Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36235109

RESUMEN

This work presents an effective and fast procedure to valorize the main waste produced from the biodiesel industry, i.e., the glycerol. The acetalization of glycerol with acetone represents an effective strategy to produce the valuable solketal, a fuel additive component. In this work, the catalytic efficiency of different commercial heteropolyacids (HPAas) was compared under a solvent-free system. The HPAs used were H3[PW12O40] (PW12), H3[PMo12O40] (PMo12) and H4[SiW12O40] (SiW12). The influence of reactional parameters such as reactants stoichiometry, catalyst concentration and reaction temperature were investigated in order to optimize experimental conditions to increase cost-efficiency and sustainability. HPAs demonstrated to be highly efficient for this type of reaction, presenting a high and fast glycerol conversion, with high selectivity to solketal under sustainable conditions (solvent-free system and room temperature medium). The activity of HPAs using 3% to glycerol weight and a glycerol/acetone ratio of 1:15 followed the order: PW12 (99.2%) > PMo12 (91.4%) > SiW12 (90.7%) as a result of the strong acidic sites after 5 min. In fact, only 5 min of reaction were needed to achieve 97% of solketal product in the presence of the PW12 as a catalyst. This last system presents an effective, selective and sustainable catalytic system to valorize glycerol.


Asunto(s)
Biocombustibles , Glicerol , Acetona , Catálisis , Solventes
2.
Molecules ; 22(10)2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28956838

RESUMEN

The production of carboxylic acids by partial wet oxidation of alkali lignin at elevated temperatures and pressures was studied experimentally. Two different heteropoly acids, phosphotungstic acid (H3PW12O40) and phosphomolybdic acid (H3PMo12O40), were used to catalyze the oxidation of lignin under hydrothermal conditions. Factors influencing the total yield of carboxylic acids formed during the partial oxidation of lignin were investigated. Formic, acetic and succinic acids were the major products identified. Of the two catalysts used, phosphomolybdic acid gave the most promising results, with carboxylic acid yields and lignin conversions of up to 45% and 95%, respectively.


Asunto(s)
Lignina/química , Oxidación-Reducción , Ácidos Fosfóricos/química , Ácidos Carboxílicos/química , Catálisis , Hidrólisis , Molibdeno/química , Temperatura , Factores de Tiempo
3.
Chemistry ; 20(32): 10160-9, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24989116

RESUMEN

The reaction of ß,δ-triketones with an ethereal solution of H2O2 catalyzed by heteropoly acids in the presence of a polar aprotic co-solvent proceeds via three pathways to form three classes of peroxides: tricyclic monoperoxides, bridged tetraoxanes, and a pair of stereoisomeric ozonides. The reaction is unusual in that produces bridged tetraoxanes and ozonides with one of the three carbonyl groups remaining intact. In the synthesis of bridged tetraoxanes, the peroxide ring is formed by the reaction of hydrogen peroxide with two carbonyl groups at the ß positions. The synthesis of ozonides from ketones and hydrogen peroxide is a unique process in which the ozonide ring is formed with the participation of two carbonyl groups at the δ positions. Rearrangements of ozonides were found for the first time after more than one century of their active investigation. Ozonides are interconverted with each other and rearranged into tricyclic monoperoxides, whereas ozonides and tricyclic monoperoxides are transformed into bridged tetraoxanes. The individual reaction products were isolated by column chromatography and characterized by NMR spectroscopy, mass spectrometry, and elemental analysis. One representative of each class of peroxides was characterized by X-ray diffraction.


Asunto(s)
Compuestos Heterocíclicos/síntesis química , Peróxido de Hidrógeno/química , Cetonas/química , Peróxidos/síntesis química , Ciclización , Compuestos Heterocíclicos/química , Peróxidos/química , Tetraoxanos/síntesis química , Tetraoxanos/química , Difracción de Rayos X
4.
Bioresour Technol ; 341: 125848, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34467890

RESUMEN

In this work, near-complete conversion of lignocellulosic biomass and high products yields were achieved through catalytic transfer hydrogenolysis (CTH) in isopropanol using a heteropoly acid SiW12 synergistic with Pd/C catalyst at a relatively mild condition. The performances of various heteropoly acids and catalytic conditions were extensively examined. The results confirmed that SiW12 exhibited the highest activity on disrupting C-C linkages and C-O linkages than H2WO4, PW12, and PMo12. 34.91 wt% and 43.55 wt% monophenols were achieved for hydrogenolysis of bagasse and eucalyptus, respectively, at their optimal temperature for 5 h. Characterization studies on the lignin oil revealed that the notable structural changes were observed including the breaking of the side chain alkyl-aryl ether bonds and glycosidic bonds, while methoxyl groups were retained. Additionally, particle size of feedstock also has significant impact on the distribution and yields of the monophenols.


Asunto(s)
Lignina , Paladio , Biomasa , Carbono , Catálisis
5.
Bioresour Technol ; 319: 124122, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32971329

RESUMEN

The aim of this work was to study the one-pot synthesis of sorbitol via hydrolysis-hydrogenation of cellulose in the presence of Ru-containing composites based on H3PW12O40 supported on ZrO2 and Nb2O5 (Ru-PW/ZrO2 and Ru-PW/Nb2O5). The main parameters impacted the reaction rate and yield of sorbitol, i.e. reaction conditions and type of catalyst were investigated. Ru-PW/ZrO2 systems were more active than Ru-PW/Nb2O5. The yield of sorbitol was found to depend on the activation temperature of PW/ZrO2 and PW/Nb2O5 which affected textural properties, the amount of acid sites and size of Ru nanoparticles. The highest 66% sorbitol yield was observed in the presence of 3%Ru-PW/ZrO2 activated at 550 °C and 1/1 of weight ratio of cellulose/catalyst, 180 °C, 7 MPa hydrogen pressure. This catalyst was stable for three cycles of the reaction without lost of it's activity.


Asunto(s)
Rutenio , Sorbitol , Catálisis , Celulosa , Hidrogenación , Hidrólisis
6.
ChemSusChem ; 12(12): 2715-2724, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-30908861

RESUMEN

2,5-Furandicarboxylic acid (FDCA) is regarded as an important bioderived substitute for petrochemically derived terephthalic acid (PTA), which is widely applied in the polymer industry. This work delineates the base-free oxidation of 5-hydroxymethylfurfural (HMF) to FDCA in an ionic liquid/heteropoly acid (IL-HPA) catalytic system. HPAs displayed high activity for selective oxidation; their active center (Mo/V) was activated by O2 and transformed from oxygen single and double bonds to epoxy groups, resulting in an FDCA yield of 89 % for HPMV6 (HPM=H3 PMo12 O40 ) in the presence of [Bmim]Cl (1-butyl-3-methylimidazolium chloride) under optimized reaction conditions. The high solubility of imidazole ILs for FDCA improved the affinity of HMF and the active centers of the catalyst and protected the furan ring from oxidative cleavage. Furthermore, multiple hydrogen bonds simultaneously formed between the electronegative anions and hydroxy protons of HMF, as well as the hydrogen atoms of the imidazole rings and hydroxy groups, promoting the transformation to aldehyde groups. Various starting materials were studied, and a moderate FDCA yield was obtained from glucose. This work provides an interesting IL-HPA catalytic system for the base-free synthesis of FDCA from accessible monosaccharides and illustrates the great potential of FDCA production from renewable carbohydrates.

7.
Bioresour Technol ; 293: 122036, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31479857

RESUMEN

To improve the neutral DES (choline chloride/glycerol) pretreatment performance, three environmentally friendly heteropoly acids (phosphotungstic, phosphomolybdic and silicotungstic acids) were used as catalysts. Pretreatment with silicotungstic acid at 120 °C for 3 h resulted in 97.3% of enzymatic digestibility at an enzyme loading of 15FPU/g substrate, which was approximately eight times more than that of raw samples. More importantly, 80% of glucose yield was obtained within 12 h. Simultaneously, 81.8% of ethanol yield was achieved in the SSSF process. The efficient conversion was ascribed to the significant delignification (89.5%), which resulted in the exposure of more accessible specific surface area. This was attributed to that the proton (H+) from heteropoly acids could significantly contribute to the lignin degradation. Intriguingly, trace acetic acid (0.39 g/L) and HMF (0.21-0.95 g/L) in the pretreatment liquor were produced without any significant deleterious effects. These discoveries provide new insights for efficient biomass conversion under mild conditions.


Asunto(s)
Etanol , Lignina , Biomasa , Fermentación , Hidrólisis , Solventes
8.
Curr Org Synth ; 16(4): 615-649, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31984932

RESUMEN

Recent advances in the application of environmentally benign acid catalysts in organic synthesis are reviewed. The work includes three main parts; (i) description of environmentally benign acid catalysts, (ii) synthesis with heterogeneous and (iii) homogeneous catalysts. The first part provides a brief overview of acid catalysts, both solid acids (metal oxides, zeolites, clays, ion-exchange resins, metal-organic framework based catalysts) and those that are soluble in green solvents (water, alcohols) and at the same time could be regenerated after reactions (metal triflates, heteropoly acids, acidic organocatalysts etc.). The synthesis sections review a broad array of the most common and practical reactions such as Friedel-Crafts and related reactions (acylation, alkylations, hydroxyalkylations, halogenations, nitrations etc.), multicomponent reactions, rearrangements and ring transformations (cyclizations, ring opening). Both the heterogeneous and homogeneous catalytic synthesis parts include an overview of asymmetric acid catalysis with chiral Lewis and Brønsted acids. Although a broad array of catalytic processes are discussed, emphasis is placed on applications with commercially available catalysts as well as those of sustainable nature; thus individual examples are critically reviewed regarding their contribution to sustainable synthesis.

9.
Bioresour Technol ; 261: 70-75, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29653336

RESUMEN

The aim of this work was to study the degradation of lignin in raw wood via pretreatment with heteropoly acids as substitutes for traditional H2SO4 in γ-valerolactone/water. By optimizing catalyst concentration, reaction time and temperature, the optimal lignin degradation conditions are obtained (130 °C, 3 h and 20 mM silicotungstic acid). SEM and FTIR measurements demonstrated the efficient lignin degradation ability of HPAs in the GVL/H2O solvent, with negligible damage to cellulose within the raw wood. Furthermore, an elaborated enzymatic hydrolysis study of the thus obtained cellulosic feedstock revealed its suitability for enzymatic digestion, with great potential as starting material for the production of fermentable sugar from biomass in future biorefinery applications.


Asunto(s)
Lignina/metabolismo , Madera , Biomasa , Celulosa , Hidrólisis , Lactonas , Eliminación de Residuos , Agua
10.
ChemSusChem ; 10(22): 4599-4609, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29024529

RESUMEN

In the presence of an electric field, bipolar membranes (BPMs) are capable of initiating water disassociation (WD) within the interfacial region, which can make water splitting for renewable energy in the presence of a pH gradient possible. In addition to WD catalytic efficiency, there is also the need for electronic conductivity in this region for membrane-integrated artificial photosynthesis (AP) systems. Graphene oxide (GO) was shown to catalyze WD and to be controllably reduced, which resulted in electronic conductivity. Layer-by-layer (LbL) film deposition was employed to improve GO film uniformity in the interfacial region to enhance WD catalysis and, through the addition of a conducting polymer in the process, add electronic conductivity in a hybrid film. Three different deposition methods were tested to optimize conducting polymer synthesis with the oxidant in a metastable solution and to yield the best film properties. It was found that an approach that included substrate dipping in a solution containing the expected final monomer/oxidant ratio provided the most predictable film growth and smoothest films (by UV/Vis spectroscopy and atomic force microscopy/scanning electron microscopy, respectively), whereas dipping in excess oxidant or co-spraying the oxidant and monomer produced heterogeneous films. Optimized films were found to be electronically conductive and produced a membrane ohmic drop that was acceptable for AP applications. Films were integrated into the interfacial region of BPMs and revealed superior WD efficiency (≥1.4 V at 10 mA cm-2 ) for thinner films (<10 bilayers≈100 nm) than for either the pure GO catalyst or conducting polymer individually, which indicated that there was a synergistic effect between these materials in the structure configured by the LbL method.


Asunto(s)
Membranas Artificiales , Imitación Molecular , Fotosíntesis , Catálisis , Conductividad Eléctrica , Grafito , Óxidos , Energía Renovable , Agua/química
11.
ChemSusChem ; 10(14): 2880-2885, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28621498

RESUMEN

o-Xylene (OX) is a large-volume commodity chemical that is conventionally produced from fossil fuels. In this study, an efficient and sustainable two-step route is used to produce OX from biomass-derived pinacol and acrolein. In the first step, the phosphotungstic acid (HPW)-catalyzed pinacol dehydration in 1-ethyl-3-methylimidazolium chloride ([emim]Cl) selectively affords 2,3-dimethylbutadiene. The high selectivity of this reaction can be ascribed to the H-bonding interaction between Cl- and the hydroxy group of pinacol. The stabilization of the carbocation intermediate by the surrounding anion Cl- may be another reason for the high selectivity. Notably, the good reusability of the HPW/[emim]Cl system can reduce the waste output and production cost. In the second step, OX is selectively produced by a Diels-Alder reaction of 2,3-dimethylbutadiene and acrolein, followed by a Pd/C-catalyzed decarbonylation/aromatization cascade in a one-pot fashion. The sustainable two-step process efficiently produces renewable OX in 79 % overall yield. Analogously, biomass-derived crotonaldehyde and pinacol can also serve as the feedstocks for the production of 1,2,4-trimethylbenzene.


Asunto(s)
Acroleína/química , Biomasa , Glicoles/química , Tecnología Química Verde , Xilenos/química , Enlace de Hidrógeno , Temperatura
12.
ChemSusChem ; 10(7): 1494-1500, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28093888

RESUMEN

A series of choline (Ch)-exchanged heteropoly acids (HOCH2 CH2 N(CH3 )3 )x H(6-x) P2 W18 O62 [abbreviated as Chx H(6-x) P2 W18 O62 , x=1-6] was synthesized and used as catalysts for the reaction of α-angelica lactone (alpha-AL) with n-butanol to form butyl levulinate (BL). The solubility of Chx H(6-x) P2 W18 O62 in the reaction mixture was temperature dependent: The catalysts were soluble under the reaction conditions and precipitated upon cooling of the reaction mixture. This facilitated recovery of the catalysts from the liquid phase. Importantly, an increase of the Ch content caused a decrease of the catalyst solubility. Catalytic activity of Chx H(6-x) P2 W18 O62 for the reaction with n-butanol appeared to be in good agreement with the concentration of Brønsted-acidic sites. The results suggest that the reaction proceeded through formation of pseudo-butyl levulinate as intermediate. Ch2 H4 P2 W18 O62 exhibited the best balance between catalytic activity and temperature-dependent solubility. The yield of BL reached 79.4 % at full conversion of alpha-AL at a moderate temperature of 75 °C in an open system. Chx H(6-x) P2 W18 O62 could be successfully reused five times without significant loss of activity.


Asunto(s)
4-Butirolactona/análogos & derivados , Ácidos Levulínicos/química , Ácidos Levulínicos/síntesis química , 4-Butirolactona/química , Catálisis , Técnicas de Química Sintética , Solubilidad , Temperatura
13.
Chempluschem ; 78(11): 1393-1399, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31986646

RESUMEN

A novel, nonleachable hybrid of heteropoly acid and polyvinylpyrrolidone (or povidone) catalyzes the acetalization of aldehydes in methanol at room temperature followed by reaction with indole to give bis(indolyl)methanes (BIMs) and tris(indolyl)methanes (TIMs) in quantitative yields (90-97 %). The catalyst was shown by pyridine FTIR spectroscopy to possess Brønsted acidity, and the hybrid formation was confirmed by XRD and 31 P NMR studies. Friedel-Crafts alkylation of indole as well as the tandem synthesis of BIMs and TIMs were established with several types of carbonyl and indole substrates to give the corresponding products quantitatively. The catalyst was recycled efficiently for three successive runs without losing its original activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA