Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.297
Filtrar
Más filtros

Intervalo de año de publicación
1.
Semin Immunol ; 67: 101753, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37060806

RESUMEN

Fusarium, Aspergillus and Candida are important fungal pathogens that cause visual impairment and blindness in the USA and worldwide. This review will summarize the epidemiology and clinical features of corneal infections and discuss the immune and inflammatory responses that play an important role in clinical disease. In addition, we describe fungal virulence factors that are required for survival in infected corneas, and the activities of neutrophils in fungal killing, tissue damage and cytokine production.


Asunto(s)
Fusarium , Queratitis , Humanos , Hongos , Córnea/microbiología , Córnea/patología , Queratitis/microbiología , Queratitis/patología , Fusarium/fisiología , Neutrófilos
2.
Clin Microbiol Rev ; : e0000624, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078136

RESUMEN

SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.

3.
Nano Lett ; 24(13): 4044-4053, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38517749

RESUMEN

Fungal keratitis (FK) is an infectious eye disease that poses a significant risk of blindness. However, the effectiveness of conventional antifungal drugs is limited due to the intrinsic ocular barrier that impedes drug absorption. There is an urgent need to develop new therapeutic strategies to effectively combat FK. Herein, we synthesized an ultrasmall positively charged carbon dot using a simple stage-melting method. The carbon dot can penetrate the corneal barrier by opening the tight junctions, allowing them to reach the lesion site and effectively kill the fungi. The results both in vitro and in vivo demonstrated that it exhibited good biocompatibility and antifungal activity, significantly improving the therapeutic effect in a mouse model of FK. Therefore, this biophilic ultrasmall size and positive carbon dot, characterized by its ability to penetrate the corneal barrier and its antifungal properties, may offer valuable insights into the design of effective ocular nanomedicines.


Asunto(s)
Úlcera de la Córnea , Infecciones Fúngicas del Ojo , Queratitis , Animales , Ratones , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Úlcera de la Córnea/tratamiento farmacológico , Úlcera de la Córnea/microbiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Córnea/microbiología
4.
J Infect Dis ; 229(Supplement_2): S255-S259, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37683095

RESUMEN

Mpox-related ophthalmic disease has been reported as infrequent. We retrospectively describe the ocular manifestations present in 11 of 100 patients with confirmed mpox; 9 were people with HIV. We suggest that an ophthalmological evaluation should be performed in all patients with ocular symptoms or moderate and severe mpox disease.


Asunto(s)
Infecciones por VIH , Mpox , Humanos , México , Estudios Retrospectivos , Ojo
5.
Infect Immun ; 92(4): e0048323, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38501672

RESUMEN

Aspergillus fumigatus (A. fumigatus) is one of the common pathogens of fungal keratitis. Fungal growth and invasion cause excessive inflammation and corneal damage, leading to severe vision loss. Neutrophils are the primary infiltrating cells critical for fungal clearance. Cathelicidin [LL-37 in humans and cathelicidin-related antimicrobial peptide (CRAMP) in mice], a natural antimicrobial peptide, can directly inhibit the growth of many pathogens and regulate immune responses. However, the role of cathelicidin and its effect on neutrophils in A. fumigatus keratitis remain unclear. By establishing A. fumigatus keratitis mouse models, we found that cathelicidin was increased in A. fumigatus keratitis. It could reduce fungal loads, lower clinical scores, and improve corneal transparency. Restriction of CRAMP on fungal proliferation was largely counteracted in CD18-/- mice, in which neutrophils cannot migrate into infected sites. When WT neutrophils were transferred into CD18-/- mice, corneal fungal loads were distinctly reduced, indicating that neutrophils are vital for CRAMP-mediated resistance. Furthermore, cathelicidin promoted neutrophils to phagocytose and degrade conidia both in vitro and in vivo. CXC chemokine receptor 2 (CXCR2) was reported to be a functional receptor of LL-37 on neutrophils. CXCR2 antagonist SB225002 or phospholipase C (PLC) inhibitor U73122 weakened LL-37-induced phagocytosis. Meanwhile, LL-37 induced PLC γ phosphorylation, which was attenuated by SB225002. SB225002 or the autophagy inhibitors Bafilomycin-A1 and 3-Methyladenine weakened LL-37-induced degradation of conidia. Transmission electron microscopy (TEM) observed that LL-37 increased autophagosomes in Aspergillus-infected neutrophils. Consistently, LL-37 elevated autophagy-associated protein expressions (Beclin-1 and LC3-II), but this effect was weakened by SB225002. Collectively, cathelicidin reduces fungal loads and improves the prognosis of A. fumigatus keratitis. Both in vitro and in vivo, cathelicidin promotes neutrophils to phagocytose and degrade conidia. LL-37/CXCR2 activates PLC γ to amplify neutrophils' phagocytosis and induces autophagy to eliminate intracellular conidia.


Asunto(s)
Aspergillus fumigatus , Queratitis , Compuestos de Fenilurea , Humanos , Animales , Ratones , Neutrófilos , Antifúngicos/metabolismo , Catelicidinas , Fosfolipasa C gamma/metabolismo , Queratitis/microbiología , Pronóstico , Ratones Endogámicos C57BL
6.
Emerg Infect Dis ; 30(7): 1406-1409, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38916573

RESUMEN

We describe a case of a 46-year-old man in Missouri, USA, with newly diagnosed advanced HIV and PCR-confirmed mpox keratitis. The keratitis initially resolved after intravenous tecovirimat and penicillin for suspected ocular syphilis coinfection. Despite a confirmatory negative PCR, he developed relapsed, ipsilateral PCR-positive keratitis and severe ocular mpox requiring corneal transplant.


Asunto(s)
Queratitis , Recurrencia , Humanos , Persona de Mediana Edad , Masculino , Queratitis/diagnóstico , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Missouri , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Sífilis/diagnóstico , Sífilis/tratamiento farmacológico
7.
Antimicrob Agents Chemother ; 68(3): e0124723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289077

RESUMEN

Bacterial keratitis is a vision-threatening infection mainly caused by Gram-positive bacteria (GPB). Antimicrobial therapy is commonly empirical using broad-spectrum agents with efficacy increasingly compromised by the emergence of antimicrobial resistance. We used a combination of phenotypic tests and genome sequencing to identify the predominant lineages of GPB causing keratitis and to characterize their antimicrobial resistance patterns. A total of 161 isolates, including Staphylococcus aureus (n = 86), coagulase-negative staphylococci (CoNS; n = 34), Streptococcus spp. (n = 34), and Enterococcus faecalis (n = 7), were included. The population of S. aureus isolates consisted mainly of clonal complex 5 (CC5) (30.2%). Similarly, the population of Staphylococcus epidermidis was homogenous with most of them belonging to CC2 (78.3%). Conversely, the genetic population of Streptococcus pneumoniae was highly diverse. Resistance to first-line antibiotics was common among staphylococci, especially among CC5 S. aureus. Methicillin-resistant S. aureus was commonly resistant to fluoroquinolones and azithromycin (78.6%) and tobramycin (57%). One-third of the CoNS were resistant to fluoroquinolones and 53% to azithromycin. Macrolide resistance was commonly caused by erm genes in S. aureus, mphC and msrA in CoNS, and mefA and msr(D) in streptococci. Aminoglycoside resistance in staphylococci was mainly associated with genes commonly found in mobile genetic elements and that encode for nucleotidyltransferases like ant(4')-Ib and ant(9)-Ia. Fluroquinolone-resistant staphylococci carried from 1 to 4 quinolone resistance-determining region mutations, mainly in the gyrA and parC genes. We found that GPB causing keratitis are associated with strains commonly resistant to first-line topical therapies, especially staphylococcal isolates that are frequently multidrug-resistant and associated with major hospital-adapted epidemic lineages.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Staphylococcus aureus , Azitromicina , Farmacorresistencia Bacteriana/genética , Macrólidos , Infecciones Estafilocócicas/microbiología , Staphylococcus/genética , Fluoroquinolonas , Streptococcus , Pruebas de Sensibilidad Microbiana
8.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739119

RESUMEN

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Asunto(s)
Antibacterianos , Biopelículas , Ciprofloxacina , Modelos Animales de Enfermedad , Queratitis , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Antibacterianos/farmacología , Porcinos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Biopelículas/efectos de los fármacos , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Ciprofloxacina/farmacología , Gentamicinas/farmacología , Meropenem/farmacología
9.
Small ; 20(21): e2308403, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098457

RESUMEN

Keratitis, an inflammation of the cornea caused by bacterial or fungal infections, is one of the leading causes of severe visual disability and blindness. Keratitis treatment requires both the prevention of infection and the reduction of inflammation. However, owing to their limited therapeutic functions, in addition to the ocular barrier, existing conventional medications are characterized by poor efficacy and low bioavailability, requiring high dosages or frequent topical treatment, which represents a burden on patients and increases the risk of side effects. In this study, manganese oxide nanocluster-decorated graphdiyne nanosheets (MnOx/GDY) are developed as multienzyme-like nanozymes for the treatment of infectious keratitis and loaded into hyaluronic acid and polymethyl methacrylate-based ocular microneedles (MGMN). MGMN not only exhibits antimicrobial and anti-inflammatory effects owing to its multienzyme-like activities, including oxidase, peroxidase, catalase, and superoxide dismutase mimics but also crosses the ocular barrier and shows increased bioavailability via the microneedle system. Moreover, MGMN is demonstrated to eliminate pathogens, prevent biofilm formation, reduce inflammation, alleviate ocular hypoxia, and promote the repair of corneal epithelial damage in in vitro, ex vivo, and in vivo experiments, thus providing a better therapeutic effect than commercial ophthalmic voriconazole, with no obvious microbial resistance or cytotoxicity.


Asunto(s)
Queratitis , Agujas , Queratitis/tratamiento farmacológico , Animales , Ratones , Enzimas/metabolismo , Biopelículas/efectos de los fármacos , Humanos , Óxidos , Compuestos de Manganeso
10.
Small ; 20(29): e2310461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38396201

RESUMEN

Bacteria-induced keratitis is a major cause of corneal blindness in both developed and developing countries. Instillation of antibiotic eyedrops is the most common management of bacterial keratitis but usually suffers from low bioavailability (i.e., <5%) and frequent administration, due to the existence of corneal epithelial barrier that prevents large and hydrophilic drug molecules from entering the cornea, and the tear film on corneal surface that rapidly washes drug away from the cornea. Here, a self-implantable core-shell microneedle (MN) patch with programmed drug release property to facilitate bacterial keratitis treatment is reported. The pH-responsive antimicrobial nanoparticles (NPs), Ag@ZIF-8, which are capable of producing antibacterial metal ions in the infected cornea and generating oxidative stress in bacteria, are loaded in the dissolvable core, while the anti-angiogenic drug, rapamycin (Rapa), is encapsulated in the biodegradable shell, thereby enabling rapid release of Ag@ZIF-8 NPs and sustained release of Rapa after corneal insertion. Owing to the programmed release feature, one single administration of the core-shell MN patch in a rat model of bacterial keratitis, can achieve satisfactory antimicrobial activity and superior anti-angiogenic and anti-inflammation effects as compared to daily topical eyedrops, indicating a great potential for the infectious keratitis therapy in clinics.


Asunto(s)
Liberación de Fármacos , Queratitis , Agujas , Animales , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Ratas , Sirolimus/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/uso terapéutico , Ratas Sprague-Dawley , Córnea/metabolismo , Córnea/efectos de los fármacos , Plata/química , Sistemas de Liberación de Medicamentos
11.
Int J Med Microbiol ; 314: 151602, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280372

RESUMEN

PURPOSE: Fusarium keratitis is a severe infection of the anterior eye, frequently leading to keratoplasty or surgical removal of the affected eye. A major risk factor for infection is the use of contact lenses. Inadequate hygiene precautions and mold-growth permissive storage fluids are important risk factors for fungal keratitis. The aim of this study was to comparatively analyze contact lens storage fluids disinfection efficacy against Fusarium species. METHODS: Eleven commercially available storage fluids were tested. The storage fluids were classified according to their active ingredients myristamidopropyldimethylamine (Aldox), polyhexanide and hydrogen peroxide. Efficacy was tested against isolates belonging to the Fusarium solani and Fusarium oxysporum species complexes as the most common agents of mould keratitis. Tests were carried out based on DIN EN ISO 14729. RESULTS: All Aldox and hydrogen peroxide (H2O2) based fluids were effective against Fusarium spp., while the majority of polyhexanide based storage fluids showed only limited or no antifungal effects. Efficacy of polyhexanide could be restored by the addition of the pH-regulating agent tromethamine - an additive component in one commercially available product. CONCLUSIONS: In summary, the use of Aldox- or hydrogen peroxide-based storage fluids may reduce the risk of Fusarium keratitis, while polyhexanide-based agents largely lack efficacy against Fusarium.


Asunto(s)
Biguanidas , Lentes de Contacto , Infecciones Fúngicas del Ojo , Fusarium , Queratitis , Propilaminas , Antifúngicos/farmacología , Peróxido de Hidrógeno/farmacología , Queratitis/prevención & control , Queratitis/microbiología , Lentes de Contacto/microbiología , Infecciones Fúngicas del Ojo/microbiología
12.
HIV Med ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725328

RESUMEN

BACKGROUND: People living with HIV are disproportionately represented among people with severe mpox. Mild and self-limiting conjunctival involvement has been well-documented, and severe ocular complications, including keratitis, corneal scarring, and the associated loss of vision, are increasingly recognized. Tecovirimat is the first-line antiviral therapy for severe mpox, but data around the efficacy of systemic antiviral agents for mpox are limited, particularly in cases of ocular mpox. CASE REPORT: Here, we describe a case of sight-threatening necrotic blepharokeratoconjunctivitis in a person with advanced HIV, requiring an extended course of tecovirimat due to persistent mpox viral shedding for nearly 5 months.

13.
Ophthalmology ; 131(3): 277-287, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37802392

RESUMEN

PURPOSE: To compare topical PHMB (polihexanide) 0.02% (0.2 mg/ml)+ propamidine 0.1% (1 mg/ml) with PHMB 0.08% (0.8 mg/ml)+ placebo (PHMB 0.08%) for Acanthamoeba keratitis (AK) treatment. DESIGN: Prospective, randomized, double-masked, active-controlled, multicenter phase 3 study (ClinicalTrials.gov identifier, NCT03274895). PARTICIPANTS: One hundred thirty-five patients treated at 6 European centers. METHODS: Principal inclusion criteria were 12 years of age or older and in vivo confocal microscopy with clinical findings consistent with AK. Also included were participants with concurrent bacterial keratitis who were using topical steroids and antiviral and antifungal drugs before randomization. Principal exclusion criteria were concurrent herpes or fungal keratitis and use of antiamebic therapy (AAT). Patients were randomized 1:1 using a computer-generated block size of 4. This was a superiority trial having a predefined noninferiority margin. The sample size of 130 participants gave approximately 80% power to detect 20-percentage point superiority for PHMB 0.08% for the primary outcome of the medical cure rate (MCR; without surgery or change of AAT) within 12 months, cure defined by clinical criteria 90 days after discontinuing anti-inflammatory agents and AAT. A prespecified multivariable analysis adjusted for baseline imbalances in risk factors affecting outcomes. MAIN OUTCOME MEASURES: The main outcome measure was MCR within 12 months, with secondary outcomes including best-corrected visual acuity and treatment failure rates. Safety outcomes included adverse event rates. RESULTS: One hundred thirty-five participants were randomized, providing 127 in the full-analysis subset (61 receiving PHMB 0.02%+ propamidine and 66 receiving PHMB 0.08%) and 134 in the safety analysis subset. The adjusted MCR within 12 months was 86.6% (unadjusted, 88.5%) for PHMB 0.02%+ propamidine and 86.7% (unadjusted, 84.9%) for PHMB 0.08%; the noninferiority requirement for PHMB 0.08% was met (adjusted difference, 0.1 percentage points; lower one-sided 95% confidence limit, -8.3 percentage points). Secondary outcomes were similar for both treatments and were not analyzed statistically: median best-corrected visual acuity of 20/20 and an overall treatment failure rate of 17 of 127 patients (13.4%), of whom 8 of 127 patients (6.3%) required therapeutic keratoplasty. No serious drug-related adverse events occurred. CONCLUSIONS: PHMB 0.08% monotherapy may be as effective (or at worse only 8 percentage points less effective) as dual therapy with PHMB 0.02%+ propamidine (a widely used therapy) with medical cure rates of more than 86%, when used with the trial treatment delivery protocol in populations with AK with similar disease severity. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Asunto(s)
Queratitis por Acanthamoeba , Benzamidinas , Biguanidas , Humanos , Queratitis por Acanthamoeba/diagnóstico , Queratitis por Acanthamoeba/tratamiento farmacológico , Producción de Medicamentos sin Interés Comercial , Estudios Prospectivos
14.
Ophthalmology ; 131(5): 568-576, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38092080

RESUMEN

PURPOSE: To benchmark the epidemiologic features of pediatric ocular surface inflammatory diseases (POSID). DESIGN: Retrospective cohort study. PARTICIPANTS: Patients 18 years of age or younger with a medical claim for a diagnosis of POSID in the Optum Labs Data Warehouse between 2007 and 2020. METHODS: Patients with claims of blepharokeratoconjunctivitis (BKC), herpes simplex keratoconjunctivitis (HSK), or vernal keratoconjunctivitis (VKC) were included. Those with less than 6 months of follow-up before the initial diagnosis of POSID were excluded. Odds ratios (ORs) were derived from multivariable logistic regression analyses evaluating the associations between epidemiologic variables and POSID development. MAIN OUTCOME MEASURES: The primary outcome was the estimated prevalence of POSID. Prevalence of POSID subtypes and changes in prevalence over time were also evaluated. RESULTS: Two thousand one hundred sixty-eight patients with POSID were identified from 2018 through 2019, yielding an estimated prevalence of 3.32 per 10 000. The prevalence of POSID was higher among children between 5 and 10 years of age, male children, those of Asian descent, and those living in the Northeast and the West census regions of the United States. The prevalence (per 10 000) of BKC, HSK, and VKC in the same period were 0.59 (95% confidence interval [CI], 0.53-0.65), 0.74 (95% CI, 0.68-0.81), and 1.99 (95% CI, 1.88-2.10), respectively, and significant differences were found in terms of age, sex, racial, ethnic, and regional distributions among the diagnoses. Between 2008 through 2009 and 2018 through 2019, a significant increase in POSID was noted among Asians (from 6.26 [95% CI, 5.28-7.36] to 11.80 [95% CI, 10.40-13.34]) driven by changes in VKC. Multivariable analysis demonstrated that age older than 5 years (OR, 2.57-3.75; 95% CI, 2.17-4.34), male sex (OR, 1.38; 95% CI, 1.26-1.50), Asian descent (OR, 3.12; 95% CI, 2.70-3.60), and Black or African American descent (OR, 1.26; 95% CI, 1.02-1.55) were associated with POSID development. CONCLUSIONS: This study provides an estimated prevalence of POSID and its 3 common subtypes in the United States, with important epidemiologic differences among them. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

15.
Cytokine ; 179: 156626, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38678810

RESUMEN

PURPOSE: To determine the antifungal, anti-inflammatory and neuroprotective effects of resveratrol (RES) in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Cytotoxicity assay and Draize eye assay were performed to assess the toxicity of RES. The antifungal effect of RES was assessed by minimal inhibitory concentration, scanning or transmission electron microscopy, propidium iodide uptake assay, and Calcofluor white staining. Phosphorylation of p38 MAPK, mRNA and protein levels of Dectin-1 and related inflammatory factors were measured by qRT-PCR, ELISA and Western blot in vitro and in vivo. Clinical score, HE staining, plate count, and myeloperoxidase test were used to observe the progress of fungal keratitis. IF staining, qRT-PCR, and the Von Frey test were selected to assess the neuroprotective effects of RES. RESULTS: RES suppressed A. fumigatus hyphae growth and altered hyphae morphology in vitro. RES decreased the expression of Dectin-1, IL-1ß and TNF-α, as well as p38 MAPK phosphorylation expression, and also decreased clinical scores, reduced inflammatory cell infiltration and neutrophil activity, and decreased fungal load. RES also protected corneal basal nerve fibers, down-regulated mechanosensitivity thresholds, and increased the mRNA levels of CGRP and TRPV-1.. CONCLUSION: These evidences revealed that RES could exert antifungal effects on A. fumigatus and ameliorate FK through suppressing the Dectin-1/p38 MAPK pathway to down-regulate IL-1ß, IL-6, etc. expression and play protective effect on corneal nerves.


Asunto(s)
Antiinflamatorios , Aspergillus fumigatus , Queratitis , Lectinas Tipo C , Fármacos Neuroprotectores , Resveratrol , Proteínas Quinasas p38 Activadas por Mitógenos , Aspergillus fumigatus/efectos de los fármacos , Lectinas Tipo C/metabolismo , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Resveratrol/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Fármacos Neuroprotectores/farmacología , Antiinflamatorios/farmacología , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Antifúngicos/farmacología , Masculino , Transducción de Señal/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Córnea/efectos de los fármacos , Córnea/metabolismo
16.
Cytokine ; 175: 156483, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38159472

RESUMEN

PURPOSE: The purpose of this research study was to investigate the impact of schaftoside on Aspergillus fumigatus (A. fumigatus) keratitis and elucidate its underlying mechanisms. METHODS: In order to establish safe experimental concentrations of schaftoside in human corneal epithelial cells (HCECs), RAW264.7 cells, and mouse models, various techniques were employed including cytotoxicity assay (CCK-8) assay, cell scratch assay, and Draize test. The therapeutic effect of schaftoside was assessed using slit-lamp biomicroscopy, clinical scores, as well as determination of neutrophil infiltration through hematoxylin and eosin (HE) staining, immunofluorescence (IF) staining, and myeloperoxidase (MPO) assay. The levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), pro-inflammatory mediators interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6 were determined using quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and IF techniques. RESULTS: Schaftoside at a concentration of 160 µM displayed no harmful side effects on HCECs, RAW cells, and mouse corneas, rendering it suitable for further experiments. In a murine fungal keratitis model, schaftoside mitigated the severity of fungal keratitis by inhibiting neutrophil infiltration and reducing MPO activity. Both in vitro and in vivo experiments demonstrated that schaftoside treatment suppressed the upregulation of IL-1ß, TNF-α, and IL-6 expression, while also downregulating the expressions of TLR4 as well as MyD88 at both mRNA and protein levels. CONCLUSIONS: Schaftoside demonstrated a protective effect against A. fumigatus keratitis by reducing corneal damage through inhibition of neutrophil recruitment and downstream inflammatory cytokines. The anti-inflammatory properties of schaftoside in A. fumigatus keratitis may involve modulation of the TLR4/MyD88 pathway.


Asunto(s)
Aspergilosis , Glicósidos , Queratitis , Animales , Ratones , Humanos , Aspergillus fumigatus , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Aspergilosis/tratamiento farmacológico , Interleucina-6/metabolismo , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Inflamación/tratamiento farmacológico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ratones Endogámicos C57BL
17.
Cytokine ; 182: 156717, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067394

RESUMEN

PURPOSE: Aspergillus fumigatus (A. fumigatus) keratitis is a type of infectious corneal disease that significantly impairs vision. The objective of this study is to evaluate the therapeutic potential of chelerythrine (CHE) on A. fumigatus keratitis. METHODS: The antifungal activity of CHE was assessed through various tests including the minimum inhibitory concentration test, scanning electron microscopy, transmission electron microscopy, propidium iodide uptake test and plate count. Neutrophil infiltration and activity were assessed using immunofluorescence staining and the myeloperoxidase test. RT-PCR, western blotting assay, and ELISA were performed to measure the expression levels of proinflammatory cytokines (IL-1ß and IL-6), NF-E2-related factor (Nrf2), heme oxygenase-1 (HO-1), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), as well as to determine the ratio of phosphorylated-p38 (p-p38) mitogen-activated protein kinase (MAPK) to p38 MAPK. RESULTS: In vitro, CHE inhibited the growth of A. fumigatus conidia, reduced fungal hyphae survival, and prevented fungal biofilm formation. In vivo, CHE reduced the severity of A. fumigatus keratitis and exhibited an excellent anti-inflammatory effect by blocking neutrophil infiltration. Furthermore, CHE decreased the expression levels of proinflammatory cytokines and LOX-1 at both mRNA and protein levels, while also decreasing the p-p38 MAPK/p38 MAPK ratio. Additionally, CHE increased the expression levels of Nrf2 and HO-1. CONCLUSION: CHE provides protection against A. fumigatus keratitis through multiple mechanisms, including reducing fungal survival, inducing anti-inflammatory effects, enhancing Nrf2 and HO-1 expression, and suppressing the signaling pathway of LOX-1/p38 MAPK.

18.
Microb Pathog ; 189: 106606, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437994

RESUMEN

Fungal keratitis (FK) is a highly blinding infectious corneal disease caused by pathogenic fungi. Candida albicans (C. albicans) is one of the main pathogens of fungal keratitis. Extracellular vesicles (EVs), lipid bilayer compartments released by almost all living cells, including fungi, have garnered attention for their role in pathogenic microbial infection and host immune responses in recent years. Studies have reported that pretreating the host with fungal EVs can reduce the inflammatory response of the host when attacked by fungi and reduce the lethality of fungal infection. However, there are no studies that have evaluated whether C. albicans EVs can modulate the inflammatory response associated with C. albicans keratitis. Our study revealed that C. albicans EVs could activate the polymorphonuclear cells (PMNs) and promote their secretion of proinflammatory cytokines and nitric oxide (NO), enhance their phagocytic and fungicidal abilities against C. albicans. C. albicans EVs also induced a proinflammatory response in RAW264.7 cells, which was characterized by increased production of inflammatory cytokines and elevated expression of the chemokine CCL2. Similarly, stimulation of C. albicans EVs to RAW264.7 cells also enhanced the phagocytosis and killing ability of cells against C. albicans. Besides, in our in vivo experiments, after receiving subconjunctival injection of C. albicans EVs, C57BL/6 mice were infected with C. albicans. The results demonstrated that pre-exposure to C. albicans EVs could effectively diminish the severity of keratitis, reduce fungal load and improve prognosis. Overall, we conclude that C. albicans EVs can modulate the function of immune cells and play a protective role in C. albicans keratitis.


Asunto(s)
Vesículas Extracelulares , Queratitis , Animales , Ratones , Candida albicans/fisiología , Ratones Endogámicos C57BL , Queratitis/microbiología , Citocinas
19.
Exp Eye Res ; 244: 109944, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797260

RESUMEN

Fungal keratitis (FK) is an infectious keratopathy can cause serious damage to vision. Its severity is related to the virulence of fungus and response of inflammatory. Rosmarinic acid (RA) extracted from Rosmarinus officinalis exhibits antioxidant, anti-inflammatory and anti-viral properties. The aim of this study was to investigate the effect of RA on macrophage autophagy and its therapeutic effect on FK. In this study, we demonstrated that RA reduced expression of proinflammatory cytokine, lessened the recruitment of inflammatory cells in FK. The relative contents of autophagy markers, such as LC3 and Beclin-1, were significantly up-regulated in RAW 264.7 cells and FK. In addition, RA restored mitochondrial membrane potential (MMP) of macrophage to normal level. RA not only reduced the production of intracellular reactive oxygen species (ROS) but also mitochondria ROS (mtROS) in macrophage. At the same time, RA induced macrophage to M2 phenotype and down-regulated the mRNA expression of IL-6, IL-1ß, TNF-α. All the above effects could be offset by the autophagy inhibitor 3-Methyladenine (3-MA). Besides, RA promote phagocytosis of RAW 264.7 cells and inhibits spore germination, biofilm formation and conidial adherence, suggesting a potential therapeutic role for RA in FK.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Autofagia , Cinamatos , Depsidos , Infecciones Fúngicas del Ojo , Macrófagos , Especies Reactivas de Oxígeno , Ácido Rosmarínico , Depsidos/farmacología , Animales , Autofagia/efectos de los fármacos , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergilosis/metabolismo , Infecciones Fúngicas del Ojo/microbiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Cinamatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Modelos Animales de Enfermedad , Células RAW 264.7 , Citocinas/metabolismo , Fagocitosis/efectos de los fármacos
20.
Exp Eye Res ; 240: 109771, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38163580

RESUMEN

HSV1 presents as epithelial or stromal keratitis or keratouveitis and can lead to sight-threatening complications. KLF4, a critical transcription factor, and regulator of cell growth and differentiation, is essential in corneal epithelium stratification and homeostasis. Here, we want to understand the epigenetic modification specifically the methylation status of KLF4 in epithelium samples of HSV1 keratitis patients. After obtaining consent, epithelial scrapes were collected from 7 patients with clinically diagnosed HSV1 keratitis and 7 control samples (patients undergoing photorefractive keratectomy). Genomic DNA was isolated from the collected samples using the Qiagen DNeasy Kit. Subsequently, bisulfite modification was performed. The bisulphite-modified DNA was then subjected to PCR amplification using specific primers designed to target the KLF4, ACTB gene region, allowing for the amplification of methylated and unmethylated DNA sequences. The amplified DNA products were separated and visualized on a 3% agarose gel. KLF4 hypermethylation was found in 6 out of 7 (85.71%) eyes with viral keratitis, while 1 eye showed hypomethylation compared to PRK samples. Out of these 6, there were 2 each of epithelial dendritic keratitis, epithelial geographical keratitis, and neurotrophic keratitis. The patient with hypomethylated KLF4 had a recurrent case of HSV1 keratitis with multiple dendrites and associated vesicular lesions of the lip along with a history of fever. KLF4 hypermethylation in most viral keratitis cases indicated the under functioning of KLF4 and could indicate a potential association between KLF4 hypermethylation and the development or progression of HSV1 keratitis.


Asunto(s)
Epitelio Corneal , Infecciones Virales del Ojo , Queratitis , Humanos , ADN , Metilación de ADN , Epitelio Corneal/patología , Infecciones Virales del Ojo/genética , Infecciones Virales del Ojo/patología , Queratitis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA