Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(9): 1742-1752.e5, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513661

RESUMEN

Histone H3 lysine 4 mono-methylation (H3K4me1) marks poised or active enhancers. KMT2C (MLL3) and KMT2D (MLL4) catalyze H3K4me1, but their histone methyltransferase activities are largely dispensable for transcription during early embryogenesis in mammals. To better understand the role of H3K4me1 in enhancer function, we analyze dynamic enhancer-promoter (E-P) interactions and gene expression during neural differentiation of the mouse embryonic stem cells. We found that KMT2C/D catalytic activities were only required for H3K4me1 and E-P contacts at a subset of candidate enhancers, induced upon neural differentiation. By contrast, a majority of enhancers retained H3K4me1 in KMT2C/D catalytic mutant cells. Surprisingly, H3K4me1 signals at these KMT2C/D-independent sites were reduced after acute depletion of KMT2B, resulting in aggravated transcriptional defects. Our observations therefore implicate KMT2B in the catalysis of H3K4me1 at enhancers and provide additional support for an active role of H3K4me1 in enhancer-promoter interactions and transcription in mammalian cells.


Asunto(s)
Diferenciación Celular , Elementos de Facilitación Genéticos , N-Metiltransferasa de Histona-Lisina , Histonas , Lisina/análogos & derivados , Células Madre Embrionarias de Ratones , Regiones Promotoras Genéticas , Animales , Ratones , Histonas/metabolismo , Histonas/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Activación Transcripcional , Metilación , Regulación del Desarrollo de la Expresión Génica , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
2.
Mol Cell ; 65(3): 460-475.e6, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28157506

RESUMEN

The spatiotemporal regulation of gene expression is central for cell-lineage specification during embryonic development and is achieved through the combinatorial action of transcription factors/co-factors and epigenetic states at cis-regulatory elements. Here, we show that in addition to implementing H3K4me3 at promoters of bivalent genes, Mll2 (KMT2B)/COMPASS can also implement H3K4me3 at a subset of non-TSS regulatory elements, a subset of which shares epigenetic signatures of active enhancers. Our mechanistic studies reveal that association of Mll2's CXXC domain with CpG-rich regions plays an instrumental role for chromatin targeting and subsequent implementation of H3K4me3. Although Mll2/COMPASS is required for H3K4me3 implementation on thousands of loci, generation of catalytically mutant MLL2/COMPASS demonstrated that H3K4me3 implemented by this enzyme was essential for expression of a subset of genes, including those functioning in the control of transcriptional programs during embryonic development. Our findings suggest that not all H3K4 trimethylations implemented by MLL2/COMPASS are functionally equivalent.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Células Germinativas/citología , Histonas/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Especiación Genética , Células Germinativas/metabolismo , Células HEK293 , N-Metiltransferasa de Histona-Lisina , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas , Dominios Proteicos
3.
Mol Cell ; 66(4): 568-576.e4, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28483418

RESUMEN

Monomethylation of histone H3 at lysine 4 (H3K4me1) and acetylation of histone H3 at lysine 27 (H3K27ac) are correlated with transcriptionally engaged enhancer elements, but the functional impact of these modifications on enhancer activity is not well understood. Here we used CRISPR/Cas9 genome editing to separate catalytic activity-dependent and independent functions of Mll3 (Kmt2c) and Mll4 (Kmt2d, Mll2), the major enhancer H3K4 monomethyltransferases. Loss of H3K4me1 from enhancers in Mll3/4 catalytically deficient cells causes partial reduction of H3K27ac, but has surprisingly minor effects on transcription from either enhancers or promoters. In contrast, loss of Mll3/4 proteins leads to strong depletion of enhancer Pol II occupancy and eRNA synthesis, concomitant with downregulation of target genes. Interestingly, downregulated genes exhibit reduced polymerase levels in gene bodies, but not at promoters, suggestive of pause-release defects. Altogether, our results suggest that enhancer H3K4me1 provides only a minor contribution to the long-range coactivator function of Mll3/4.


Asunto(s)
Células Madre Embrionarias/enzimología , Elementos de Facilitación Genéticos , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas , ARN/biosíntesis , Transcripción Genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Edición Génica , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Masculino , Metilación , Ratones , Mutación , ARN/genética , Factores de Tiempo , Activación Transcripcional , Transfección
4.
Mol Genet Genomics ; 299(1): 41, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551742

RESUMEN

Primordial germ cells (PGCs) are the ancestors of female and male germ cells. Recent studies have shown that long non-coding RNA (lncRNA) and histone methylation are key epigenetic factors affecting PGC formation; however, their joint regulatory mechanisms have rarely been studied. Here, we explored the mechanism by which lncCPSET1 and H3K4me2 synergistically regulate the formation of chicken PGCs for the first time. Combined with chromatin immunoprecipitation (CHIP) sequencing and RNA-seq of PGCs transfected with the lncCPSET1 overexpression vector, GO annotation and KEGG enrichment analysis revealed that Wnt and TGF-ß signaling pathways were significantly enriched, and Fzd2, Id1, Id4, and Bmp4 were identified as candidate genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that ASH2L, DPY30, WDR5, and RBBP5 overexpression significantly increased the expression of Bmp4, which was up-regulated after lncCPSET1 overexpression as well. It indicated that Bmp4 is a target gene co-regulated by lncCPSET1 and MLL2/COMPASS. Interestingly, co-immunoprecipitation results showed that ASH2L, DPY30 and WDR5 combined and RBBP5 weakly combined with DPY30 and WDR5. lncCPSET1 overexpression significantly increased Dpy30 expression and co-immunoprecipitation showed that interference/overexpression of lncCPSET1 did not affect the binding between the proteins in the complexes, but interference with lncCPSET1 inhibited DPY30 expression, which was confirmed by RNA immunoprecipitation that lncCPSET1 binds to DPY30. Additionally, CHIP-qPCR results showed that DPY30 enriched in the Bmp4 promoter region promoted its transcription, thus promoting the formation of PGCs. This study demonstrated that lncCPSET1 and H3K4me2 synergistically promote PGC formation, providing a reference for the study of the regulatory mechanisms between lncRNA and histone methylation, as well as a molecular basis for elucidating the formation mechanism of PGCs in chickens.


Asunto(s)
Pollos , ARN Largo no Codificante , Masculino , Animales , Femenino , Pollos/genética , Pollos/metabolismo , Histonas/genética , Histonas/metabolismo , ARN Largo no Codificante/metabolismo , Metilación , Células Germinativas
5.
Adv Exp Med Biol ; 1441: 341-364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884720

RESUMEN

Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Animales , Metilación de ADN/genética , Cardiopatías Congénitas/genética , Histonas/metabolismo , Histonas/genética , Procesamiento Proteico-Postraduccional , Ratones , Cardiopatías/genética , Cardiopatías/metabolismo , Mutación
6.
Adv Exp Med Biol ; 1441: 761-775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884747

RESUMEN

Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.


Asunto(s)
Aorta Torácica , Válvula Aórtica , Humanos , Aorta Torácica/anomalías , Aorta Torácica/patología , Válvula Aórtica/anomalías , Válvula Aórtica/patología , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Enfermedad de la Válvula Aórtica Bicúspide/genética , Estenosis de la Válvula Pulmonar/genética , Mutación , Receptor Notch1/genética , Enfermedad de la Válvula Aórtica/genética , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/patología , Calcinosis/genética , Calcinosis/patología , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología
7.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884729

RESUMEN

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Asunto(s)
Defectos del Tabique Interventricular , Humanos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Defectos del Tabique Interventricular/genética , Mutación , Factores de Transcripción/genética
8.
J Intellect Disabil Res ; 68(2): 173-180, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37921399

RESUMEN

BACKGROUND: Understanding the specific neurobehavioural profile of rare genetic diseases enables clinicians to provide the best possible care for patients and families, including prognostic and treatment advisement. Previous studies suggested that a subset of individuals with Kabuki syndrome (KS), a genetic disorder causing intellectual disability and other neurodevelopmental phenotypes, have attentional deficits. However, these studies looked at relatively small numbers of molecularly confirmed cases and often used retrospective clinical data instead of standardised assessments. METHODS: Fifty-five individuals or caregivers of individuals with molecularly confirmed KS completed assessments to investigate behaviour and adaptive function. Additionally, information was collected on 23 unaffected biological siblings as controls. RESULTS: Attention Problems in children was the only behavioural category that, when averaged, was clinically significant, with the individual scores of nearly 50% of the children with KS falling in the problematic range. Children with KS scored significantly higher than their unaffected sibling on nearly all behavioural categories. A significant correlation was found between Attention Problems scores and adaptive function scores (P = 0.032), which was not explained by lower general cognitive ability. CONCLUSIONS: We found that the rates of children with attentional deficits are much more elevated than would be expected in the general population, and that attention challenges are negatively correlated with adaptive function. When averaged across KS participants, none of the behavioural categories were in the clinically significant range except Attention Problems for children, which underscores the importance of clinicians screening for attention deficit hyperactivity disorder (ADHD) in children with KS.


Asunto(s)
Anomalías Múltiples , Cara/anomalías , Enfermedades Hematológicas , Discapacidad Intelectual , Enfermedades Vestibulares , Niño , Humanos , Estudios Retrospectivos , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/genética
9.
Genes Dev ; 30(4): 408-20, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26883360

RESUMEN

Genome instability is a recurring feature of tumorigenesis. Mutation in MLL2, encoding a histone methyltransferase, is a driver in numerous different cancer types, but the mechanism is unclear. Here, we present evidence that MLL2 mutation results in genome instability. Mouse cells in which MLL2 gene deletion can be induced display elevated levels of sister chromatid exchange, gross chromosomal aberrations, 53BP1 foci, and micronuclei. Human MLL2 knockout cells are characterized by genome instability as well. Interestingly, MLL2 interacts with RNA polymerase II (RNAPII) and RECQL5, and, although MLL2 mutated cells have normal overall H3K4me levels in genes, nucleosomes in the immediate vicinity of RNAPII are hypomethylated. Importantly, MLL2 mutated cells display signs of substantial transcription stress, and the most affected genes overlap with early replicating fragile sites, show elevated levels of γH2AX, and suffer frequent mutation. The requirement for MLL2 in the maintenance of genome stability in genes helps explain its widespread role in cancer and points to transcription stress as a strong driver in tumorigenesis.


Asunto(s)
Inestabilidad Genómica/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Transcripción Genética/genética , Animales , Línea Celular , Daño del ADN/genética , N-Metiltransferasa de Histona-Lisina , Humanos , Ratones , Mutación , ARN Polimerasa II/metabolismo , RecQ Helicasas/metabolismo
10.
Int J Cancer ; 153(3): 552-570, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37140208

RESUMEN

Although KMT2D, also known as MLL2, is known to play an essential role in development, differentiation, and tumor suppression, its role in pancreatic cancer development is not well understood. Here, we discovered a novel signaling axis mediated by KMT2D, which links TGF-ß to the activin A pathway. We found that TGF-ß upregulates a microRNA, miR-147b, which in turn leads to post-transcriptional silencing of KMT2D. Loss of KMT2D induces the expression and secretion of activin A, which activates a noncanonical p38 MAPK-mediated pathway to modulate cancer cell plasticity, promote a mesenchymal phenotype, and enhance tumor invasion and metastasis in mice. We observed a decreased KMT2D expression in human primary and metastatic pancreatic cancer. Furthermore, inhibition or knockdown of activin A reversed the protumoral role of KMT2D loss. These findings support a tumor-suppressive role of KMT2D in pancreatic cancer and identify miR-147b and activin A as novel therapeutic targets.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Plasticidad de la Célula , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Activinas/genética , Neoplasias Pancreáticas
11.
Am J Med Genet A ; 188(10): 3041-3048, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35930004

RESUMEN

Kabuki syndrome (KS) is a rare epigenetic disorder caused by heterozygous loss of function variants in either KMT2D (90%) or KDM6A (10%), both involved in regulation of histone methylation. While sleep disturbance in other Mendelian disorders of the epigenetic machinery has been reported, no study has been conducted on sleep in KS. This study assessed sleep in 59 participants with KS using a validated sleep questionnaire. Participants ranged in age from 4 to 43 years old with 86% of participants having a pathogenic variant in KMT2D. In addition, data on adaptive function, behavior, anxiety, and quality of life were collected using their respective questionnaires. Some form of sleep issue was present in 71% of participants, with night-waking, daytime sleepiness, and sleep onset delay being the most prevalent. Sleep dysfunction was positively correlated with maladaptive behaviors, anxiety levels, and decreasing quality of life. Sleep issues were not correlated with adaptive function. This study establishes sleep disturbance as a common feature of KS. Quantitative sleep measures may be a useful outcome measure for clinical trials in KS. Further, clinicians caring for those with KS should consider sleep dysfunction as an important feature that impacts overall health and well being in these patients.


Asunto(s)
Enfermedades Hematológicas , Enfermedades Vestibulares , Anomalías Múltiples , Adolescente , Adulto , Niño , Preescolar , Cara/anomalías , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Histona Demetilasas/genética , Humanos , Mutación , Calidad de Vida , Sueño , Enfermedades Vestibulares/complicaciones , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología , Adulto Joven
12.
Cell Biochem Funct ; 40(4): 379-390, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35411950

RESUMEN

Activated B-cell-like (ABC)-diffuse large B-cell lymphoma (ABC-DLBCL) is a common subtype of non-Hodgkin's lymphoma with poor prognosis. The survival of ABC-DLBCL relies on constitutive activation of BCR signaling, but the underlying molecular mechanism is not fully addressed. By mining The Cancer Genome Atlas database, we found that the expression of ubiquitin-specific protease 7 (USP7) is significantly elevated in three cancer types including DLBCL. Interestingly, unlike germinal center B-cell-like (GCB)-DLBCL, ABC-DLBCL shows upregulated expression of USP7. Inhibiting the enzymatic activity of USP7 (P22077) has a drastic effect on ABC-DLBCL, but not GCB-DLBCL cells. Compared to GCB-DLBCL, ABC-DLBCL cells show transcriptional upregulation of multiple components of BCR-signaling. USP7 inhibition significantly reduces the expression of upregulated components of BCR signaling. Mechanistically, USP7 inhibition greatly reduces the methylation of histone 3 on lysine 4 (H3K4me2), which is an epigenetic marker for active enhancers. USP7 inhibition greatly reduces the protein level of WDR5 and MLL2, key components of lysine-specific methyltransferase complex (complex of proteins associated with Set1 [COMPASS]). In ABC-DLBCL cells, USP7 stabilizes WDR5 and MLL2. In patients, the expression of USP7 is significantly associated with components of BCR signaling (LYN, SYK, BTK, PLCG2, PRKCB, MALT1, BCL10, and CARD11) and targets of BCR signaling (MYC and IRF4). In summary, we demonstrated an essential role of USP7 in ABC-DLBCL by organizing an oncogenic epigenetic program via stabilization of WDR5 and MLL2. Targeting USP7 might be a novel and efficient approach to treat patients with ABC-DLBCL and it might be better than targeting individual components such as BTK in BCR signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Péptidos y Proteínas de Señalización Intracelular , Linfoma de Células B Grandes Difuso , Proteínas de Neoplasias/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Lisina/genética , Lisina/metabolismo
13.
Biochem Biophys Res Commun ; 525(3): 675-680, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32139118

RESUMEN

Glucocorticoids require the glucocorticoid receptor (GR), a type of ligand-dependent nuclear receptor to transmit their downstream effects. Upon glucocorticoid binding, GR associates with glucocorticoid response elements (GREs) and recruits other transcriptional coregulators to activate or repress target gene transcription. Many SET-domain family proteins have been demonstrated to contribute to GR-mediated transcriptional activity. However, whether histone H3K4-specific methyltransferase plays a cell-type-specific role in GR transcriptional regulation remains poorly understood. In this report, we examined MLL2 (KMT2D), a histone-lysine methyltransferase that catalyzes histone H3 lysine 4 methylation (H3K4me). Furthermore, we demonstrated that MLL2 specifically regulates the transcription of some GR target genes (e.g., ENACα and FLJ20371) in ARPE-19 cells, but has no effect in A549 cells. Mechanistically, co-immunoprecipitation assays revealed that MLL2 is associated with GR in a ligand-independent manner in APRE-19 cells. Moreover, chromatin immunoprecipitation analyses demonstrated that MLL2 could co-occupy glucocorticoid response elements (GREs) of GR target genes along with GR following Dex stimulation. Finally, the FAIRE-qPCR results illustrated that MLL2 is pivotal in establishing chromatin structure accessibility at the GREs of ARPE-19 specific genes in the presence of Dex. Taken together, our study determined that MLL2 regulates GR-mediated transcription in a cell-type-specific manner, and we provide a molecular mechanism to explain the specific role of MLL2 in regulating GR target gene expression in ARPE-19 cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Canales Epiteliales de Sodio/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Glucocorticoides/metabolismo , Epitelio Pigmentado de la Retina/citología , Transcripción Genética , Sitios de Unión , Línea Celular , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Dexametasona/farmacología , Regulación de la Expresión Génica , Humanos
14.
Semin Cancer Biol ; 51: 170-179, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28778402

RESUMEN

Epigenetic regulators are the largest group of genes mutated in MDS patients. Most mutated genes belong to one of three groups of genes with normal functions in DNA methylation, in H3K27 methylation/acetylation or in H3K4 methylation. Mutations in the majority of epigenetic regulators disrupt their normal function and induce a loss-of-function phenotype. The transcriptional consequences are often failure to repress differentiation programs and upregulation of self-renewal pathways. However, the mechanisms how different epigenetic regulators result in similar transcriptional consequences are not well understood. Hypomethylating agents are active in higher risk MDS patients, but their efficacy does not correlate with mutations in epigenetic regulators and the median duration of hematologic response is limited to 10-13 months. Inhibitors of histone deacetylases (HDAC) yielded disappointing results so far, questioning this approach in MDS patients. We review the clinical relevance of epigenetic mutations in MDS, discuss their functional consequences and highlight the role of epigenetic therapies in this difficult to treat disease.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Síndromes Mielodisplásicos/genética , Animales , Humanos , Síndromes Mielodisplásicos/patología
15.
Development ; 143(5): 810-21, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26932671

RESUMEN

KMT2D, which encodes a histone H3K4 methyltransferase, has been implicated in human congenital heart disease in the context of Kabuki syndrome. However, its role in heart development is not understood. Here, we demonstrate a requirement for KMT2D in cardiac precursors and cardiomyocytes during cardiogenesis in mice. Gene expression analysis revealed downregulation of ion transport and cell cycle genes, leading to altered calcium handling and cell cycle defects. We further determined that myocardial Kmt2d deletion led to decreased H3K4me1 and H3K4me2 at enhancers and promoters. Finally, we identified KMT2D-bound regions in cardiomyocytes, of which a subset was associated with decreased gene expression and decreased H3K4me2 in mutant hearts. This subset included genes related to ion transport, hypoxia-reoxygenation and cell cycle regulation, suggesting that KMT2D is important for these processes. Our findings indicate that KMT2D is essential for regulating cardiac gene expression during heart development primarily via H3K4 di-methylation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Histonas/química , Lisina/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Animales , Aorta/fisiología , Ciclo Celular , Ecocardiografía , Electrofisiología , Elementos de Facilitación Genéticos , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Ventrículos Cardíacos/citología , N-Metiltransferasa de Histona-Lisina , Hipoxia/metabolismo , Metilación , Ratones , Microscopía Fluorescente , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Oxígeno/química , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN
16.
Cancer Cell Int ; 18: 26, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29483845

RESUMEN

BACKGROUND: Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm whose pathogenesis is linked to the Philadelphia chromosome presence that generates the BCR-ABL1 fusion oncogene. Tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM) dramatically improved the treatment efficiency and survival of CML patients by targeting BCR-ABL tyrosine kinase. The disease shows three distinct clinical-laboratory stages: chronic phase, accelerated phase and blast crisis. Although patients in the chronic phase respond well to treatment, patients in the accelerated phase or blast crisis usually show therapy resistance and CML relapse. It is crucial, therefore, to identify biomarkers to predict CML genetic evolution and resistance to TKI therapy, considering not only the effects of genetic aberrations but also the role of epigenetic alterations during the disease. Although dysregulations in epigenetic modulators such as histone methyltrasnferases have already been described for some hematologic malignancies, to date very limited data is available for CML, especially when considering the lysine methyltransferase MLL2/KMT2D and MLL3/KMT2C. METHODS: Here we investigated the expression profile of both genes in CML patients in different stages of the disease, in patients showing different responses to therapy with IM and in non-neoplastic control samples. Imatinib sensitive and resistant CML cell lines were also used to investigate whether treatment with other tyrosine kinase inhibitors interfered in their expression. RESULTS: In patients, both methyltransferases were either upregulated or with basal expression level during the chronic phase compared to controls. Interestingly, MLL3/KMT2C and specially MLL2/KMT2D levels decreased during disease progression correlating with distinct clinical stages. Furthermore, MLL2/KMT2D was decreased in patients resistant to IM treatment. A rescue in the expression of both MLL genes was observed in KCL22S, a CML cell line sensitive to IM, after treatment with dasatinib or nilotinib which was associated with a higher rate of apoptosis, an enhanced expression of p21 (CDKN1A) and a concomitant decrease in the expression of CDK2, CDK4 and Cyclin B1 (CCNB1) in comparison to untreated KCL22S control or IM resistant KCL22R cell line, which suggests involvement of p53 regulated pathway. CONCLUSION: Our results established a new association between MLL2/KMT2D and MLL3/KMT2C genes with CML and suggest that MLL2/KMT2D is associated with disease evolution and may be a potential marker to predict the development of therapy resistance.

17.
Int J Cancer ; 140(12): 2792-2804, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28295288

RESUMEN

Forkhead transcription factor FoxO3a has been reported to have ambiguous functions and distinct mechanisms in various solid tumors, including glioblastoma (GBM). Although a preliminary analysis of a small sample of patients indicated that FoxO3a aberrations in glioma might be related to aggressive clinical behavior, the clinical significance of FoxO3a in glioblastoma remains unclear. We investigated the expression of FoxO3a in a cohort of 91 glioblastoma specimens and analyzed the correlations of protein expression with patient prognosis. Furthermore, the functional impact of FoxO3a on GBM progression and the underlying mechanisms of FoxO3a regulation were explored in a series of in vitro and in vivo assays. FoxO3a expression was elevated in glioblastoma tissues, and high nuclear FoxO3a expression in human GBM tissues was associated with poor prognosis. Moreover, knockdown of FoxO3a significantly reduced the colony formation and invasion ability of GBM cells, whereas overexpression of FoxO3a promoted the colony formation and invasion ability. The results of in vivo GBM models further confirmed that FoxO3a knockdown inhibited GBM progression. More, the pro-oncogenic effects of FoxO3a in GBM were mediated by the activation of c-Myc, microtubule-associated protein 1 light chain 3 beta (LC3B) and Beclin1 in a mixed-lineage leukemia 2 (MLL2)-dependent manner. These findings suggest that high FoxO3a expression is associated with glioblastoma progression and that FoxO3a independently indicates poor prognosis in patients. FoxO3a might be a novel prognostic biomarker or a potential therapeutic target in glioblastoma.


Asunto(s)
Neoplasias Encefálicas/genética , Proteína Forkhead Box O3/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Proteína Forkhead Box O3/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Ratones Desnudos , Ratones Transgénicos , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Interferencia de ARN , Trasplante Heterólogo , Adulto Joven
18.
BMC Cancer ; 17(1): 252, 2017 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-28390392

RESUMEN

BACKGROUND: Cervical cancer is the second most common cause of cancer deaths in women worldwide. The aim of this study is to exploit novel pathogenic genes in cervical carcinogenesis. METHOD: The somatic mutations from 194 patients with cervical cancer were obtained from the Cancer Genome Atlas (TCGA) publically accessible exome-sequencing database. We investigated mutated gene enrichment in the 12 cancer core pathways and predicted possible post-translational modifications. Additionally, we predicted the impact of mutations by scores quantifying the deleterious effects of the mutations. We also examined the immunogenicity of the mutations based on the mutant peptides' strong binding with major histocompatibility complex class I molecules (MHC-I). The Kaplan-Meier method was used for the survival analysis. RESULTS: We observed that the chromatin modification pathway was significantly mutated across all clinical stages. Among the mutated genes involved in this pathway, we observed that the histone modification regulators were primarily mutated. Interestingly, of the 197 mutations in the 26 epigenetic regulators in this pathway, 25 missense mutations in 13 genes were predicted in or around the phosphorylation sites. Only mutations in the histone methyltransferase MLL2 exhibited poor survival. Compared to other mutations in MLL2 mutant patients, we noticed that the mutational scores prioritized mutations in MLL2, which indicates that it is more likely to have deleterious effects to the human genome. Around half of all of the mutations were found to bind strongly to MHC-I, suggesting that patients are likely to benefit from immunotherapy. CONCLUSIONS: Our results highlight the emerging role of mutations in epigenetic regulators, particularly MLL2, in cervical carcinogenesis, which suggests a potential disruption of histone modifications. These data have implications for further investigation of the mechanism of epigenetic dysregulation and for treatment of cervical cancer.


Asunto(s)
Proteínas de Unión al ADN/genética , Epigénesis Genética , Mutación , Proteínas de Neoplasias/genética , Neoplasias del Cuello Uterino/genética , Bases de Datos Genéticas , Femenino , Genes MHC Clase I , Humanos , Estadificación de Neoplasias , Pronóstico , Análisis de Supervivencia , Neoplasias del Cuello Uterino/patología
19.
Am J Med Genet A ; 173(1): 183-189, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27991736

RESUMEN

Choanal atresia is rarely reported in Kabuki syndrome, but is a common feature of CHARGE syndrome. Otherwise, the two conditions have a number of overlapping features, and the molecular links between them have recently been elucidated. Here, we report a case of a mother and her two children who presented with congenital choanal atresia. We performed whole exome sequencing on DNA from the mother and her two unaffected parents, and identified a de novo, novel variant in KMT2D. KMT2D p.Gln3575His segregated with disease status in the family, and is associated with a unique and conserved phenotype in the affected family members, with features overlapping with Kabuki and CHARGE syndromes. Our findings further support the potential etiological link between these two classically distinct conditions. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Anomalías Múltiples/genética , Síndrome CHARGE/genética , Atresia de las Coanas/genética , Proteínas de Unión al ADN/genética , Cara/anomalías , Genes Dominantes , Estudios de Asociación Genética , Enfermedades Hematológicas/genética , Mutación , Proteínas de Neoplasias/genética , Enfermedades Vestibulares/genética , Anomalías Múltiples/diagnóstico , Adulto , Sustitución de Aminoácidos , Síndrome CHARGE/diagnóstico , Niño , Atresia de las Coanas/diagnóstico , Atresia de las Coanas/cirugía , Cromosomas Humanos Par 22 , Codón , Diagnóstico por Imagen , Exoma , Facies , Femenino , Enfermedades Hematológicas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hibridación Fluorescente in Situ , Masculino , Fenotipo , Enfermedades Vestibulares/diagnóstico
20.
Int J Mol Sci ; 19(1)2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29283410

RESUMEN

Kabuki syndrome (KS) is a rare disorder characterized by multiple congenital anomalies and variable intellectual disability caused by mutations in KMT2D/MLL2 and KDM6A/UTX, two interacting chromatin modifier responsible respectively for 56-75% and 5-8% of the cases. To date, three KS patients with mosaic KMT2D deletions in blood lymphocytes have been described. We report on three additional subjects displaying KMT2D gene mosaics including one in which a single nucleotide change results in a new frameshift mutation (p.L1199HfsX7), and two with already-known nonsense mutations (p.R4484X and p.R5021X). Consistent with previously published cases, mosaic KMT2D mutations may result in mild KS facial dysmorphisms and clinical and neurobehavioral features, suggesting that these characteristics could represent the handles for genetic testing of individuals with slight KS-like traits.


Asunto(s)
Anomalías Múltiples/genética , Codón sin Sentido , Proteínas de Unión al ADN/genética , Cara/anomalías , Mutación del Sistema de Lectura , Enfermedades Hematológicas/genética , Mosaicismo , Proteínas de Neoplasias/genética , Enfermedades Vestibulares/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/metabolismo , Anomalías Múltiples/fisiopatología , Adolescente , Secuencia de Bases , Niño , Proteínas de Unión al ADN/metabolismo , Cara/fisiopatología , Femenino , Expresión Génica , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/metabolismo , Enfermedades Hematológicas/fisiopatología , Humanos , Proteínas de Neoplasias/metabolismo , Pruebas Neuropsicológicas , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/metabolismo , Enfermedades Vestibulares/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA