Difusión de la Información , Enfermedades Raras , Genómica/métodos , Genotipo , Humanos , Difusión de la Información/métodos , Fenotipo , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética
15.
Hum Mutat ; 43(7): 900-918, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35344616

RESUMEN

Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.


Asunto(s)
Anomalías Craneofaciales , Enanismo , Deformidades Congénitas de las Extremidades , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Anomalías Urogenitales , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Enanismo/diagnóstico , Enanismo/genética , Genes Recesivos , Humanos , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Masculino , Fenotipo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Anomalías Urogenitales/diagnóstico , Anomalías Urogenitales/genética
16.
J Physiol ; 600(21): 4549-4568, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36048516

RESUMEN

High-fat diet (HFD) consumption is known to be associated with ovulatory disorders among women of reproductive age. Previous studies in animal models suggest that HFD-induced microglia activation contributes to hypothalamic inflammation. This causes the dysfunction of the hypothalamic-pituitary-ovarian (HPO) axis, leading to subfertility. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of lipid-soluble antidiabetic drugs that target primarily the early proximal tubules in kidney. Recent evidence revealed an additional expression site of SGLT2 in the central nervous system (CNS), indicating a promising role of SGLT2 inhibitors in the CNS. In type 2 diabetes patients and rodent models, SGLT2 inhibitors exhibit neuroprotective properties through reduction of oxidative stress, alleviation of cerebral atherosclerosis and suppression of microglia-induced neuroinflammation. Furthermore, clinical observations in patients with polycystic ovary syndrome (PCOS) demonstrated that SGLT2 inhibitors ameliorated patient anthropometric parameters, body composition and insulin resistance. Therefore, it is of importance to explore the central mechanism of SGLT2 inhibitors in the recovery of reproductive function in patients with PCOS and obesity. Here, we review the hypothalamic inflammatory mechanisms of HFD-induced microglial activation, with a focus on the clinical utility and possible mechanism of SGLT2 inhibitors in promoting reproductive fitness.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome del Ovario Poliquístico , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Femenino , Humanos , Animales , Transportador 2 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Tipo 2/metabolismo , Glucósidos/farmacología , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Hipoglucemiantes/farmacología , Glucosa/metabolismo , Sodio/metabolismo
17.
Front Neuroendocrinol ; 62: 100929, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34171352

RESUMEN

Women's increased risk for depression during reproductive transitions suggests an involvement of the hypothalamic-pituitary-ovarian (HPO) axis. This is the first systematic review and meta-analysis of HPO functioning in female mood disorders. Inclusionary criteria were: i) women suffering from premenstrual dysphoric disorder (PMDD) or a depressive disorder, ii) assessment of HPO-axis related biomarkers, iii) a case-control design. Sixty-three studies (N = 5,129) were included. There was evidence for PMDD to be paralleled by lower luteal oestradiol levels. Women with depression unrelated to reproductive transition showed lower testosterone levels than healthy controls and there was some evidence for lower dehydroepiandrosterone sulfate levels. There were no differences in HPO-related parameters between women with pregnancy, postpartum, and perimenopausal depression and controls. Women with PMDD and depression unrelated to reproductive transitions exhibit specific changes in the HPO-axis, which potentially contribute to their symptoms. Further research into reproductive mood disorders characterised by extreme endocrine changes is warranted.


Asunto(s)
Trastorno Disfórico Premenstrual , Síndrome Premenstrual , Femenino , Hormonas , Humanos , Trastornos del Humor , Embarazo
18.
Am J Med Genet C Semin Med Genet ; 190(2): 231-242, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35872606

RESUMEN

Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care.


Asunto(s)
Biología Computacional , Placenta , Recién Nacido , Humanos , Femenino , Embarazo , Biología Computacional/métodos , Fenotipo , Enfermedades Raras , Secuenciación del Exoma
19.
Am J Med Genet A ; 188(3): 735-750, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34816580

RESUMEN

Genomic sequencing and clinical genomics have demonstrated that substantial subsets of atypical and/or severe disease presentations result from multilocus pathogenic variation (MPV) causing blended phenotypes. In an infant with a severe neurodevelopmental disorder, four distinct molecular diagnoses were found by exome sequencing (ES). The blended phenotype that includes brain malformation, dysmorphism, and hypotonia was dissected using the Human Phenotype Ontology (HPO). ES revealed variants in CAPN3 (c.259C > G:p.L87V), MUSK (c.1781C > T:p.A594V), NAV2 (c.1996G > A:p.G666R), and ZC4H2 (c.595A > C:p.N199H). CAPN3, MUSK, and ZC4H2 are established disease genes linked to limb-girdle muscular dystrophy (OMIM# 253600), congenital myasthenia (OMIM# 616325), and Wieacker-Wolff syndrome (WWS; OMIM# 314580), respectively. NAV2 is a retinoic-acid responsive novel disease gene candidate with biological roles in neurite outgrowth and cerebellar dysgenesis in mouse models. Using semantic similarity, we show that no gene identified by ES individually explains the proband phenotype, but rather the totality of the clinically observed disease is explained by the combination of disease-contributing effects of the identified genes. These data reveal that multilocus pathogenic variation can result in a blended phenotype with each gene affecting a different part of the nervous system and nervous system-muscle connection. We provide evidence from this n = 1 study that in patients with MPV and complex blended phenotypes resulting from multiple molecular diagnoses, quantitative HPO analysis can allow for dissection of phenotypic contribution of both established disease genes and novel disease gene candidates not yet proven to cause human disease.


Asunto(s)
Distrofia Muscular de Cinturas , Trastornos del Neurodesarrollo , Animales , Calpaína/genética , Egipto , Humanos , Lactante , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/genética , Mutación , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Secuenciación del Exoma
20.
J Avian Med Surg ; 36(1): 28-38, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35526162

RESUMEN

The objective of this study was to construct a calibration phantom for bone mineral density (BMD) measurements adapted to avian anatomy by quantitative computed tomography. The determination of BMD is important to assess avian osteoporosis in poultry at production facilities and to study biological features in association with flight patterns in birds. Quantitative computed tomography measured in Hounsfield units is a well-established technique for BMD measurements. Translation of Hounsfield units into the International System of Units (mg/cm3) requires the use of a calibration phantom. Although calibration phantoms for routine use in humans are commercially available, phantoms suited to avian anatomy are not. A liquid dipotassium hydrogen phosphate calibration standard was constructed out of commercially available materials, easily allowing for variations in size, bone diameter, and adaptation to avian skeletal anatomy. Periodically, quantitative computed tomography scans were performed to monitor constant correlation to the calibration standard over 3 months and to monitor for the potential influence of gas bubbling and water evaporation in the rods on BMD measurements. Finally, the calibration phantom was tested for BMD measurements with carcasses from 2 bird species, including 3 peregrine falcons (Falco peregrinus; 2 juvenile males, 1 adult female with inactive reproductive status) and 4 Eurasian kestrels (Falco tinnunculus; 1 juvenile and 2 adult males, 1 adult female with inactive reproductive status). Results demonstrated stability of the calibration phantom without the need to refill or replace rods, plus a stable correlation line (R 2 = .99) over the 3-month evaluation period. It was possible to place the phantom directly on the bird carcasses, close to the measured bones, to improve BMD analysis. As evaluated, the phantom appeared to be adaptive to avian skeletal anatomy. Moreover, it was possible to build the phantom within 24 hours from commercially available materials.


Asunto(s)
Densidad Ósea , Tomografía Computarizada por Rayos X , Animales , Aves , Cadáver , Femenino , Masculino , Fantasmas de Imagen , Fosfatos , Compuestos de Potasio , Tomografía Computarizada por Rayos X/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA