Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.336
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 180(1): 150-164.e15, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31883795

RESUMEN

In eukaryotes, heterochromatin is generally located at the nuclear periphery. This study investigates the biological significance of perinuclear positioning for heterochromatin maintenance and gene silencing. We identify the nuclear rim protein Amo1NUPL2 as a factor required for the propagation of heterochromatin at endogenous and ectopic sites in the fission yeast genome. Amo1 associates with the Rix1PELP1-containing RNA processing complex RIXC and with the histone chaperone complex FACT. RIXC, which binds to heterochromatin protein Swi6HP1 across silenced chromosomal domains and to surrounding boundary elements, connects heterochromatin with Amo1 at the nuclear periphery. In turn, the Amo1-enriched subdomain is critical for Swi6 association with FACT that precludes histone turnover to promote gene silencing and preserve epigenetic stability of heterochromatin. In addition to uncovering conserved factors required for perinuclear positioning of heterochromatin, these analyses elucidate a mechanism by which a peripheral subdomain enforces stable gene repression and maintains heterochromatin in a heritable manner.


Asunto(s)
Epigénesis Genética/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Represión Epigenética/genética , Silenciador del Gen , Herencia , Histonas/genética , Histonas/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
Cell ; 174(5): 1117-1126.e12, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30100186

RESUMEN

The methylation of histone 3 lysine 4 (H3K4) is carried out by an evolutionarily conserved family of methyltransferases referred to as complex of proteins associated with Set1 (COMPASS). The activity of the catalytic SET domain (su(var)3-9, enhancer-of-zeste, and trithorax) is endowed through forming a complex with a set of core proteins that are widely shared from yeast to humans. We obtained cryo-electron microscopy (cryo-EM) maps of the yeast Set1/COMPASS core complex at overall 4.0- to 4.4-Å resolution, providing insights into its structural organization and conformational dynamics. The Cps50 C-terminal tail weaves within the complex to provide a central scaffold for assembly. The SET domain, snugly positioned at the junction of the Y-shaped complex, is extensively contacted by Cps60 (Bre2), Cps50 (Swd1), and Cps30 (Swd3). The mobile SET-I motif of the SET domain is engaged by Cps30, explaining its key role in COMPASS catalytic activity toward higher H3K4 methylation states.


Asunto(s)
Proteínas Fúngicas/química , Histona Metiltransferasas/química , Histonas/química , Animales , Dominio Catalítico , Chaetomium/química , Cromatina/química , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/química , Humanos , Insectos , Péptidos y Proteínas de Señalización Intracelular , Metilación , Subunidades de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Programas Informáticos
3.
Mol Cell ; 83(11): 1767-1785, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207657

RESUMEN

Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Histonas/genética , Histonas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Schizosaccharomyces/genética , Epigénesis Genética
4.
Mol Cell ; 83(14): 2398-2416.e12, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37402365

RESUMEN

Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.


Asunto(s)
Proteínas Nucleares , Síndrome de Sotos , Animales , Humanos , Proteínas Nucleares/metabolismo , Cromatina , Síndrome de Sotos/genética , Síndrome de Sotos/metabolismo , Histona Metiltransferasas/genética , Factores de Transcripción/genética , Diferenciación Celular/genética , Mamíferos/metabolismo , N-Metiltransferasa de Histona-Lisina/genética
5.
Mol Cell ; 83(9): 1412-1428.e7, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37098340

RESUMEN

During postnatal development, the DNA methyltransferase DNMT3A deposits high levels of non-CG cytosine methylation in neurons. This methylation is critical for transcriptional regulation, and loss of this mark is implicated in DNMT3A-associated neurodevelopmental disorders (NDDs). Here, we show in mice that genome topology and gene expression converge to shape histone H3 lysine 36 dimethylation (H3K36me2) profiles, which in turn recruit DNMT3A and pattern neuronal non-CG methylation. We show that NSD1, an H3K36 methyltransferase mutated in NDD, is required for the patterning of megabase-scale H3K36me2 and non-CG methylation in neurons. We find that brain-specific deletion of NSD1 causes altered DNA methylation that overlaps with DNMT3A disorder models to drive convergent dysregulation of key neuronal genes that may underlie shared phenotypes in NSD1- and DNMT3A-associated NDDs. Our findings indicate that H3K36me2 deposited by NSD1 is important for neuronal non-CG DNA methylation and suggest that the H3K36me2-DNMT3A-non-CG-methylation pathway is likely disrupted in NSD1-associated NDDs.


Asunto(s)
Metilación de ADN , Histonas , Animales , Ratones , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Neuronas/metabolismo
6.
Mol Cell ; 83(22): 4000-4016.e6, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37935198

RESUMEN

While 19S proteasome regulatory particle (RP) inhibition is a promising new avenue for treating bortezomib-resistant myeloma, the anti-tumor impact of inhibiting 19S RP component PSMD14 could not be explained by a selective inhibition of proteasomal activity. Here, we report that PSMD14 interacts with NSD2 on chromatin, independent of 19S RP. Functionally, PSMD14 acts as a histone H2AK119 deubiquitinase, facilitating NSD2-directed H3K36 dimethylation. Integrative genomic and epigenomic analyses revealed the functional coordination of PSMD14 and NSD2 in transcriptional activation of target genes (e.g., RELA) linked to myelomagenesis. Reciprocally, RELA transactivates PSMD14, forming a PSMD14/NSD2-RELA positive feedback loop. Remarkably, PSMD14 inhibitors enhance bortezomib sensitivity and fosters anti-myeloma synergy. PSMD14 expression is elevated in myeloma and inversely correlated with overall survival. Our study uncovers an unappreciated function of PSMD14 as an epigenetic regulator and a myeloma driver, supporting the pursuit of PSMD14 as a therapeutic target to overcome the treatment limitation of myeloma.


Asunto(s)
Histonas , Mieloma Múltiple , Humanos , Histonas/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Bortezomib/farmacología , Bortezomib/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Línea Celular Tumoral , Enzimas Desubicuitinizantes/metabolismo , Inhibidores de Proteasoma/farmacología , Transactivadores/metabolismo
7.
Mol Cell ; 82(20): 3810-3825.e8, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36108631

RESUMEN

Human mixed-lineage leukemia (MLL) family methyltransferases methylate histone H3 lysine 4 to different methylation states (me1/me2/me3) with distinct functional outputs, but the mechanism underlying the different product specificities of MLL proteins remains unclear. Here, we develop methodologies to quantitatively measure the methylation rate difference between mono-, di-, and tri-methylation steps and demonstrate that MLL proteins possess distinct product specificities in the context of the minimum MLL-RBBP5-ASH2L complex. Comparative structural analyses of MLL complexes by X-ray crystal structures, fluorine-19 nuclear magnetic resonance, and molecular dynamics simulations reveal that the dynamics of two conserved tyrosine residues at the "F/Y (phenylalanine/tyrosine) switch" positions fine-tune the product specificity. The variation in the intramolecular interaction between SET-N and SET-C affects the F/Y switch dynamics, thus determining the product specificities of MLL proteins. These results indicate a modified F/Y switch rule applicable for most SET domain methyltransferases and implicate the functional divergence of MLL proteins.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Leucemia , Humanos , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Lisina/metabolismo , Flúor/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Tirosina , Fenilalanina
8.
Mol Cell ; 82(20): 3901-3918.e7, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36206767

RESUMEN

How cancer-associated chromatin abnormalities shape tumor-immune interaction remains incompletely understood. Recent studies have linked DNA hypomethylation and de-repression of retrotransposons to anti-tumor immunity through the induction of interferon response. Here, we report that inactivation of the histone H3K36 methyltransferase NSD1, which is frequently found in squamous cell carcinomas (SCCs) and induces DNA hypomethylation, unexpectedly results in diminished tumor immune infiltration. In syngeneic and genetically engineered mouse models of head and neck SCCs, NSD1-deficient tumors exhibit immune exclusion and reduced interferon response despite high retrotransposon expression. Mechanistically, NSD1 loss results in silencing of innate immunity genes, including the type III interferon receptor IFNLR1, through depletion of H3K36 di-methylation (H3K36me2) and gain of H3K27 tri-methylation (H3K27me3). Inhibition of EZH2 restores immune infiltration and impairs the growth of Nsd1-mutant tumors. Thus, our work uncovers a druggable chromatin cross talk that regulates the viral mimicry response and enables immune evasion of DNA hypomethylated tumors.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Histona Metiltransferasas , Escape del Tumor , Animales , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Cromatina , Metilación de ADN , Neoplasias de Cabeza y Cuello/genética , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Interferones/genética , Proteínas Nucleares/metabolismo , Receptores de Interferón/genética , Retroelementos , Escape del Tumor/genética
9.
Genes Dev ; 36(7-8): 414-432, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35361678

RESUMEN

Six methyltransferases divide labor in establishing genomic profiles of histone H3 lysine 9 methylation (H3K9me), an epigenomic modification controlling constitutive heterochromatin, gene repression, and silencing of retroelements. Among them, SETDB1 is recruited to active chromatin domains to silence the expression of endogenous retroviruses. In the context of experiments aimed at determining the impact of SETDB1 on stimulus-inducible gene expression in macrophages, we found that loss of H3K9me3 caused by SETDB1 depletion was associated with increased recruitment of CTCF to >1600 DNA binding motifs contained within SINE B2 repeats, a previously unidentified target of SETDB1-mediated repression. CTCF is an essential regulator of chromatin folding that restrains DNA looping by cohesin, thus creating boundaries among adjacent topological domains. Increased CTCF binding to SINE B2 repeats enhanced insulation at hundreds of sites and increased loop formation within topological domains containing lipopolysaccharide-inducible genes, which correlated with their impaired regulation in response to stimulation. These data indicate a role of H3K9me3 in restraining genomic distribution and activity of CTCF, with an impact on chromatin organization and gene regulation.


Asunto(s)
Cromatina , Silenciador del Gen , Heterocromatina , Metilación , Retroelementos
10.
Mol Cell ; 81(10): 2183-2200.e13, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34019788

RESUMEN

To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.


Asunto(s)
Biocatálisis , Histonas/metabolismo , Oncogenes , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Línea Celular , Cromatina/metabolismo , Proteínas Co-Represoras/metabolismo , Secuencia Conservada , Evolución Molecular , Redes Reguladoras de Genes , Genoma , Histona Desacetilasas/metabolismo , Humanos , Cinética , Metilación , Modelos Biológicos , ARN Polimerasa II/metabolismo
11.
Mol Cell ; 81(21): 4481-4492.e9, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34555356

RESUMEN

The etiological role of NSD2 enzymatic activity in solid tumors is unclear. Here we show that NSD2, via H3K36me2 catalysis, cooperates with oncogenic KRAS signaling to drive lung adenocarcinoma (LUAD) pathogenesis. In vivo expression of NSD2E1099K, a hyperactive variant detected in individuals with LUAD, rapidly accelerates malignant tumor progression while decreasing survival in KRAS-driven LUAD mouse models. Pathologic H3K36me2 generation by NSD2 amplifies transcriptional output of KRAS and several complementary oncogenic gene expression programs. We establish a versatile in vivo CRISPRi-based system to test gene functions in LUAD and find that NSD2 loss strongly attenuates tumor progression. NSD2 knockdown also blocks neoplastic growth of PDXs (patient-dervived xenografts) from primary LUAD. Finally, a treatment regimen combining NSD2 depletion with MEK1/2 inhibition causes nearly complete regression of LUAD tumors. Our work identifies NSD2 as a bona fide LUAD therapeutic target and suggests a pivotal epigenetic role of the NSD2-H3K36me2 axis in sustaining oncogenic signaling.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Metilación de ADN , N-Metiltransferasa de Histona-Lisina/química , Histonas/química , Neoplasias Pulmonares/metabolismo , Proteínas Represoras/química , Adenocarcinoma del Pulmón/mortalidad , Animales , Biopsia , Sistemas CRISPR-Cas , Carcinogénesis/genética , Progresión de la Enfermedad , Epigénesis Genética , Epigenómica , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Oncogenes , Pronóstico , Transducción de Señal , Resultado del Tratamiento
12.
Genes Dev ; 35(11-12): 841-846, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34016690

RESUMEN

Epigenetic reprogramming occurs during gametogenesis as well as during embryogenesis to reset the genome for early development. In flowering plants, many heterochromatic marks are maintained in sperm, but asymmetric DNA methylation is mostly lost. Asymmetric DNA methylation is dependent on small RNA but the re-establishment of silencing in embryo is not well understood. Here we demonstrate that small RNAs direct the histone H3 lysine 9 dimethylation during Arabidopsis thaliana embryonic development, together with asymmetric DNA methylation. This de novo silencing mechanism depends on the catalytic domain of SUVH9, a Su(Var)3-9 homolog thought to be catalytically inactive.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN/genética , Histonas/metabolismo , ARN de Planta/metabolismo , Semillas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigénesis Genética/genética , Silenciador del Gen , Semillas/genética
13.
Mol Cell ; 77(6): 1265-1278.e7, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31959557

RESUMEN

Diverse accessory subunits are involved in the recruitment of polycomb repressive complex 2 (PRC2) to CpG island (CGI) chromatin. Here we report the crystal structure of a SUZ12-RBBP4 complex bound to fragments of the accessory subunits PHF19 and JARID2. Unexpectedly, this complex adopts a dimeric structural architecture, accounting for PRC2 self-association that has long been implicated. The intrinsic PRC2 dimer is formed via domain swapping involving RBBP4 and the unique C2 domain of SUZ12. MTF2 and PHF19 associate with PRC2 at around the dimer interface and stabilize the dimer. Conversely, AEBP2 binding results in a drastic movement of the C2 domain, disrupting the intrinsic PRC2 dimer. PRC2 dimerization enhances CGI DNA binding by PCLs in pairs in vitro, reminiscent of the widespread phenomenon of transcription factor dimerization in active transcription. Loss of PRC2 dimerization impairs histone H3K27 trimethylation (H3K27me3) on chromatin at developmental gene loci in mouse embryonic stem cells.


Asunto(s)
Cromatina/metabolismo , Islas de CpG , Metilación de ADN , Histonas/metabolismo , Complejo Represivo Polycomb 2/química , Multimerización de Proteína , Animales , Diferenciación Celular , Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histonas/genética , Humanos , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Neoplasias , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/fisiología , Conformación Proteica , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
EMBO J ; 42(23): e113798, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37849386

RESUMEN

Based on studies of animals and yeasts, methylation of histone H3 lysine 4 (H3K4me1/2/3, for mono-, di-, and tri-methylation, respectively) is regarded as the key epigenetic modification of transcriptionally active genes. In plants, however, H3K4me2 correlates negatively with transcription, and the regulatory mechanisms of this counterintuitive H3K4me2 distribution in plants remain largely unexplored. A previous genetic screen for factors regulating plant regeneration identified Arabidopsis LYSINE-SPECIFIC DEMETHYLASE 1-LIKE 3 (LDL3), which is a major H3K4me2 demethylase. Here, we show that LDL3-mediated H3K4me2 demethylation depends on the transcription elongation factor Paf1C and phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNAPII). In addition, LDL3 binds to phosphorylated RNAPII. These results suggest that LDL3 is recruited to transcribed genes by binding to elongating RNAPII and demethylates H3K4me2 cotranscriptionally. Importantly, the negative correlation between H3K4me2 and transcription is significantly attenuated in the ldl3 mutant, demonstrating the genome-wide impacts of the transcription-driven LDL3 pathway to control H3K4me2 in plants. Our findings implicate H3K4me2 demethylation in plants as chromatin records of transcriptional activity, which ensures robust gene control.


Asunto(s)
Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Cromatina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Plantas/metabolismo , Desmetilación
15.
EMBO J ; 42(21): e114220, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37691541

RESUMEN

DELLA proteins are master regulators of gibberellic acid (GA) signaling through their effects on gene expression. Enhanced DELLA accumulation in rice and wheat varieties has greatly contributed to grain yield increases during the green revolution. However, the molecular basis of DELLA-mediated gene repression remains elusive. In this work, we show that the rice DELLA protein SLENDER RICE1 (SLR1) forms a tripartite complex with Polycomb-repressive complex 2 (PRC2) and the histone deacetylase HDA702 to repress downstream genes by establishing a silent chromatin state. The slr1 mutation and GA signaling resulted in dissociation of PRC2 and HDA702 from GA-inducible genes. Loss-of-function or downregulation of the chromatin regulators impaired SLR1-dependent histone modification and gene repression. Time-resolved analysis of GA signaling revealed that GA-induced transcriptional activation was associated with a rapid increase of H3K9ac followed by H3K27me3 removal. Collectively, these results establish a general epigenetic mechanism for DELLA-mediated gene repression and reveal details of the chromatin dynamics during transcriptional activation stimulated by GA signaling.


Asunto(s)
Giberelinas , Oryza , Giberelinas/metabolismo , Giberelinas/farmacología , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Expresión Génica , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
Mol Cell ; 76(5): 738-752.e7, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31809743

RESUMEN

The transition of RNA polymerase II (Pol II) from initiation to productive elongation is a central, regulated step in metazoan gene expression. At many genes, Pol II pauses stably in early elongation, remaining engaged with the 25- to 60-nt-long nascent RNA for many minutes while awaiting signals for release into the gene body. However, 15%-20% of genes display highly unstable promoter Pol II, suggesting that paused polymerase might dissociate from template DNA at these promoters and release a short, non-productive mRNA. Here, we report that paused Pol II can be actively destabilized by the Integrator complex. Specifically, we present evidence that Integrator utilizes its RNA endonuclease activity to cleave nascent RNA and drive termination of paused Pol II. These findings uncover a previously unappreciated mechanism of metazoan gene repression, akin to bacterial transcription attenuation, wherein promoter-proximal Pol II is prevented from entering productive elongation through factor-regulated termination.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , Elongación de la Transcripción Genética , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , ARN Polimerasa II/genética , ARN Mensajero/genética
17.
Mol Cell ; 74(1): 8-18, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30951652

RESUMEN

The polycomb repressive complex 2 (PRC2) is a chromatin-associated methyltransferase catalyzing mono-, di-, and trimethylation of lysine 27 on histone H3 (H3K27). This activity is required for normal organismal development and maintenance of gene expression patterns to uphold cell identity. PRC2 function is often deregulated in disease and is a promising candidate for therapeutic targeting in cancer. In this review, we discuss the molecular mechanisms proposed to take part in modulating PRC2 recruitment and shaping H3K27 methylation patterns across the genome. This includes consideration of factors influencing PRC2 residence time on chromatin and PRC2 catalytic activity with a focus on the mechanisms giving rise to regional preferences and differential deposition of H3K27 methylation. We further discuss existing evidence for functional diversity between distinct subsets of PRC2 complexes with the aim of extracting key concepts and highlighting major open questions toward a more complete understanding of PRC2 function.


Asunto(s)
Metilación de ADN , Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Humanos , Lisina , Metilación , Complejo Represivo Polycomb 2/genética , Unión Proteica
18.
Proc Natl Acad Sci U S A ; 121(6): e2315596121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285941

RESUMEN

Heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), spreads across large domains and can be epigenetically inherited in a self-propagating manner. Heterochromatin propagation depends upon a read-write mechanism, where the Clr4/Suv39h methyltransferase binds to preexisting trimethylated H3K9 (H3K9me3) and further deposits H3K9me. How the parental methylated histone template is preserved during DNA replication is not well understood. Here, we demonstrate using Schizosaccharomyces pombe that heterochromatic regions are specialized replication domains demarcated by their surrounding boundary elements. DNA replication throughout these domains is distinguished by an abundance of replisome components and is coordinated by Swi6/HP1. Although mutations in the replicative helicase subunit Mcm2 that affect histone binding impede the maintenance of a heterochromatin domain at an artificially targeted ectopic site, they have only a modest impact on heterochromatin propagation via the read-write mechanism at an endogenous site. Instead, our findings suggest a crucial role for the replication factor Mcl1 in retaining parental histones and promoting heterochromatin propagation via a mechanism involving the histone chaperone FACT. Engagement of FACT with heterochromatin requires boundary elements, which position the heterochromatic domain at the nuclear peripheral subdomain enriched for heterochromatin factors. Our findings highlight the importance of replisome components and boundary elements in creating a specialized environment for the retention of parental methylated histones, which facilitates epigenetic inheritance of heterochromatin.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Histonas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Ensamble y Desensamble de Cromatina , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Epigénesis Genética
19.
Genes Dev ; 33(9-10): 550-564, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30842216

RESUMEN

Epigenetic modifications can maintain or alter the inherent symmetry of the nucleosome. However, the mechanisms that deposit and/or propagate symmetry or asymmetry are not understood. Here we report that yeast Set1C/COMPASS (complex of proteins associated with Set1) is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. Mutation of the dimer interface to make Set1C monomeric abolished H3K4me3 on most promoters. The most active promoters, particularly those involved in the oxidative phase of the yeast metabolic cycle, displayed H3K4me2, which is normally excluded from active promoters, and a subset of these also displayed H3K4me3. In wild-type yeast, deletion of the sole H3K4 demethylase, Jhd2, has no effect. However, in monomeric Set1C yeast, Jhd2 deletion increased H3K4me3 levels on the H3K4me2 promoters. Notably, the association of Set1C with the elongating polymerase was not perturbed by monomerization. These results imply that symmetrical H3K4 methylation is an embedded consequence of Set1C dimerism and that Jhd2 demethylates asymmetric H3K4me3. Consequently, rather than methylation and demethylation acting in opposition as logic would suggest, a dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. This presents a new paradigm for the establishment of epigenetic detail.


Asunto(s)
Epigénesis Genética/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Desmetilación , Dimerización , Eliminación de Gen , Histonas/metabolismo , Metilación , Mutagénesis , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética
20.
EMBO J ; 41(1): e106459, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34806773

RESUMEN

In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b in excitatory neurons of the postnatal forebrain, and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that Setd1b controls the expression of a set of genes with a broad H3K4me3 peak at their promoters, enriched for neuron-specific genes linked to learning and memory function. Comparative analyses in mice with conditional deletion of Kmt2a and Kmt2b histone methyltransferases show that SETD1B plays a more pronounced and potent role in regulating such genes. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-dependent regulation of H3K4me levels in postnatal neurons is critical for cognitive function.


Asunto(s)
Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Aprendizaje/fisiología , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/metabolismo , Epigénesis Genética , Hipocampo/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Integrasas/metabolismo , Memoria/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Sitio de Iniciación de la Transcripción , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA