Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(10): e23646, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38795328

RESUMEN

Multiple regulatory mechanisms are in place to ensure the normal processes of bone metabolism, encompassing both bone formation and absorption. This study has identified chaperone-mediated autophagy (CMA) as a critical regulator that safeguards bone formation from the detrimental effects of excessive inflammation. By silencing LAMP2A or HSCA8, we observed a hindrance in the osteoblast differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. To further elucidate the role of LAMP2A, we generated LAMP2A gene knockdown and overexpression of mouse BMSCs (mBMSCs) using adenovirus. Our results showed that LAMP2A knockdown led to a decrease in osteogenic-specific proteins, while LAMP2A overexpression favored the osteogenesis of mBMSCs. Notably, active-ß-catenin levels were upregulated by LAMP2A overexpression. Furthermore, we found that LAMP2A overexpression effectively protected the osteogenesis of mBMSCs from TNF-α, through the PI3K/AKT/GSK3ß/ß-catenin pathway. Additionally, LAMP2A overexpression significantly inhibited osteoclast hyperactivity induced by TNF-α. Finally, in a murine bone defect model, we demonstrated that controlled release of LAMP2A overexpression adenovirus by alginate sodium capsule efficiently protected bone healing from inflammation, as confirmed by imaging and histological analyses. Collectively, our findings suggest that enhancing CMA has the potential to safeguard bone formation while mitigating hyperactivity in bone absorption.


Asunto(s)
Autofagia Mediada por Chaperones , Glucógeno Sintasa Quinasa 3 beta , Inflamación , Proteína 2 de la Membrana Asociada a los Lisosomas , Células Madre Mesenquimatosas , Osteogénesis , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , beta Catenina , Animales , Osteogénesis/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , beta Catenina/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Inflamación/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Transducción de Señal , Masculino , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Diferenciación Celular , Osteoclastos/metabolismo
2.
FASEB J ; 38(15): e23870, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39120151

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are successfully employed for hematological transplantations, and impaired HSPC function causes hematological diseases and aging. HSPCs maintain the lifelong homeostasis of blood and immune cells through continuous self-renewal and maintenance of the multilineage differentiation potential. TMEM106B is a transmembrane protein localized on lysosomal membranes and associated with neurodegenerative and cardiovascular diseases; however, its roles in HSPCs and hematopoiesis are unknown. Here, we established tmem106bb-/- knockout (KO) zebrafish and showed that tmem106bb KO reduced the proliferation of HSPCs during definitive hematopoiesis. The differentiation potential of HSPCs to lymphoid lineage was reduced, whereas the myeloid and erythroid differentiation potentials of HPSCs were increased in tmem106bb-/- zebrafish. Similar results were obtained with morpholino knockdown of tmem106bb. Mechanistically, TMEM106B interacted with LAMP2A, the lysosomal associated membrane protein 2A, impaired LAMP2A-Cathepsin A interaction, and enhanced LAMP2A stability; tmem106bb KO or TMEM106B knockdown caused LAMP2A degradation and impairment of chaperone-mediated autophagy (CMA). Knockdown of lamp2a caused similar phenotypes to that in tmem106bb-/- zebrafish, and overexpression of lamp2a rescued the impaired phenotypes of HSPCs in tmem106bb-/- embryos. These results uncover a novel molecular mechanism for the maintenance of HSPC proliferation and differentiation through stabilizing LAMP2A via TMEM106B-LAMP2A interaction.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Hematopoyéticas , Proteína 2 de la Membrana Asociada a los Lisosomas , Proteínas de la Membrana , Pez Cebra , Animales , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Lisosomas/metabolismo , Humanos , Hematopoyesis/fisiología
3.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273100

RESUMEN

Autophagy is the primary intracellular degradation system, and it plays an important role in many biological and pathological processes. Studies of autophagy involvement in developmental processes are important for understanding various processes. Among them are fibrosis, degenerative diseases, cancer development, and metastasis formation. Diabetic kidney disease is one of the main causes of chronic kidney disease and end-stage renal failure. The aim of this study was to investigate the immunohistochemical expression patterns of LC3B, LAMP2A, and GRP78 during different developmental stages of early-developing human kidneys and in samples from patients with type II diabetes mellitus. During the 7/8th DW, moderate expression of LC3B and LAMP2A and strong expression of GRP78 were found in the mesonephric glomeruli and tubules. In the 9/10th DW, the expression of LC3B and LAMP2A was even more pronounced in the mesonephric tubules. LC3B, LAMP2A, and GRP78 immunoreactivity was also found in the paramesonephric and mesonephric ducts and was stronger in the 9/10th DW compared with the 7/8th DW. In addition, the expression of LC3B, LAMP2A, and GRP78 also appeared in the mesenchyme surrounding the paramesonephric duct in the 9/10th DW. In the 15/16th DW, the expression of LC3B in the glomeruli was weak, that of LAMP2A was moderate, and that of GRP78 was strong. In the tubuli, the expression of LC3B was moderate, while the expression of LAMP2A and GRP78 was strong. The strongest expression of LC3B, LAMP2A, and GRP78 was observed in the renal medullary structures, including developing blood vessels. In postnatal human kidneys, the most extensive LC3B, LAMP2A, and GRP78 expression in the cortex was found in the epithelium of the proximal convoluted tubules, with weak to moderate expression in the glomeruli. The medullary expression of LC3B was weak, but the expression of LAMP2A and GRP78 was the strongest in the medullary tubular structures. Significantly lower expression of LC3B was found in the glomeruli of the diabetic patients in comparison with the nondiabetic patients, but there was no difference in the expression of LC3B in the tubule-interstitial compartment. The expression of LAMP2A was significantly higher in the tubule-interstitial compartments of the diabetic patients in comparison with the nondiabetic patients, while its expression did not differ in the glomeruli. Extensive expression of GRP78 was found in the glomeruli and the tubule-interstitial compartments, but there was no difference in the expression between the two groups of patients. These data give us new information about the expression of LC3B, LAMP2A, and GRP78 during embryonic, fetal, and early postnatal development. The spatiotemporal expression of LC3B, LAMP2A, and GRP78 indicates the important role of autophagy during the early stages of renal development. In addition, our data suggest a disturbance in autophagy processes in the glomeruli and tubuli of diabetic kidneys as an important factor in the pathogenesis of diabetic kidney disease.


Asunto(s)
Autofagia , Nefropatías Diabéticas , Chaperón BiP del Retículo Endoplásmico , Riñón , Proteína 2 de la Membrana Asociada a los Lisosomas , Proteínas Asociadas a Microtúbulos , Humanos , Chaperón BiP del Retículo Endoplásmico/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Riñón/metabolismo , Riñón/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Biomarcadores/metabolismo , Femenino , Masculino , Proteínas de Choque Térmico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología
4.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999938

RESUMEN

The purpose of this study was to evaluate the spatiotemporal immunoexpression pattern of microtubule-associated protein 1 light chain 3 beta (LC3B), glucose-regulated protein 78 (GRP78), heat shock protein 70 (HSP70), and lysosomal-associated membrane protein 2A (LAMP2A) in normal human fetal kidney development (CTRL) and kidneys affected with congenital anomalies of the kidney and urinary tract (CAKUT). Human fetal kidneys (control, horseshoe, dysplastic, duplex, and hypoplastic) from the 18th to the 38th developmental week underwent epifluorescence microscopy analysis after being stained with antibodies. Immunoreactivity was quantified in various kidney structures, and expression dynamics were examined using linear and nonlinear regression modeling. The punctate expression of LC3B was observed mainly in tubules and glomerular cells, with dysplastic kidneys displaying distinct staining patterns. In the control group's glomeruli, LAMP2A showed a sporadic, punctate signal; in contrast to other phenotypes, duplex kidneys showed significantly stronger expression in convoluted tubules. GRP78 had a weaker expression in CAKUT kidneys, especially hypoplastic ones, while normal kidneys exhibited punctate staining of convoluted tubules and glomeruli. HSP70 staining varied among phenotypes, with dysplastic and hypoplastic kidneys exhibiting stronger staining compared to controls. Expression dynamics varied among observed autophagy markers and phenotypes, indicating their potential roles in normal and dysfunctional kidney development.


Asunto(s)
Autofagia , Chaperón BiP del Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico , Riñón , Proteína 2 de la Membrana Asociada a los Lisosomas , Proteínas Asociadas a Microtúbulos , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Riñón/metabolismo , Riñón/anomalías , Riñón/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Anomalías Urogenitales/metabolismo , Anomalías Urogenitales/patología , Sistema Urinario/metabolismo , Sistema Urinario/anomalías , Reflujo Vesicoureteral/metabolismo , Reflujo Vesicoureteral/patología
5.
Mol Cell Biochem ; 478(10): 2173-2190, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36695937

RESUMEN

Chaperone-mediated autophagy (CMA) is the selective degradation process of intracellular components by lysosomes, which is required for the degradation of aggregate-prone proteins and contributes to proteostasis maintenance. Proteostasis is essential for normal cell function and survival, and it is determined by the balance of protein synthesis and degradation. Because postmitotic neurons are highly susceptible to proteostasis disruption, CMA is vital for the nervous system. Since Parkinson's disease (PD) was first linked to CMA dysfunction, an increasing number of studies have shown that CMA loss, as seen during aging, occurs in the pathogenetic process of neurodegenerative diseases. Here, we review the molecular mechanisms of CMA, as well as the physiological function and regulation of this autophagy pathway. Following, we highlight its potential role in neurodegenerative diseases, and the latest advances and challenges in targeting CMA in therapy of neurodegenerative diseases.


Asunto(s)
Autofagia Mediada por Chaperones , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/metabolismo , Chaperonas Moleculares/metabolismo , Autofagia/fisiología , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Lisosomas/metabolismo
6.
Mol Biol Evol ; 37(10): 2887-2899, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32437540

RESUMEN

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.


Asunto(s)
Autofagia Mediada por Chaperones , Evolución Molecular , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Oryzias/genética , Animales , Metabolismo de los Hidratos de Carbono , Línea Celular , Exones , Fibroblastos/fisiología , Humanos , Metabolismo de los Lípidos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Oryzias/metabolismo
7.
Biochem Biophys Res Commun ; 534: 561-567, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239172

RESUMEN

Huntington's disease (HD) is caused by a mutant huntingtin (mHtt) protein that contains abnormally extended polyglutamine (polyQ) repeats. The process of autophagy has been implicated in clearing mHtt aggregates, and microRNAs (miRNAs) have been reported as new players to regulate autophagy. However, the autophagy-associated target molecule of let7b miRNA remains unclear in HD. The present study showed that extended polyQ in mouse striatal neurons increased lysosomal membrane-associated protein 2A (LAMP2A) levels and influenced the inflammatory conditions, and these augmented levels correlated to the let7b miRNA expression level. The upregulated let7b increased LAMP2A and reduced the extended polyQ in mouse striatal cells. The let7b level was highly expressed in the striatum of pre-onset HD mice, whereas it was significantly reduced in the post-onset HD striatum. Considering the level changing pattern of let7b, LAMP2A protein levels were increased in the striatum of pre-onset HD mice, but decreased in the striatum of post-onset HD mice. These results suggest that LAMP2A related to chaperone-mediated autophagy (CMA) capacity might play an important role in HD symptom onset and progression.


Asunto(s)
Enfermedad de Huntington/etiología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Animales , Autofagia/genética , Autofagia/fisiología , Línea Celular , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Neuronas/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Péptidos/genética , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Biochem Biophys Res Commun ; 569: 47-53, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34229122

RESUMEN

Chaperone Mediated Autophagy (CMA) is a selective autophagy pathway deregulated in many cancers. In this study, we were aiming at understanding the importance of CMA in breast cancer. To this end, we examined the expression of the CMA markers HSP8 and LAMP2A in different breast cancer cell lines and found a wide range of LAMP2A expression levels across the cell lines analyzed. Next, we applied a specific immunohistochemical staining protocol to a tissue microarray derived from a cohort of 365 breast cancer patients. Therefore, we were able to find a correlation of high LAMP2A but not HSPA8 (HSC70) with worse disease free survival in patients with HER2 negative tumors (p = 0.026) which was independent prognostic parameter from pT category, pN category and grading in a multivariate model (HR = 1.889; 95% CI = 1.039-3.421; p = 0.037). In line, low LAMP2A levels decrease proliferation of the breast cancer cell lines T47D and MCF-7 in vitro. Our data suggest that LAMP2A supports a more severe breast cancer cell phenotype.


Asunto(s)
Neoplasias de la Mama/metabolismo , Técnicas de Cultivo de Célula/métodos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Receptor ErbB-2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Autofagia Mediada por Chaperones/genética , Supervivencia sin Enfermedad , Femenino , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Células MCF-7 , Persona de Mediana Edad , Interferencia de ARN
9.
J Autoimmun ; 120: 102633, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33932829

RESUMEN

Naturally-occurring autoantibodies to certain components of autophagy processes have been described in a few autoimmune diseases, but their fine specificity, their relationships with clinical phenotypes, and their potential pathogenic functions remain elusive. Here, we explored IgG autoantibodies reacting with a panel of cytoplasmic endosomal/lysosomal antigens and individual heat-shock proteins, all of which share links to autophagy. Sera from autoimmune patients and from MRL/lpr and NZB/W lupus-prone mice reacted with the C-terminal residues of lysosome-associated membrane glycoprotein (LAMP)2A. No cross-reaction was observed with LAMP2B or LAMP2C variants, with dsDNA or mononucleosomes, or with heat-shock protein A8. Moreover, administering chromatography-purified LAMP2A autoantibodies to MRL/lpr mice accelerated mortality. Furthermore, flow cytometry revealed elevated cell-surface expression of LAMP2A on MRL/lpr B cells. These findings reveal the involvement of a new class of autoantibodies targeting the C-terminus of LAMP2A, a receptor for cytosolic proteins targeted for degradation via chaperone-mediated autophagy. These autoantibodies could affect the autophagy process, which is abnormally upregulated in lupus. The data presented support a novel connection between autophagy dysregulation, autoimmune processes and pathophysiology in lupus.


Asunto(s)
Antígenos/inmunología , Susceptibilidad a Enfermedades/inmunología , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/metabolismo , Lisosomas/inmunología , Animales , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Autoinmunidad , Autofagia/inmunología , Biomarcadores , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Endosomas/inmunología , Endosomas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Proteínas de Choque Térmico/inmunología , Humanos , Inmunoglobulina G/inmunología , Lupus Eritematoso Sistémico/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/inmunología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Endogámicos MRL lpr , Péptidos/inmunología
10.
Neuropathol Appl Neurobiol ; 47(2): 198-209, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32722888

RESUMEN

AIMS: Chaperone-mediated autophagy (CMA) is a pathway involved in the autophagy lysosome protein degradation system. CMA has attracted attention as a contributing factor to neurodegenerative diseases since it participates in the degradation of disease-causing proteins. We previously showed that CMA is generally impaired in cells expressing the proteins causing spinocerebellar ataxias (SCAs). Therefore, we investigated the effect of CMA impairment on motor function and the neural survival of cerebellar neurons using the micro RNA (miRNA)-mediated knockdown of lysosome-associated protein 2A (LAMP2A), a CMA-related protein. METHODS: We injected adeno-associated virus serotype 9 vectors, which express green fluorescent protein (GFP) and miRNA (negative control miRNA or LAMP2A miRNA) under neuron-specific synapsin I promoter, into cerebellar parenchyma of 4-week-old ICR mice. Motor function of mice was evaluated by beam walking and footprint tests. Immunofluorescence experiments of cerebellar slices were conducted to evaluate histological changes in cerebella. RESULTS: GFP and miRNA were expressed in interneurons (satellite cells and basket cells) in molecular layers and granule cells in the cerebellar cortices, but not in cerebellar Purkinje cells. LAMP2A knockdown in cerebellar neurons triggered progressive motor impairment, prominent loss of cerebellar Purkinje cells, interneurons, granule cells at the late stage, and astrogliosis and microgliosis from the early stage. CONCLUSIONS: CMA impairment in cerebellar interneurons and granule cells triggers the progressive ataxic phenotype, gliosis and the subsequent degeneration of cerebellar neurons, including Purkinje cells. Our present findings strongly suggest that CMA impairment is related to the pathogenesis of various SCAs.


Asunto(s)
Ataxia Cerebelosa/patología , Cerebelo/patología , Autofagia Mediada por Chaperones/fisiología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología , Animales , Ataxia Cerebelosa/metabolismo , Cerebelo/metabolismo , Ratones Endogámicos ICR , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Fenotipo
11.
Amino Acids ; 53(9): 1351-1359, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34283312

RESUMEN

The cyanobacterial non-protein amino acid α-amino-ß-methylaminopropionic acid, more commonly known as BMAA, was first discovered in the seeds of the ancient gymnosperm Cycad circinalis (now Cycas micronesica Hill). BMAA was linked to the high incidence of neurological disorders on the island of Guam first reported in the 1950s. BMAA still attracts interest as a possible causative factor in amyotrophic lateral sclerosis (ALS) following the identification of ALS disease clusters associated with living in proximity to lakes with regular cyanobacterial blooms. Since its discovery, BMAA toxicity has been the subject of many in vivo and in vitro studies. A number of mechanisms of toxicity have been proposed including an agonist effect at glutamate receptors, competition with cysteine for transport system xc_ and other mechanisms capable of generating cellular oxidative stress. In addition, a wide range of studies have reported effects related to disturbances in proteostasis including endoplasmic reticulum stress and activation of the unfolded protein response. In the present studies we examine the effects of BMAA on the ubiquitin-proteasome system (UPS) and on chaperone-mediated autophagy (CMA) by measuring levels of ubiquitinated proteins and lamp2a protein levels in a differentiated neuronal cell line exposed to BMAA. The BMAA induced increases in oxidised proteins and the increase in CMA activity reported could be prevented by co-administration of L-serine but not by the two antioxidants examined. These data provide further evidence of a protective role for L-serine against the deleterious effects of BMAA.


Asunto(s)
Aminoácidos Diaminos/efectos adversos , Autofagia Mediada por Chaperones , Toxinas de Cianobacterias/efectos adversos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Neuroblastoma/tratamiento farmacológico , Agregado de Proteínas/efectos de los fármacos , Serina/farmacología , Ubiquitina/metabolismo , Antioxidantes/farmacología , Diferenciación Celular , Agonistas de Aminoácidos Excitadores/efectos adversos , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Tumorales Cultivadas
12.
Cell Commun Signal ; 19(1): 40, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761934

RESUMEN

BACKGROUND: Lysosome-associated membrane protein type 2A (LAMP-2A) is the key component of chaperone-mediated autophagy (CMA), a cargo-selective lysosomal degradation pathway. Aberrant LAMP-2A expression and CMA activation have been demonstrated in various human malignancies. The study focusing on the intrinsic role of LAMP-2A and CMA in glioblastoma (GBM), and downstream mechanism could provide valuable insight into the pathogenesis and novel therapeutic modality of GBM. METHODS: The levels of LAMP-2A, nuclear receptor co-repressor (N-CoR), unfolded protein response (UPR) and apoptosis were examined in clinical samples. LAMP-2A siRNA and shRNA were constructed to manipulate CMA activation. The role of CMA and downstream mechanism through degradation of N-CoR and arresting UPR mediated apoptosis were explored in GBM cells and nude mouse xenograft model. RESULTS: Elevated LAMP-2A and associated decreased N-CoR expression were observed in GBM as compared with peritumoral region and low-grade glioma. Inhibited UPR and apoptosis were observed in GBM with high LAMP-2A expression. In vitro study demonstrated co-localization and interaction between LAMP-2A and N-CoR. LAMP-2A silencing up-regulated N-CoR and aroused UPR pathway, leading to apoptosis, while N-CoR silencing led to an opposite result. In vivo study further confirmed that LAMP-2A inhibition arrested tumor growth by promoting apoptosis. CONCLUSIONS: Our results demonstrated the central role of CMA in mediating N-CoR degradation and protecting GBM cells against UPR and apoptosis, and provided evidence of LAMP-2A as potential biomarker. Further research focusing on CMA with other tumorigenic process is needed and selective modulators of LAMP-2A remain to be investigated to provide a novel therapeutic strategy for GBM. Video Abstract.


Asunto(s)
Apoptosis , Biomarcadores de Tumor/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , Proteolisis , Animales , Apoptosis/genética , Caspasas/metabolismo , Línea Celular Tumoral , Autofagia Mediada por Chaperones/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Clasificación del Tumor , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Transcripción Genética , Respuesta de Proteína Desplegada/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562118

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand-activated signaling molecule expressed in many cell types, including triple-negative and non-triple-negative breast cancer cells. It affects breast cancer growth and crosstalk with estrogen receptor signaling. Normally, this receptor is degraded shortly after ligand activation via the 26S proteasome. Here, we report that AHR undergoes chaperone-mediated autophagy in MDA-MB-468 triple-negative breast cancer cells. This lysosomal degradation of AHR exhibits the following characteristics: (1) it is triggered by 6 amino-nicotinamide, starvation, and piperazinylpyrimidine compound Q18; (2) it is not observed in non-triple-negative breast cancer cells (MCF-7, T47D, and MDA-MB-361); (3) it can be inhibited by progesterone receptor B but not estrogen receptor alpha; (4) it can be reversed by chloroquine but not MG132; (5) it requires LAMP2A; and (6) it involves AHR-HSC70 and AHR-LAMP2A interactions. The NEKFF sequence localized at amino acid 558 of human AHR appears to be a KFERQ-like motif of chaperone-mediated autophagy, responsible for the LAMP2A-mediated AHR protein degradation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Autofagia Mediada por Chaperones/fisiología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteolisis , Receptores de Hidrocarburo de Aril/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Secuencia de Aminoácidos , Línea Celular Tumoral , Cloroquina/farmacología , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptor alfa de Estrógeno/metabolismo , Humanos , Leupeptinas/farmacología , Lisosomas/metabolismo , Células MCF-7 , Interferencia de ARN , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Transducción de Señal/fisiología
14.
Cancer Sci ; 111(11): 4154-4165, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32860290

RESUMEN

Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway of selective soluble proteins. Lysosome-associated membrane protein type 2a (LAMP2A) is the key receptor protein of CMA; downregulation of LAMP2A leads to CMA blockade. Although CMA activation has been involved in cancer growth, CMA status and functions in non-small cell lung cancer (NSCLC) by focusing on the roles in regulating chemosensitivity remain to be clarified. In this study, we found that LAMP2A expression is elevated in NSCLC cell lines and patient's tumors, conferring poor survival and platinum resistance in NSCLC patients. LAMP2A knockdown in NSCLC cells suppressed cell proliferation and colony formation and increased the sensitivity to chemotherapeutic drugs in vitro. Furthermore, we found that intrinsic apoptosis signaling is the mechanism of cell death involved with CMA blockade. Remarkably, LAMP2A knockdown repressed tumorigenicity and sensitized the tumors to cisplatin treatment in NSCLC-bearing mice. Our discoveries suggest that LAMP2A is involved in the regulation of cancer malignant phenotypes and represents a promising new target against chemoresistant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Resistencia a Antineoplásicos , Neoplasias Pulmonares/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Transducción de Señal , Animales , Apoptosis/genética , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Pronóstico , Proteolisis
15.
Mol Cell Neurosci ; 95: 1-12, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30562574

RESUMEN

Chaperone-mediated autophagy (CMA) is a substrate-specific mode of lysosomal proteolysis, with multiple lines of evidence connecting its dysfunction to both ageing and disease. We have recently shown that CMA impairment through knock-down of the lysosomal receptor LAMP2A is detrimental to neuronal viability in vivo; however, it is not clear which subset of proteins regulated by the CMA pathway mediate such changes. In this study, we have manipulated CMA function through alterations of LAMP2A abundance in primary rat cortical neurons, to identify potential changes to the neuronal proteome occurring prior to neurotoxic effects. We have identified a list of proteins with significant, >2-fold change in abundance following our manipulations, of which PARK7/DJ-1 - an anti-oxidant implicated in hereditary forms of Parkinson's Disease (PD), and DPYSL2/CRMP-2 - a microtubule-binding phosphoprotein involved in schizophrenia pathogenesis - were both found to have measurable effects on neuronal homeostasis and phenotype. Taken together, this study describes alterations in the abundance of neuronal proteins involved in neuropsychiatric disorders upon CMA manipulation, and suggests that such alterations may in part be responsible for the neurodegeneration observed upon CMA impairment in vivo.


Asunto(s)
Autofagia , Homeostasis , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Animales , Células Cultivadas , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína Desglicasa DJ-1/genética , Ratas , Ratas Wistar
16.
Biochim Biophys Acta ; 1861(12 Pt A): 1893-1910, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27620487

RESUMEN

Impaired cardiac metabolism in the obese and diabetic heart leads to glucolipotoxicity and ensuing cardiomyopathy. Glucolipotoxicity causes cardiomyocyte injury by increasing energy insufficiency, impairing proteasomal-mediated protein degradation and inducing apoptosis. Proteasome-evading proteins are degraded by autophagy in the lysosome, whose metabolism and function are regulated by master regulator transcription factor EB (TFEB). Limited studies have examined the impact of glucolipotoxicity on intra-lysosomal signaling proteins and their regulators. By utilizing a mouse model of diet-induced obesity, type-1 diabetes (Akita) and ex-vivo model of glucolipotoxicity (H9C2 cells and NRCM, neonatal rat cardiomyocyte), we examined whether glucolipotoxicity negatively targets TFEB and lysosomal proteins to dysregulate autophagy and cause cardiac injury. Despite differential effects of obesity and diabetes on LC3B-II, expression of proteins facilitating autophagosomal clearance such as TFEB, LAMP-2A, Hsc70 and Hsp90 were decreased in the obese and diabetic heart. In-vivo data was recapitulated in H9C2 and NRCM cells, which exhibited impaired autophagic flux and reduced TFEB content when exposed to a glucolipotoxic milieu. Notably, overloading myocytes with a saturated fatty acid (palmitate) but not an unsaturated fatty acid (oleate) depleted cellular TFEB and suppressed autophagy, suggesting a fatty acid specific regulation of TFEB and autophagy in the cardiomyocyte. The effect of glucolipotoxicity to reduce TFEB content was also confirmed in heart tissue from patients with Class-I obesity. Therefore, during glucolipotoxicity, suppression of lysosomal autophagy was associated with reduced lysosomal content, decreased cathepsin-B activity and diminished cellular TFEB content likely rendering myocytes susceptible to cardiac injury.


Asunto(s)
Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diabetes Mellitus/metabolismo , Lisosomas/metabolismo , Miocitos Cardíacos/metabolismo , Obesidad/metabolismo , Animales , Apoptosis/fisiología , Autofagosomas/metabolismo , Línea Celular , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Oléico/metabolismo , Palmitatos/metabolismo , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
17.
J Neurosci ; 35(5): 1921-38, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25653352

RESUMEN

Antiretroviral therapy has increased the life span of HIV+ individuals; however, HIV-associated neurocognitive disorder (HAND) occurrence is increasing in aging HIV patients. Previous studies suggest HIV infection alters autophagy function in the aging CNS and HIV-1 proteins affect autophagy in monocyte-derived cells. Despite these findings, the mechanisms leading to dysregulated autophagy in the CNS remain unclear. Here we sought to determine how HIV Tat dysregulates autophagy in neurons. Tat caused a dose-dependent decrease in autophagosome markers, microtubule-associated protein-1 light chain ß II (LC3II), and sequestosome 1(SQSTM1), in a membrane-enriched fraction, suggesting Tat increases autophagic degradation. Bafilomycin A1 increased autophagosome number, LC3II, and SQSTM1 accumulation; Tat cotreatment diminished this effect. Tat had no effect when 3-methyladenine or knockdown of beclin 1 blocked early stages of autophagy. Tat increased numbers of LC3 puncta and resulted in the formation of abnormal autophagosomes in vitro. Likewise, in vivo studies in GFAP-Tat tg mice showed increased autophagosome accumulation in neurons, altered LC3II levels, and neurodegeneration. These effects were reversed by rapamycin treatment. Tat colocalized with autophagosome and lysosomal markers and enhanced the colocalization of autophagosome with lysosome markers. Furthermore, co-IP studies showed that Tat interacts with lysosomal-associated membrane protein 2A (LAMP2A) in vitro and in vivo, and LAMP2A overexpression reduces Tat-induced neurotoxicity. Hence, Tat protein may induce autophagosome and lysosome fusion through interaction with LAMP2A leading to abnormal neuronal autophagy function and dysregulated degradation of critical intracellular components. Therapies targeting Tat-mediated autophagy alterations may decrease neurodegeneration in aging patients with HAND.


Asunto(s)
Autofagia , Lisosomas/metabolismo , Neuronas/metabolismo , Fagosomas/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Complejo SIDA Demencia/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , VIH-1/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Unión Proteica , Ratas , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/toxicidad
18.
J Neurosci ; 35(29): 10613-28, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26203154

RESUMEN

Vacuolar protein sorting-35 (VPS35) is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with autosomal dominant PD. However, it remains poorly understood if and how VPS35 deficiency or mutation contributes to PD pathogenesis. Here we provide evidence that links VPS35 deficiency to PD-like neuropathology. VPS35 was expressed in mouse dopamine (DA) neurons in substantia nigra pars compacta (SNpc) and STR (striatum)--regions that are PD vulnerable. VPS35-deficient mice exhibited PD-relevant deficits including accumulation of α-synuclein in SNpc-DA neurons, loss of DA transmitter and DA neurons in SNpc and STR, and impairment of locomotor behavior. Further mechanical studies showed that VPS35-deficient DA neurons or DA neurons expressing PD-linked VPS35 mutant (D620N) had impaired endosome-to-Golgi retrieval of lysosome-associated membrane glycoprotein 2a (Lamp2a) and accelerated Lamp2a degradation. Expression of Lamp2a in VPS35-deficient DA neurons reduced α-synuclein, supporting the view for Lamp2a as a receptor of chaperone-mediated autophagy to be critical for α-synuclein degradation. These results suggest that VPS35 deficiency or mutation promotes PD pathogenesis and reveals a crucial pathway, VPS35-Lamp2a-α-synuclein, to prevent PD pathogenesis. Significance statement: VPS35 is a key component of the retromer complex that is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with PD. However, if and how VPS35 deficiency or mutation contributes to PD pathogenesis remains unclear. We demonstrated that VPS35 deficiency or mutation (D620N) in mice leads to α-synuclein accumulation and aggregation in the substantia nigra, accompanied with DA neurodegeneration. VPS35-deficient DA neurons exhibit impaired endosome-to-Golgi retrieval of Lamp2a, which may contribute to the reduced α-synuclein degradation through chaperone-mediated autophagy. These results suggest that VPS35 deficiency or mutation promotes PD pathogenesis, and reveals a crucial pathway, VPS35-Lamp2a-α-synuclein, to prevent PD pathogenesis.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Trastornos Parkinsonianos/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular/metabolismo , Animales , Autofagia/fisiología , Western Blotting , Células Cultivadas , Neuronas Dopaminérgicas/patología , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Trastornos Parkinsonianos/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección , alfa-Sinucleína/metabolismo
19.
Mol Cell Neurosci ; 66(Pt A): 29-36, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25724482

RESUMEN

One of the main pathways of lysosomal proteolysis is chaperone-mediated autophagy (CMA), which represents a selective mechanism for the degradation of specific soluble proteins within lysosomes. Along with the other two lysosomal pathways, macro- and micro-autophagy, CMA contributes to cellular quality control through the removal of damaged or malfunctioning proteins. The two intrinsic characteristics of CMA are the selective targeting and the direct translocation of substrate proteins into the lysosomal lumen, in a fine-tuned manner through the orchestrated action of a chaperone/co-chaperone complex localized both at the cytosol and the lysosomes. Even though CMA was originally identified as a stress-induced pathway, basal CMA activity is detectable in most cell types analyzed so far, including neurons. Additionally, CMA activity declines with age and this may become a major aggravating factor contributing to neurodegeneration. More specifically, it has been suggested that CMA impairment may underlie the accumulation of misfolded/aggregated proteins, such as alpha-synuclein or LRRK2, whose levels or conformations are critical to Parkinson's disease pathogenesis. On the other hand, CMA induction might accelerate clearance of pathogenic proteins and promote cell survival, suggesting that CMA represents a viable therapeutic target for the treatment of various proteinopathies. In the current review, we provide an overview of the current state of knowledge regarding the role of CMA under physiological and pathological conditions of the nervous system and discuss the implications of these findings for therapeutic interventions for Parkinson's disease and other neurodegenerative disorders. This article is part of Special Issue entitled "Neuronal Protein".


Asunto(s)
Autofagia/fisiología , Chaperonas Moleculares/metabolismo , Terapia Molecular Dirigida/métodos , Enfermedades Neurodegenerativas/terapia , Animales , Autofagia/genética , Humanos , Chaperonas Moleculares/genética , Enfermedades Neurodegenerativas/genética
20.
Biochem Biophys Res Commun ; 461(2): 268-74, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25887800

RESUMEN

INTRODUCTION: Radiotherapy is an equivalent alternative or complement to radical prostatectomy, with high therapeutic efficacy. High risk patients, however, experience high relapse rates, so that research on radio-sensitization is the most evident route to improve curability of this common disease. MATERIALS AND METHODS: In the current study we investigated the autophagic activity in a series of patients with localized prostate tumors treated with radical radiotherapy, using the LC3A and the LAMP2a proteins as markers of autophagosome and lysosome cellular content, respectively. The role of autophagy on prostate cancer cell line resistance to radiation was also examined. RESULTS: Using confocal microscopy on tissue biopsies, we showed that prostate cancer cells have, overall, high levels of LC3A and low levels of LAMP2a compared to normal prostate glands. Tumors with a 'highLC3A/lowLAMP2a' phenotype, suggestive of intensified lysosomal consumption, had a significantly poorer biochemical relapse free survival. The PC3 radioresistant cell line sustained remarkably its autophagic flux ability after radiation, while the DU145 radiosensitive one experiences a prolonged blockage of the autophagic process. This was assessed with aggresome accumulation detection and LC3A/LAMP2a double immunofluorescence, as well as with sequestrosome/p62 protein detection. By silencing the LC3A or LAMP2a expression, both cell lines became more sensitive to escalated doses of radiation. CONCLUSIONS: High base line autophagy activity and cell ability to sustain functional autophagy define resistance of prostate cancer cells to radiotherapy. This can be reversed by blocking up-regulated components of the autophagy pathway, which may prove of importance in the field of clinical radiotherapy.


Asunto(s)
Próstata/patología , Próstata/efectos de la radiación , Neoplasias de la Próstata/radioterapia , Anciano , Autofagia , Línea Celular Tumoral , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/análisis , Masculino , Proteínas Asociadas a Microtúbulos/análisis , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Neoplasias de la Próstata/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA