Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.262
Filtrar
Más filtros

Colección BVS Ecuador
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2317322121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377209

RESUMEN

The ubiquitous RNA chaperone Hfq is involved in the regulation of key biological processes in many species across the bacterial kingdom. In the opportunistic human pathogen Klebsiella pneumoniae, deletion of the hfq gene affects the global transcriptome, virulence, and stress resistance; however, the ligands of the major RNA-binding protein in this species have remained elusive. In this study, we have combined transcriptomic, co-immunoprecipitation, and global RNA interactome analyses to compile an inventory of conserved and species-specific RNAs bound by Hfq and to monitor Hfq-mediated RNA-RNA interactions. In addition to dozens of RNA-RNA pairs, our study revealed an Hfq-dependent small regulatory RNA (sRNA), DinR, which is processed from the 3' terminal portion of dinI mRNA. Transcription of dinI is controlled by the master regulator of the SOS response, LexA. As DinR accumulates in K. pneumoniae in response to DNA damage, the sRNA represses translation of the ftsZ transcript by occupation of the ribosome binding site. Ectopic overexpression of DinR causes depletion of ftsZ mRNA and inhibition of cell division, while deletion of dinR antagonizes cell elongation in the presence of DNA damage. Collectively, our work highlights the important role of RNA-based gene regulation in K. pneumoniae and uncovers the central role of DinR in LexA-controlled division inhibition during the SOS response.


Asunto(s)
Klebsiella pneumoniae , ARN Pequeño no Traducido , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , ARN Pequeño no Traducido/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , División Celular/genética , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
J Biol Chem ; 300(3): 105694, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301890

RESUMEN

Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.


Asunto(s)
Bacteriocinas , Klebsiella pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Bacteriocinas/toxicidad , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Porinas/genética , Porinas/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominios Proteicos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos
3.
Drug Resist Updat ; 73: 101038, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38181587

RESUMEN

AIMS: Although cefiderocol (FDC) is not prescribed in China, FDC-resistant pandrug-resistant hypervirulent Klebsiella pneumoniae (PDR-hvKp) is emerging. In this study, we performed FDC susceptibility testing of clinical Kp isolates to explore the prevalence of FDC-resistant isolates and the mechanism of FDC-resistance. METHODS: We retrospectively selected 151 carbapenem-resistant Kp isolates to assess FDC susceptibility. Seven isolates harboring blaSHV-12 from two patients were enrolled for whole-genome sequencing. The antimicrobial resistance, virulence, blaSHV-12 expression, and fitness costs in different media were examined. The amplification of blaSHV-12 was further investigated by qPCR and long-read sequencing. RESULTS: The 151 isolates showed a low MIC50/MIC90 (1/4 mg/L) of FDC. The seven isolates were ST11 PDR-hvKp, and two represented FDC-resistance (MIC=32 mg/L). The IncR/IncFII plasmids of two FDC-resistant isolates harbored 6 and 15 copies of blaSHV-12, whereas four FDC-susceptible isolates carried one copy and one harbored three copies. These blaSHV-12 genes concatenated together and were located within the same 7.3 kb fragment flanked by IS26, which contributed to the increased expression and FDC resistance without fitness costs. The amplification of blaSHV-12 and FDC resistance could be induced by FDC in vitro and reversed during continuous passage. CONCLUSIONS: The amplification of blaSHV-12 and the consequent dynamic within-host heteroresistance are important concerns for the rational application of antibiotics. Long-read sequencing might be a superior way to detect resistance gene amplification rapidly and accurately.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Cefiderocol , Estudios Retrospectivos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
4.
Drug Resist Updat ; 77: 101124, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39128195

RESUMEN

BACKGROUND: Klebsiella pneumoniae (Kp) is a common community-acquired and nosocomial pathogen. Carbapenem-resistant and hypervirulent (CR-hvKp) variants can emerge rapidly within healthcare facilities and impacted by other infectious agents such as COVID-19 virus. METHODS: To understand the impact of COVID-19 virus on the prevalence of CR-hvKp, we accessed Kp genomes with corresponding metadata from GenBank. Sequence types (STs), antimicrobial resistance genes, and virulence genes, and those scores and CR-hvKp were identified. We analyzed population diversity and phylogenetic characteristics of five most common STs, measured the prevalence of CR-hvKp, identified CR-hvKp subtypes, and determined associations between carbapenem resistance gene subtypes with STs and plasmid types. These variables were compared pre- and during the COVID-19 pandemic. FINDINGS: The proportion of CR-hvKp isolates increased within multiple STs in different continents during the COVID-19 pandemic and persistent CR-hvKp subtypes were found in common STs. blaKPC was dominant in CG258, blaKPC-2 was detected in 97 % of the ST11 CR-hvKp, blaNDM subtypes were prominent in ST147 (87.4 %) and ST307 (70.8 %); blaOXA-48 and its subtypes were prevalent in ST15 (80.5 %). The possession of carbapenemase genes was different among subclades from different origins in different periods of time within each ST. IncFIB/IncHI1B hybrid plasmids contained virulence genes and carbapenemase genes and were predominant in ST147 (67.37 %) and ST307 (56.25 %). INTERPRETATION: The prevalence of CR-hvKp increased during the COVID-19 pandemic, which was evident by an increase in local endemic clones. This process was facilitated by the convergence of plasmids containing carbapenemase genes and virulence genes. These findings have implications for the appropriate use of antimicrobials and infection prevention and control during outbreaks of respiratory viruses and pandemic management.

5.
Drug Resist Updat ; 74: 101083, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593500

RESUMEN

AIMS: Carbapenem-resistant Klebsiella pneumonia (CRKP) is a global threat that varies by region. The global distribution, evolution, and clinical implications of the ST11 CRKP clone remain obscure. METHODS: We conducted a multicenter molecular epidemiological survey using isolates obtained from 28 provinces and municipalities across China between 2011 and 2021. We integrated sequences from public databases and performed genetic epidemiology analysis of ST11 CRKP. RESULTS: Among ST11 CRKP, KL64 serotypes exhibited considerable expansion, increasing from 1.54% to 46.08% between 2011 and 2021. Combining our data with public databases, the phylogenetic and phylogeography analyses indicated that ST11 CRKP appeared in the Americas in 1996 and spread worldwide, with key clones progressing from China's southeastern coast to the inland by 2010. Global phylogenetic analysis showed that ST11 KL64 CRKP has evolved to a virulent, resistant clade with notable regional spread. Single-nucleotide polymorphism (SNP) analysis identified BMPPS (bmr3, mltC, pyrB, ppsC, and sdaC) as a key marker for this clade. The BMPPS SNP clade is associated with high mortality and has strong anti-phagocytic and competitive traits in vitro. CONCLUSIONS: The high-risk ST11 KL64 CRKP subclone showed strong expansion potential and survival advantages, probably owing to genetic factors.


Asunto(s)
Antibacterianos , Infecciones por Klebsiella , Klebsiella pneumoniae , Filogenia , Humanos , China/epidemiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/transmisión , Infecciones por Klebsiella/tratamiento farmacológico , Antibacterianos/farmacología , Polimorfismo de Nucleótido Simple , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Epidemiología Molecular , Carbapenémicos/farmacología , Pruebas de Sensibilidad Microbiana , Filogeografía , Serogrupo , Genómica/métodos
6.
Drug Resist Updat ; 76: 101123, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111133

RESUMEN

The global dissemination of carbapenemase genes, particularly blaNDM-1, poses a significant threat to public health. While research has mainly focused on strains with phenotypic resistance, the impact of silent resistance genes has been largely overlooked. This study documents the first instance of silent blaNDM-1 in a cluster of clonally related carbapenem-susceptible K. pneumoniae strains from a single patient. Despite initial effectiveness of carbapenem therapy, the patient experienced four recurrent lung infections over five months, indicating persistent K. pneumoniae infection. Genomic sequencing revealed all strains harbored blaNDM-1 on the epidemic IncX3 plasmid. A deletion within the upstream promoter region (PISAba125) of blaNDM-1 hindered its expression, resulting in phenotypic susceptibility to carbapenems. However, in vitro bactericidal assays and a mouse infection model showed that K. pneumoniae strains with silent blaNDM-1 exhibited significant tolerance to carbapenem-mediated killing. These findings demonstrate that silent blaNDM-1 can mediate both phenotypic susceptibility and antibiotic tolerance. In silico analysis of 1986 blaNDM sequences showed that 1956 (98.5%) retained the original promoter PISAba125. Given that previous genomic sequencing typically targets carbapenem-resistant strains, accurately assessing the prevalence of silent blaNDM remains challenging. This study highlights the hidden threat of silent resistance genes to clinical antimicrobial therapy and calls for enhanced clinical awareness and laboratory detection.


Asunto(s)
Antibacterianos , Carbapenémicos , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , beta-Lactamasas/genética , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/epidemiología , Humanos , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Masculino , Plásmidos/genética , Regiones Promotoras Genéticas/genética
7.
J Infect Dis ; 230(1): 209-220, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052750

RESUMEN

BACKGROUND: Klebsiella pneumoniae carbapenemase-producing K pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS: We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct enzyme-linked immunosorbent assay, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS: We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In 5 genetically related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsonophagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS: Loss of function in wcaJ led to increased complement resistance, complement binding, and opsonophagocytosis, which may promote KPC-Kp persistence by enabling coexistence of increased bloodstream fitness and reduced tissue virulence.


Asunto(s)
Cápsulas Bacterianas , Proteínas del Sistema Complemento , Infecciones por Klebsiella , Klebsiella pneumoniae , Fagocitosis , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/inmunología , Humanos , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/microbiología , Animales , Cápsulas Bacterianas/inmunología , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Ratones , Proteínas del Sistema Complemento/inmunología , Mutación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuenciación Completa del Genoma , Reinfección/microbiología , Reinfección/inmunología , Bacteriemia/microbiología , Bacteriemia/inmunología , Femenino
8.
J Infect Dis ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38401891

RESUMEN

Klebsiella pneumoniae is the leading cause of neonatal sepsis and is increasingly difficult to treat due to antibiotic resistance. Vaccination represents a tractable approach to combat this resistant bacterium; however, there is currently not a licensed vaccine. Surface polysaccharides, including O-antigens of lipopolysaccharide, have long been attractive candidates for vaccine inclusion. Herein we describe the generation of a bioconjugate vaccine targeting seven predominant O-antigen subtypes in K. pneumoniae. Each bioconjugate was immunogenic in isolation, with limited cross-reactivity among subtypes. Vaccine-induced antibodies demonstrated varying degrees of binding to a wide variety of K. pneumoniae strains. Further, sera from vaccinated mice induced complement-mediated killing of many of these strains. Finally, increased capsule interfered with O-antigen antibodies' ability to bind and mediate killing of some K. pneumoniae strains. Taken together, these data indicate that this novel heptavalent O-antigen bioconjugate vaccine formulation exhibits limited efficacy against some, but not all, K. pneumoniae isolates.

9.
J Bacteriol ; 206(5): e0002424, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38591913

RESUMEN

Microbes synthesize and secrete siderophores, that bind and solubilize precipitated or otherwise unavailable iron in their microenvironments. Gram (-) bacterial TonB-dependent outer membrane receptors capture the resulting ferric siderophores to begin the uptake process. From their similarity to fepA, the structural gene for the Escherichia coli ferric enterobactin (FeEnt) receptor, we identified four homologous genes in the human and animal ESKAPE pathogen Klebsiella pneumoniae (strain Kp52.145). One locus encodes IroN (locus 0027 on plasmid pII), and three other loci encode other FepA orthologs/paralogs (chromosomal loci 1658, 2380, and 4984). Based on the crystal structure of E. coli FepA (1FEP), we modeled the tertiary structures of the K. pneumoniae FepA homologs and genetically engineered individual Cys substitutions in their predicted surface loops. We subjected bacteria expressing the Cys mutant proteins to modification with extrinsic fluorescein maleimide (FM) and used the resulting fluorescently labeled cells to spectroscopically monitor the binding and transport of catecholate ferric siderophores by the four different receptors. The FM-modified FepA homologs were nanosensors that defined the ferric catecholate uptake pathways in pathogenic strains of K. pneumoniae. In Kp52.145, loci 1658 and 4984 encoded receptors that primarily recognized and transported FeEnt; locus 0027 produced a receptor that principally bound and transported FeEnt and glucosylated FeEnt (FeGEnt); locus 2380 encoded a protein that bound ferric catecholate compounds but did not detectably transport them. The sensors also characterized the uptake of iron complexes, including FeGEnt, by the hypervirulent, hypermucoviscous K. pneumoniae strain hvKp1. IMPORTANCE: Both commensal and pathogenic bacteria produce small organic chelators, called siderophores, that avidly bind iron and increase its bioavailability. Klebsiella pneumoniae variably produces four siderophores that antagonize host iron sequestration: enterobactin, glucosylated enterobactin (also termed salmochelin), aerobactin, and yersiniabactin, which promote colonization of different host tissues. Abundant evidence links bacterial iron acquisition to virulence and infectious diseases. The data we report explain the recognition and transport of ferric catecholates and other siderophores, which are crucial to iron acquisition by K. pneumoniae.


Asunto(s)
Hierro , Klebsiella pneumoniae , Sideróforos , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Sideróforos/metabolismo , Hierro/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Enterobactina/metabolismo , Transporte Biológico , Proteínas Portadoras
10.
J Proteome Res ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140824

RESUMEN

Accurate and reliable detection of fungal pathogens presents an important hurdle to manage infections, especially considering that fungal pathogens, including the globally important human pathogen, Cryptococcus neoformans, have adapted diverse mechanisms to survive the hostile host environment and moderate virulence determinant production during coinfections. These pathogen adaptations present an opportunity for improvements (e.g., technological and computational) to better understand the interplay between a host and a pathogen during disease to uncover new strategies to overcome infection. In this study, we performed comparative proteomic profiling of an in vitro coinfection model across a range of fungal and bacterial burden loads in macrophages. Comparing data-dependent acquisition and data-independent acquisition enabled with parallel accumulation serial fragmentation technology, we quantified changes in dual-perspective proteome remodeling. We report enhanced and novel detection of pathogen proteins with data-independent acquisition-parallel accumulation serial fragmentation (DIA-PASEF), especially for fungal proteins during single and dual infection of macrophages. Further characterization of a fungal protein detected only with DIA-PASEF uncovered a novel determinant of fungal virulence, including altered capsule and melanin production, thermotolerance, and macrophage infectivity, supporting proteomics advances for the discovery of a novel putative druggable target to suppress C. neoformans pathogenicity.

11.
Infect Immun ; : e0048223, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597634

RESUMEN

Bacterial infections pose a significant global health threat, accounting for an estimated 7.7 million deaths. Hospital outbreaks driven by multi-drug-resistant pathogens, notably Klebsiella pneumoniae (K. pneumoniae), are of grave concern. This opportunistic pathogen causes pneumonia, urinary tract infections, and bacteremia, particularly in immunocompromised individuals. The rise of hypervirulent K. pneumoniae adds complexity, as it increasingly infects healthy individuals. Recent epidemiological data suggest that asymptomatic gastrointestinal carriage serves as a reservoir for infections in the same individual and allows for host-to-host transmission via the fecal-oral route. This review focuses on K. pneumoniae's gastrointestinal colonization, delving into epidemiological evidence, current animal models, molecular colonization mechanisms, and the protective role of the resident gut microbiota. Moreover, the review sheds light on in vivo high-throughput approaches that have been crucial for identifying K. pneumoniae factors in gut colonization. This comprehensive exploration aims to enhance our understanding of K. pneumoniae gut pathogenesis, guiding future intervention and prevention strategies.

12.
Infect Immun ; 92(3): e0042723, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38391207

RESUMEN

To address the problem of increased antimicrobial resistance, we developed a glycoconjugate vaccine comprised of O-polysaccharides (OPS) of the four most prevalent serotypes of Klebsiella pneumoniae (KP) linked to recombinant flagellin types A and B (rFlaA and rFlaB) of Pseudomonas aeruginosa (PA). Flagellin is the major subunit of the flagellar filament. Flagella A and B, essential virulence factors for PA, are glycosylated with different glycans. We previously reported that while both rFlaA and rFlaB were highly immunogenic, only the rFlaB antisera reduced PA motility and protected mice from lethal PA infection in a mouse model of thermal injury. Since recombinant flagellin is not glycosylated, we examined the possibility that the glycan on native FlaA (nFlaA) might be critical to functional immune responses. We compared the ability of nFlaA to that of native, deglycosylated FlaA (dnFlaA) to induce functionally active antisera. O glycan was removed from nFlaA with trifluoromethanesulfonic acid. Despite the similar high-titered anti-FlaA antibody levels elicited by nFlaA, rFlaA, and dnFlaA, only the nFlaA antisera inhibited PA motility and protected mice following lethal intraperitoneal bacterial challenge. Both the protective efficacy and carrier protein function of nFlaA were retained when conjugated to KP O1 OPS. We conclude that unlike the case with FlaB O glycan, the FlaA glycan is an important epitope for the induction of functionally active anti-FlaA antibodies.


Asunto(s)
Flagelina , Pseudomonas aeruginosa , Ratones , Animales , Flagelina/metabolismo , Anticuerpos , Klebsiella pneumoniae , Polisacáridos , Flagelos/metabolismo , Sueros Inmunes
13.
Infect Immun ; 92(3): e0001224, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38358274

RESUMEN

How the LuxS/AI-2 quorum sensing (QS) system influences the pathogenicity of K. pneumoniae is complicated by the heterogeneity of the bacterial mucoid phenotypes. This study aims to explore the LuxS-mediated regulation of the pathogenicity of K. pneumoniae with diverse mucoid phenotypes, including hypermucoid, regular-mucoid, and nonmucoid. The wild-type, luxS knockout, and complemented strains of three K. pneumoniae clinical isolates with distinct mucoid phenotypes were constructed. The results revealed the downregulation of virulence genes of regular-mucoid, and nonmucoid but not hypermucoid strains. The deletion of luxS reduced the pathogenicity of the regular-mucoid, and nonmucoid strains in mice; while in hypermucoid strain, luxS knockout reduced virulence in late growth but enhanced virulence in the early growth phase. Furthermore, the absence of luxS led the regular-mucoid and nonmucoid strains to be more sensitive to the host cell defense, and less biofilm-productive than the wild-type at both the low and high-density growth state. Nevertheless, luxS knockout enhanced the resistances to adhesion and phagocytosis by macrophage as well as serum-killing, of hypermucoid K. pneumoniae at its early low-density growth state, while it was opposite to those in its late high-density growth phase. Collectively, our results suggested that LuxS plays a crucial role in the pathogenicity of K. pneumoniae, and it is highly relevant to the mucoid phenotypes and growth phases of the strains. LuxS probably depresses the capsule in the early low-density phase and promotes the capsule, biofilm, and pathogenicity during the late high-density phase, but inhibits lipopolysaccharide throughout the growth phase, in K. pneumoniae.IMPORTANCECharacterizing the regulation of physiological functions by the LuxS/AI-2 quorum sensing (QS) system in Klebsiella pneumoniae strains will improve our understanding of this important pathogen. The genetic heterogeneity of K. pneumoniae isolates complicates our understanding of its pathogenicity, and the association of LuxS with bacterial pathogenicity has remained poorly addressed in K. pneumoniae. Our results demonstrated strain and growth phase-dependent variation in the contributions of LuxS to the virulence and pathogenicity of K. pneumoniae. Our findings provide new insights into the important contribution of the LuxS/AI-2 QS system to the networks that regulate the pathogenicity of K. pneumoniae. Our study will facilitate our understanding of the regulatory mechanisms of LuxS/AI-2 QS on the pathogenicity of K. pneumoniae under the background of their genetic heterogeneity and help develop new strategies for diminished bacterial virulence within the clinical K. pneumoniae population.


Asunto(s)
Liasas de Carbono-Azufre , Klebsiella pneumoniae , Percepción de Quorum , Animales , Ratones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Fenotipo , Virulencia/genética
14.
Infect Immun ; 92(6): e0001624, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38771050

RESUMEN

Polymyxin resistance in carbapenem-resistant Klebsiella pneumoniae bacteria is associated with high morbidity and mortality in vulnerable populations throughout the world. Ineffective antimicrobial activity by these last resort therapeutics can occur by transfer of mcr-1, a plasmid-mediated resistance gene, causing modification of the lipid A portion of lipopolysaccharide (LPS) and disruption of the interactions between polymyxins and lipid A. Whether this modification alters the innate host immune response or carries a high fitness cost in the bacteria is not well established. To investigate this, we studied infection with K. pneumoniae (KP) ATCC 13883 harboring either the mcr-1 plasmid (pmcr-1) or the vector control (pBCSK) ATCC 13883. Bacterial fitness characteristics of mcr-1 acquisition were evaluated. Differentiated human monocytes (THP-1s) were stimulated with KP bacterial strains or purified LPS from both parent isolates and isolates harboring mcr-1. Cell culture supernatants were analyzed for cytokine production. A bacterial pneumonia model in WT C57/BL6J mice was used to monitor immune cell recruitment, cytokine induction, and bacterial clearance in the bronchoalveolar lavage fluid (BALF). Isolates harboring mcr-1 had increased colistin MIC compared to the parent isolates but did not alter bacterial fitness. Few differences in cytokines were observed with purified LPS from mcr-1 expressing bacteria in vitro. However, in a mouse pneumonia model, no bacterial clearance defect was observed between pmcr-1-harboring KP and parent isolates. Consistently, no differences in cytokine production or immune cell recruitment in the BALF were observed, suggesting that other mechanisms outweigh the effect of these lipid A mutations in LPS.


Asunto(s)
Antibacterianos , Colistina , Modelos Animales de Enfermedad , Inmunidad Innata , Infecciones por Klebsiella , Klebsiella pneumoniae , Lípido A , Animales , Klebsiella pneumoniae/inmunología , Klebsiella pneumoniae/efectos de los fármacos , Colistina/farmacología , Lípido A/inmunología , Ratones , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/microbiología , Humanos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/microbiología , Ratones Endogámicos C57BL , Citocinas/metabolismo , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/microbiología , Femenino
15.
Clin Infect Dis ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752311

RESUMEN

BACKGROUND: Limited data exists on effects of intrapartum azithromycin on prevalence of carriage and antibiotic resistance of Enterobacterales. METHODS: We conducted a randomized trial in Gambia and Burkina Faso where women received intrapartum azithromycin (2g) or placebo. We determined impact of treatment on prevalence of carriage and antibiotic resistance of Escherichia coli and Klebsiella pneumoniae by analysing rectal swabs (RS), nasopharyngeal swabs (NPS), breast milk and recto-vaginal swabs (RVS). Bacteria were isolated microbiologically; antibiotic susceptibility was confirmed with an E-test. Prevalence ratios (PR) with 95% confidence intervals (CI's) were used for comparison between arms. RESULTS: In infants, E. coli carriage in RS was lower in the intervention than placebo arm at days 6 (63.0% vs. 75.2%, PR, 0.84; CI, 0.75-0.95) and 28 (52.7% vs. 70.4%, 0.75; 0.64-0.87) post-intervention. Prevalence of azithromycin-resistant E. coli was higher in the azithromycin arm at days 6 (13.4% vs. 3.6%, 3.75; 1.83-7.69) and 28 (16.4% vs. 9.6%, 1.71; 1.05-2.79). For K. pneumoniae, carriage in RS was higher in the intervention than placebo arm at days 6 (49.6% vs. 37.2%, 1.33; 1.08-1.64) and 28 (53.6% vs. 32.9%, 1.63; 1.31-2.03). Prevalence of azithromycin-resistant K. pneumoniae was higher in the azithromycin arm at day 28 (7.3% vs. 2.1%, 3.49; 1.30-9.37). No differences were observed for other sample types. CONCLUSION: Intrapartum azithromycin decreased E. coli carriage but increased both K. pneumoniae carriage and azithromycin resistance in both bacteria. These data need to be considered together with efficacy results to balance the potential short- and long-term impact of the intervention. CLINICAL TRIALS REGISTRATION: www.clinicaltrials.gov: NCT03199547.

16.
BMC Genomics ; 25(1): 381, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632538

RESUMEN

Klebsiella pneumoniae is a Gram-negative Enterobacteriaceae that is classified by the World Health Organisation (WHO) as a Priority One ESKAPE pathogen. South and Southeast Asian countries are regions where both healthcare associated infections (HAI) and community acquired infections (CAI) due to extended-spectrum ß-lactamase (ESBL)-producing and carbapenem-resistant K. pneumoniae (CRKp) are of concern. As K. pneumoniae can also exist as a harmless commensal, the spread of resistance genotypes requires epidemiological vigilance. However there has been no significant study of carriage isolates from healthy individuals, particularly in Southeast Asia, and specially Malaysia. Here we describe the genomic analysis of respiratory isolates of K. pneumoniae obtained from Orang Ulu and Orang Asli communities in Malaysian Borneo and Peninsular Malaysia respectively. The majority of isolates were K. pneumoniae species complex (KpSC) 1 K. pneumoniae (n = 53, 89.8%). Four Klebsiella variicola subsp. variicola (KpSC3) and two Klebsiella quasipneumoniae subsp. similipneumoniae (KpSC4) were also found. It was discovered that 30.2% (n = 16) of the KpSC1 isolates were ST23, 11.3% (n = 6) were of ST65, 7.5% (n = 4) were ST13, and 13.2% (n = 7) were ST86. Only eight of the KpSC1 isolates encoded ESBL, but importantly not carbapenemase. Thirteen of the KpSC1 isolates carried yersiniabactin, colibactin and aerobactin, all of which harboured the rmpADC locus and are therefore characterised as hypervirulent. Co-carriage of multiple strains was minimal. In conclusion, most isolates were KpSC1, ST23, one of the most common sequence types and previously found in cases of K. pneumoniae infection. A proportion were hypervirulent (hvKp) however antibiotic resistance was low.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Virulencia/genética , Malasia , beta-Lactamasas/genética , Carbapenémicos , Pueblos Indígenas , Antibacterianos
17.
BMC Genomics ; 25(1): 408, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664636

RESUMEN

BACKGROUND: Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS: The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, blaNDM, and blaOXA, respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS: This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources.


Asunto(s)
Proteínas Bacterianas , Carbapenémicos , Farmacorresistencia Bacteriana Múltiple , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Carbapenémicos/farmacología , Humanos , Secuenciación Completa del Genoma , Genoma Bacteriano , beta-Lactamasas/genética , Antibacterianos/farmacología , Filogenia , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
18.
Antimicrob Agents Chemother ; : e0075124, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133021

RESUMEN

Taniborbactam, a bicyclic boronate ß-lactamase inhibitor with activity against Klebsiella pneumoniae carbapenemase (KPC), Verona integron-encoded metallo-ß-lactamase (VIM), New Delhi metallo-ß-lactamase (NDM), extended-spectrum beta-lactamases (ESBLs), OXA-48, and AmpC ß-lactamases, is under clinical development in combination with cefepime. Susceptibility of 200 previously characterized carbapenem-resistant K. pneumoniae and 197 multidrug-resistant (MDR) Pseudomonas aeruginosa to cefepime-taniborbactam and comparators was determined by broth microdilution. For K. pneumoniae (192 KPC; 7 OXA-48-related), MIC90 values of ß-lactam components for cefepime-taniborbactam, ceftazidime-avibactam, and meropenem-vaborbactam were 2, 2, and 1 mg/L, respectively. For cefepime-taniborbactam, 100% and 99.5% of isolates of K. pneumoniae were inhibited at ≤16 mg/L and ≤8 mg/L, respectively, while 98.0% and 95.5% of isolates were susceptible to ceftazidime-avibactam and meropenem-vaborbactam, respectively. For P. aeruginosa, MIC90 values of ß-lactam components of cefepime-taniborbactam, ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam were 16, >8, >8, and >4 mg/L, respectively. Of 89 carbapenem-susceptible isolates, 100% were susceptible to ceftolozane-tazobactam, ceftazidime-avibactam, and cefepime-taniborbactam at ≤8 mg/L. Of 73 carbapenem-intermediate/resistant P. aeruginosa isolates without carbapenemases, 87.7% were susceptible to ceftolozane-tazobactam, 79.5% to ceftazidime-avibactam, and 95.9% and 83.6% to cefepime-taniborbactam at ≤16 mg/L and ≤8 mg/L, respectively. Cefepime-taniborbactam at ≤16 mg/L and ≤8 mg/L, respectively, was active against 73.3% and 46.7% of 15 VIM- and 60.0% and 35.0% of 20 KPC-producing P. aeruginosa isolates. Of all 108 carbapenem-intermediate/resistant P. aeruginosa isolates, cefepime-taniborbactam was active against 86.1% and 69.4% at ≤16 mg/L and ≤8 mg/L, respectively, compared to 59.3% for ceftolozane-tazobactam and 63.0% for ceftazidime-avibactam. Cefepime-taniborbactam had in vitro activity comparable to ceftazidime-avibactam and greater than meropenem-vaborbactam against carbapenem-resistant K. pneumoniae and carbapenem-intermediate/resistant MDR P. aeruginosa.

19.
Antimicrob Agents Chemother ; 68(5): e0131523, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517189

RESUMEN

Chromosomal and transferable AmpC ß-lactamases represent top resistance mechanisms in different gram-negatives, but knowledge regarding the latter, mostly concerning regulation and virulence-related implications, is far from being complete. To fill this gap, we used Klebsiella pneumoniae (KP) and two different plasmid-encoded AmpCs [DHA-1 (AmpR regulator linked, inducible) and CMY-2 (constitutive)] as models to perform a study in which we show that blockade of peptidoglycan recycling through AmpG permease inactivation abolished DHA-1 inducibility but did not affect CMY-2 production and neither did it alter KP pathogenic behavior. Moreover, whereas regular production of both AmpC-type enzymes did not attenuate KP virulence, when blaDHA-1 was expressed in an ampG-defective mutant, Galleria mellonella killing was significantly (but not drastically) attenuated. Spontaneous DHA-1 hyperproducer mutants were readily obtained in vitro, showing slight or insignificant virulence attenuations together with high-level resistance to ß-lactams only mildly affected by basal production (e.g., ceftazidime, ceftolozane/tazobactam). By analyzing diverse DHA-1-harboring clinical KP strains, we demonstrate that the natural selection of these hyperproducers is not exceptional (>10% of the collection), whereas mutational inactivation of the typical AmpC hyperproduction-related gene mpl was the most frequent underlying mechanism. The potential silent dissemination of this kind of strains, for which an important fitness cost-related contention barrier does not seem to exist, is envisaged as a neglected threat for most ß-lactams effectiveness, including recently introduced combinations. Analyzing whether this phenomenon is applicable to other transferable ß-lactamases and species as well as determining the levels of conferred resistance poses an essential topic to be addressed.IMPORTANCEAlthough there is solid knowledge about the regulation of transferable and especially chromosomal AmpC ß-lactamases in Enterobacterales, there are still gaps to fill, mainly related to regulatory mechanisms and virulence interplays of the former. This work addresses them using Klebsiella pneumoniae as model, delving into a barely explored conception: the acquisition of a plasmid-encoded inducible AmpC-type enzyme whose production can be increased through selection of chromosomal mutations, entailing dramatically increased resistance compared to basal expression but minor associated virulence costs. Accordingly, we demonstrate that clinical K. pneumoniae DHA-1 hyperproducer strains are not exceptional. Through this study, we warn for the first time that this phenomenon may be a neglected new threat for ß-lactams effectiveness (including some recently introduced ones) silently spreading in the clinical context, not only in K. pneumoniae but potentially also in other pathogens. These facts must be carefully considered in order to design future resistance-preventive strategies.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Klebsiella pneumoniae , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Peptidoglicano , Plásmidos , beta-Lactamasas , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/metabolismo , Peptidoglicano/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Plásmidos/genética , Animales , Infecciones por Klebsiella/microbiología , Mariposas Nocturnas/microbiología
20.
Antimicrob Agents Chemother ; : e0020824, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162528

RESUMEN

We characterized the molecular determinants of meropenem-vaborbactam (MV) non-susceptibility among non-metallo-ß-lactamase-producing KPC-Klebsiella pneumoniae (KPC-KP). Whole-genome sequencing was performed to identify mutations associated with MV non-susceptibility. Isolates with elevated MV MICs were found to have mutations encoding truncated or altered OmpK36 porins and increased blaKPC copy numbers. KPC-KP isolates with decreased susceptibility to MV were detected among a collection of isolates predating the availability of MV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA