Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2318413121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683993

RESUMEN

Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.


Asunto(s)
Miosinas Cardíacas , Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Contracción Miocárdica , Miocitos Cardíacos , Cadenas Pesadas de Miosina , Humanos , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Contracción Miocárdica/genética , Mutación , Mitocondrias/metabolismo , Mitocondrias/genética , Miofibrillas/metabolismo , Respiración de la Célula/genética
2.
Mol Ther ; 32(5): 1578-1594, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475992

RESUMEN

Heart failure (HF) is manifested by transcriptional and posttranscriptional reprogramming of critical genes. Multiple studies have revealed that microRNAs could translocate into subcellular organelles such as the nucleus to modify gene expression. However, the functional property of subcellular Argonaute2 (AGO2), the core member of the microRNA machinery, has remained elusive in HF. AGO2 was found to be localized in both the cytoplasm and nucleus of cardiomyocytes, and robustly increased in the failing hearts of patients and animal models. We demonstrated that nuclear AGO2 rather than cytosolic AGO2 overexpression by recombinant adeno-associated virus (serotype 9) with cardiomyocyte-specific troponin T promoter exacerbated the cardiac dysfunction in transverse aortic constriction (TAC)-operated mice. Mechanistically, nuclear AGO2 activates the transcription of ANKRD1, encoding ankyrin repeat domain-containing protein 1 (ANKRD1), which also has a dual function in the cytoplasm as part of the I-band of the sarcomere and in the nucleus as a transcriptional cofactor. Overexpression of nuclear ANKRD1 recaptured some key features of cardiac remodeling by inducing pathological MYH7 activation, whereas cytosolic ANKRD1 seemed cardioprotective. For clinical practice, we found ivermectin, an antiparasite drug, and ANPep, an ANKRD1 nuclear location signal mimetic peptide, were able to prevent ANKRD1 nuclear import, resulting in the improvement of cardiac performance in TAC-induced HF.


Asunto(s)
Proteínas Argonautas , Modelos Animales de Enfermedad , Insuficiencia Cardíaca , Miocitos Cardíacos , Proteínas Represoras , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Ratones , Humanos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Miocitos Cardíacos/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Remodelación Ventricular , Núcleo Celular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regulación de la Expresión Génica , Masculino , Dependovirus/genética , Transcripción Genética
3.
Mol Cell Biochem ; 479(2): 393-417, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37079208

RESUMEN

Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.


Asunto(s)
Cardiomiopatías , Enfermedades Musculares , Humanos , Cadenas Pesadas de Miosina/genética , Enfermedades Musculares/genética , Músculo Esquelético , Cardiomiopatías/genética , Corazón , Mutación , Fenotipo , Miosinas Cardíacas/genética
4.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884729

RESUMEN

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Asunto(s)
Defectos del Tabique Interventricular , Humanos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Defectos del Tabique Interventricular/genética , Mutación , Factores de Transcripción/genética
5.
J Mol Cell Cardiol ; 179: 60-71, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019277

RESUMEN

Standard transgenic cell line generation requires screening 100-1000s of colonies to isolate correctly edited cells. We describe CRISPRa On-Target Editing Retrieval (CRaTER) which enriches for cells with on-target knock-in of a cDNA-fluorescent reporter transgene by transient activation of the targeted locus followed by flow sorting to recover edited cells. We show CRaTER recovers rare cells with heterozygous, biallelic-editing of the transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSCs), enriching on average 25-fold compared to standard antibiotic selection. We leveraged CRaTER to enrich for heterozygous knock-in of a library of variants in MYH7, a gene in which missense mutations cause cardiomyopathies, and recovered hiPSCs with 113 different variants. We differentiated these hiPSCs to cardiomyocytes and show MHC-ß fusion proteins can localize as expected. Additionally, single-cell contractility analyses revealed cardiomyocytes with a pathogenic, hypertrophic cardiomyopathy-associated MYH7 variant exhibit salient HCM physiology relative to isogenic controls. Thus, CRaTER substantially reduces screening required for isolation of gene-edited cells, enabling generation of functional transgenic cell lines at unprecedented scale.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Humanos , Edición Génica , Células Madre Pluripotentes Inducidas/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatía Hipertrófica/genética , Línea Celular , Mutación
6.
BMC Genomics ; 24(1): 70, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765276

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are endogenous small non-coding RNAs (21-25 nucleotides) that act as essential components of several biological processes. Golden-back crucian carp (GBCrC, Carassius auratus) is a naturally mutant species of carp that has two distinct body skin color types (golden and greenish-grey), making it an excellent model for research on the genetic basis of pigmentation. Here, we performed small RNA (sRNA) analysis on the two different skin colors via Illumina sequencing. RESULTS: A total of 679 known miRNAs and 254 novel miRNAs were identified, of which 32 were detected as miRNAs with significant differential expression (DEMs). 23,577 genes were projected to be the targets of 32 DEMs, primarily those involved in melanogenesis, adrenergic signaling in cardiomyocytes, MAPK signaling pathway and wnt signaling pathway by functional enrichment. Furthermore, we built an interaction module of mRNAs, proteins and miRNAs based on 10 up-regulated and 13 down-regulated miRNAs in golden skin. In addition to transcriptional destabilization and translational suppression, we discovered that miRNAs and their target genes were expressed in the same trend at both the transcriptional and translational levels. Finally, we discovered that miR-196d could be indirectly implicated in regulating melanocyte synthesis and motility in the skin by targeting to myh7 (myosin-7) gene through the luciferase reporter assay, antagomir silencing in vivo and qRT-PCR techniques. CONCLUSIONS: Our study gives a systematic examination of the miRNA profiles expressed in the skin of GBCrC, assisting in the comprehension of the intricate molecular regulation of body color polymorphism and providing insights for C. auratus breeding research.


Asunto(s)
Carpas , MicroARNs , Oryza , Animales , Carpas/genética , Carpas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Pigmentación de la Piel/genética , Oryza/genética , Fitomejoramiento , Perfilación de la Expresión Génica
7.
Mol Genet Genomics ; 298(6): 1289-1299, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37498360

RESUMEN

The objective of this work was to identify genetic variants in Mexican patients diagnosed with hypertrophic cardiomyopathy (HCM). According to world literature, the genes mainly involved are MHY7 and MYBPC3, although variants have been found in more than 50 genes related to heart disease and sudden death, and to our knowledge there are no studies in the Mexican population. These variants are reported and classified in the ClinVar (PubMed) database and only some of them are recognized in the Online Mendelian Information in Men (OMIM). The present study included 37 patients, with 14 sporadic cases and 6 familial cases, with a total of 21 index cases. Next-generation sequencing was performed on a predesigned panel of 168 genes associated with heart disease and sudden death. The sequencing analysis revealed twelve (57%) pathogenic or probably pathogenic variants, 9 of them were familial cases, managing to identify pathogenic variants in relatives without symptoms of the disease. At the molecular level, nine of the 12 variants (75%) were single nucleotide changes, 2 (17%) deletions, and 1 (8%) splice site alteration. The genes involved were MYH7 (25%), MYBPC3 (25%) and ACADVL, KCNE1, TNNI3, TPM1, SLC22A5, TNNT2 (8%). In conclusion; we found five variants that were not previously reported in public databases. It is important to follow up on the reclassification of variants, especially those of uncertain significance in patients with symptoms of the condition. All patients included in the study and their relatives received family genetic counseling.


Asunto(s)
Cardiomiopatía Hipertrófica , Cardiopatías , Masculino , Humanos , Cardiomiopatía Hipertrófica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Muerte Súbita , Mutación , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética
8.
Int J Legal Med ; 137(5): 1453-1461, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37284852

RESUMEN

BACKGROUND: Cardiac hypertrophy, which develops in middle-aged and older individuals as a consequence of hypertension and obesity, is an established risk factor for sudden cardiac death (SCD). However, it is sometimes difficult to differentiate SCD with acquired cardiac hypertrophy (SCH) from compensated cardiac hypertrophy (CCH), at autopsy. We aimed to elucidate the proteomic alteration in SCH, which can be a guideline for future postmortem diagnosis. METHODS: Cardiac tissues were sampled at autopsy. SCH group consisted of ischemic heart failure, hypertensive heart failure, and aortic stenosis. CCH group included cases of non-cardiac death with cardiac hypertrophy. The control group comprised cases of non-cardiac death without cardiac hypertrophy. All patients were aged > 40 years, and hypertrophic cardiomyopathy was not included in this study. We performed histological examination and shotgun proteomic analysis, followed by quantitative polymerase chain reaction analysis. RESULTS: Significant obesity and myocardial hypertrophy, and mild myocardial fibrosis were comparable in SCH and CCH cases compared to control cases. The proteomic profile of SCH cases was distinguishable from those of CCH and control cases, and many sarcomere proteins were increased in SCH cases. Especially, the protein and mRNA levels of MYH7 and MYL3 were significantly increased in SCH cases. CONCLUSION: This is the first report of cardiac proteomic analysis in SCH and CCH cases. The stepwise upregulation of sarcomere proteins may increase the risk for SCD in acquired cardiac hypertrophy before cardiac fibrosis progresses significantly. These findings can possibly aid in the postmortem diagnosis of SCH in middle-aged and older individuals.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Hipertensión , Persona de Mediana Edad , Humanos , Anciano , Proteómica , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/patología , Fibrosis , Hipertensión/complicaciones , Obesidad , Cardiomegalia
9.
BMC Cardiovasc Disord ; 23(1): 116, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890431

RESUMEN

BACKGROUND: Hypoplastic left heart syndrome (HLHS) is a rare but genetically complex and clinically and anatomically severe form of congenital heart disease (CHD). CASE PRESENTATION: Here, we report on the use of rapid prenatal whole-exome sequencing for the prenatal diagnosis of a severe case of neonatal recurrent HLHS caused by heterozygous compound variants in the MYH6 gene inherited from the (healthy) parents. MYH6 is known to be highly polymorphic; a large number of rare and common variants have variable effects on protein levels. We postulated that two hypomorphic variants led to severe CHD when associated in trans; this was consistent with the autosomal recessive pattern of inheritance. In the literature, dominant transmission of MYH6-related CHD is more frequent and is probably linked to synergistic heterozygosity or the specific combination of a single, pathogenic variant with common MYH6 variants. CONCLUSIONS: The present report illustrates the major contribution of whole-exome sequencing (WES) in the characterization of an unusually recurrent fetal disorder and considered the role of WES in the prenatal diagnosis of disorders that do not usually have a genetic etiology.


Asunto(s)
Cardiopatías Congénitas , Herencia , Síndrome del Corazón Izquierdo Hipoplásico , Embarazo , Recién Nacido , Femenino , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/diagnóstico por imagen , Síndrome del Corazón Izquierdo Hipoplásico/genética , Cardiopatías Congénitas/genética , Diagnóstico Prenatal , Cadenas Pesadas de Miosina/genética , Miosinas Cardíacas/genética
10.
BMC Cardiovasc Disord ; 23(1): 487, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794383

RESUMEN

BACKGROUND: The MYH7 gene, which encodes the slow/ß-cardiac myosin heavy chain, is mutated in myosin storage myopathy (MSM). The clinical spectrum of MSM is quite heterogeneous in that it ranges from cardiomyopathies to skeletal myopathies or a combination of both, depending on the affected region. In this study, we performed clinical and molecular examinations of the proband of an Iranian family with MSM in an autosomal dominant condition exhibiting proximal muscle weakness and dilated cardiomyopathy. METHODS: Following thorough clinical and paraclinical examinations, whole-exome sequencing `was performed on the proband (II-5). Pathogenicity prediction of the candidate variant was performed through in-silico analysis. Co-segregation analysis of the WES data among the family members was carried out by PCR-based Sanger sequencing. RESULTS: A novel heterozygous missense variant, MYH7 (NM_000257): c.C1888A: p.Pro630Thr, was found in the DNA of the proband and his children and confirmed by Sanger sequencing. The in-silico analysis revealed that p.Pro630Thr substitution was deleterious. The novel sequence variant fell within a highly conserved region of the head domain. Our findings expand the spectrum of MYH7 mutations. CONCLUSIONS: This finding could improve genetic counseling and prenatal diagnosis in families with clinical manifestations associated with MYH7-related myopathy.


Asunto(s)
Cardiomiopatía Dilatada , Enfermedades Musculares , Niño , Humanos , Músculo Esquelético , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatía Dilatada/genética , Irán , Mutación , Cadenas Pesadas de Miosina/genética , Linaje , Miosinas Cardíacas/genética
11.
Cardiol Young ; 33(5): 810-812, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36217801

RESUMEN

Left ventricular non-compaction is a very rare, still unclassified congenital cardiomyopathy. Nine distinct subtypes of functional and anatomical left ventricular non-compaction have been identified. Studies on the prognosis and mortality of subtypes are ongoing. Our study presented the first restrictive subtype left ventricular non-compaction case with family history and MYH7 gene mutation.


Asunto(s)
Fibroelastosis Endocárdica , Cardiopatías , Humanos , Mutación , Ventrículos Cardíacos , Cadenas Pesadas de Miosina/genética , Miosinas Cardíacas/genética
12.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445689

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most prevalent genetically inherited cardiomyopathy that follows an autosomal dominant inheritance pattern. The majority of HCM cases can be attributed to mutation of the MYBPC3 gene, which encodes cMyBP-C, a crucial structural protein of the cardiac muscle. The manifestation of HCM's morphological, histological, and clinical symptoms is subject to the complex interplay of various determinants, including genetic mutation and environmental factors. Approximately half of MYBPC3 mutations give rise to truncated protein products, while the remaining mutations cause insertion/deletion, frameshift, or missense mutations of single amino acids. In addition, the onset of HCM may be attributed to disturbances in the protein and transcript quality control systems, namely, the ubiquitin-proteasome system and nonsense-mediated RNA dysfunctions. The aforementioned genetic modifications, which appear to be associated with unfavorable lifelong outcomes and are largely influenced by the type of mutation, exhibit a unique array of clinical manifestations ranging from asymptomatic to arrhythmic syncope and even sudden cardiac death. Although the current understanding of the MYBPC3 mutation does not comprehensively explain the varied phenotypic manifestations witnessed in patients with HCM, patients with pathogenic MYBPC3 mutations can exhibit an array of clinical manifestations ranging from asymptomatic to advanced heart failure and sudden cardiac death, leading to a higher rate of adverse clinical outcomes. This review focuses on MYBPC3 mutation and its characteristics as a prognostic determinant for disease onset and related clinical consequences in HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Proteínas Portadoras , Humanos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Mutación , Cardiomiopatía Hipertrófica/genética , Mutación Missense , Proteínas del Citoesqueleto/metabolismo , Muerte Súbita Cardíaca/etiología
13.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902340

RESUMEN

Missense mutations in myosin heavy chain 7 (MYH7) are a common cause of hypertrophic cardiomyopathy (HCM), but the molecular mechanisms underlying MYH7-based HCM remain unclear. In this work, we generated cardiomyocytes derived from isogenic human induced pluripotent stem cells to model the heterozygous pathogenic MYH7 missense variant, E848G, which is associated with left ventricular hypertrophy and adult-onset systolic dysfunction. MYH7E848G/+ increased cardiomyocyte size and reduced the maximum twitch forces of engineered heart tissue, consistent with the systolic dysfunction in MYH7E848G/+ HCM patients. Interestingly, MYH7E848G/+ cardiomyocytes more frequently underwent apoptosis that was associated with increased p53 activity relative to controls. However, genetic ablation of TP53 did not rescue cardiomyocyte survival or restore engineered heart tissue twitch force, indicating MYH7E848G/+ cardiomyocyte apoptosis and contractile dysfunction are p53-independent. Overall, our findings suggest that cardiomyocyte apoptosis is associated with the MYH7E848G/+ HCM phenotype in vitro and that future efforts to target p53-independent cell death pathways may be beneficial for the treatment of HCM patients with systolic dysfunction.


Asunto(s)
Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Adulto , Humanos , Miocitos Cardíacos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Miosinas Cardíacas/genética , Mutación , Células Madre Pluripotentes Inducidas/metabolismo , Cardiomiopatía Hipertrófica/genética , Contracción Miocárdica/genética , Apoptosis , Cadenas Pesadas de Miosina/metabolismo
14.
Fetal Pediatr Pathol ; 42(3): 464-471, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36630130

RESUMEN

Background: Noncompaction of ventricular myocardium is a cardiomyopathy that typically involves the left ventricle or both ventricles; it has often been associated with mutations in genes encoding sarcomere proteins. Little is known about isolated right ventricular noncompaction, as only a few cases have been reported. Case Report: A 30 year old G2P1 woman experienced a spontaneous fetal loss at 19 weeks and 4 days. An ultrasound examination at 19 weeks showed right ventricular and tricuspid valve abnormalities, ascites, and early hydrops. At autopsy, the right ventricular chamber was dilated with numerous prominent trabeculations and deep intrabecular recesses as well as a dysplastic tricuspid valve. Histologic examination confirmed isolated right ventricular noncompaction. Whole exome sequencing showed a likely pathogenic variant in the MYH7 gene. Conclusions: This appears to be the first report of isolated right ventricular noncompaction associated with a gene mutation as well as the first diagnosis in a fetus.


Asunto(s)
Cardiomiopatías , Cardiopatías Congénitas , Embarazo , Femenino , Humanos , Adulto , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiopatías Congénitas/patología , Miocardio/patología , Ventrículos Cardíacos , Diagnóstico Prenatal , Cadenas Pesadas de Miosina/genética , Miosinas Cardíacas/genética
15.
Neth Heart J ; 31(7-8): 300-307, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37488328

RESUMEN

INTRODUCTION: The MYH7 c.5135G > A p.(Arg1712Gln) variant has been identified in several patients worldwide and is classified as pathogenic in the ClinVar database. We aimed to delineate its associated phenotype and evaluate a potential founder effect. METHODS: We retrospectively collected clinical and genetic data of 22 probands and 74 family members from an international cohort. RESULTS: In total, 53 individuals carried the MYH7 p.(Arg1712Gln) variant, of whom 38 (72%) were diagnosed with hypertrophic cardiomyopathy (HCM). Mean age at HCM diagnosis was 48.8 years (standard deviation: 18.1; range: 8-74). The clinical presentation ranged from asymptomatic HCM to arrhythmias (atrial fibrillation and malignant ventricular arrhythmias). Aborted sudden cardiac death (SCD) leading to the diagnosis of HCM occurred in one proband at the age of 68 years, and a family history of SCD was reported by 39% (5/13) probands. Neither heart failure deaths nor heart transplants were reported. Women had a generally later-onset disease, with 14% of female carriers diagnosed with HCM at age 50 years compared with 54% of male carriers. In both sexes, the disease was fully penetrant by age 75 years. Haplotypes were reconstructed for 35 patients and showed a founder effect in a subset of patients. CONCLUSION: MYH7 p.(Arg1712Gln) is a pathogenic founder variant with a consistent HCM phenotype that may present with delayed penetrance. This suggested that clinical follow-up should be pursued after the seventh decade in healthy carriers and that longer intervals between screening may be justified in healthy women < 30 years.

16.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(4): 425-430, 2023 Apr 15.
Artículo en Zh | MEDLINE | ID: mdl-37073850

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common monogenic inherited myocardial disease in children, and mutations in sarcomere genes (such as MYH7 and MYBPC3) are the most common genetic etiology of HCM, among which mutations in the MYH7 gene are the most common and account for 30%-50%. MYH7 gene mutations have the characteristics of being affected by environmental factors, coexisting with multiple genetic variations, and age-dependent penetrance, which leads to different or overlapping clinical phenotypes in children, including various cardiomyopathies and skeletal myopathies. At present, the pathogenesis, course, and prognosis of HCM caused by MYH7 gene mutations in children remain unclear. This article summarizes the possible pathogenesis, clinical phenotype, and treatment of HCM caused by MYH7 gene mutations, in order to facilitate the accurate prognostic evaluation and individualized management and treatment of the children with this disorder.


Asunto(s)
Cardiomiopatía Hipertrófica , Niño , Humanos , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/terapia , Fenotipo , Troponina T/genética , Mutación , Proteínas Portadoras/genética , Cadenas Pesadas de Miosina/genética , Miosinas Cardíacas/genética
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(11): 1156-1160, 2023 Nov 15.
Artículo en Zh | MEDLINE | ID: mdl-37990461

RESUMEN

OBJECTIVES: To investigate the clinical phenotype and genotype characteristics of children withcardiomyopathy (CM) associated with MYH7 gene mutation. METHODS: A retrospective analysis was conducted on the medical data of five children with CM caused by MYH7 gene mutation who were diagnosed and treated in the Department of Cardiology, Hebei Children's Hospital. RESULTS: Among the five children with CM, there were three girls and two boys, all of whom carried MYH7 gene mutation. Seven mutation sites were identified, among which five were not reported before. Among the five children, there were three children with hypertrophic cardiomyopathy, one child with dilated cardiomyopathy, and one child with noncompaction cardiomyopathy. The age ranged from 6 to 156 months at the initial diagnosis. At the initial diagnosis, two children had the manifestations of heart failure such as cough, shortness of breath, poor feeding, and cyanosis of lips, as well as delayed development; one child had palpitation, blackness, and syncope; one child had fever, runny nose, and abnormal liver function; all five children had a reduction in activity endurance. All five children received pharmacotherapy for improving cardiac function and survived after follow-up for 7-24 months. CONCLUSIONS: The age of onset varies in children with CM caused by MYH7 gene mutation, and most children lack specific clinical manifestations at the initial diagnosis and may have the phenotype of hypertrophic cardiomyopathy, dilated cardiomyopathy or noncompaction cardiomyopathy. The children receiving early genetic diagnosis and pharmacological intervention result in a favorable short-term prognosis.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Masculino , Femenino , Niño , Humanos , Estudios Retrospectivos , Cardiomiopatía Dilatada/genética , Linaje , Fenotipo , Genotipo , Mutación , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/diagnóstico , Cadenas Pesadas de Miosina/genética , Miosinas Cardíacas/genética
18.
J Biol Chem ; 297(1): 100836, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34051236

RESUMEN

Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disorder primarily caused by mutations in the ß-myosin heavy-chain gene. The proximal subfragment 2 region (S2), 126 amino acids of myosin, binds with the C0-C2 region of cardiac myosin-binding protein-C to regulate cardiac muscle contractility in a manner dependent on PKA-mediated phosphorylation. However, it is unknown if HCM-associated mutations within S2 dysregulate actomyosin dynamics by disrupting its interaction with C0-C2, ultimately leading to HCM. Herein, we study three S2 mutations known to cause HCM: R870H, E924K, and E930Δ. First, experiments using recombinant proteins, solid-phase binding, and isothermal titrating calorimetry assays independently revealed that mutant S2 proteins displayed significantly reduced binding with C0-C2. In addition, CD revealed greater instability of the coiled-coil structure in mutant S2 proteins compared with S2Wt proteins. Second, mutant S2 exhibited 5-fold greater affinity for PKA-treated C0-C2 proteins. Third, skinned papillary muscle fibers treated with mutant S2 proteins showed no change in the rate of force redevelopment as a measure of actin-myosin cross-bridge kinetics, whereas S2Wt showed increased the rate of force redevelopment. In summary, S2 and C0-C2 interaction mediated by phosphorylation is altered by mutations in S2, which augment the speed and force of contraction observed in HCM. Modulating this interaction could be a potential strategy to treat HCM in the future.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Proteínas Portadoras/metabolismo , Mutación/genética , Miosinas/genética , Animales , Bovinos , Humanos , Cinética , Ratones Transgénicos , Proteínas Mutantes/metabolismo , Miosinas/metabolismo , Péptidos/metabolismo , Fosforilación , Unión Proteica , Reproducibilidad de los Resultados
19.
J Biol Chem ; 296: 100694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33895132

RESUMEN

Myosin heavy chain 7b (MYH7b) is an ancient member of the myosin heavy chain motor protein family that is expressed in striated muscles. In mammalian cardiac muscle, MYH7b RNA is expressed along with two other myosin heavy chains, ß-myosin heavy chain (ß-MyHC) and α-myosin heavy chain (α-MyHC). However, unlike ß-MyHC and α-MyHC, which are maintained in a careful balance at the protein level, the MYH7b locus does not produce a full-length protein in the heart due to a posttranscriptional exon-skipping mechanism that occurs in a tissue-specific manner. Whether this locus has a role in the heart beyond producing its intronic microRNA, miR-499, was unclear. Using cardiomyocytes derived from human induced pluripotent stem cells as a model system, we found that the noncoding exon-skipped RNA (lncMYH7b) affects the transcriptional landscape of human cardiomyocytes, independent of miR-499. Specifically, lncMYH7b regulates the ratio of ß-MyHC to α-MyHC, which is crucial for cardiac contractility. We also found that lncMYH7b regulates beat rate and sarcomere formation in cardiomyocytes. This regulation is likely achieved through control of a member of the TEA domain transcription factor family (TEAD3, which is known to regulate ß-MyHC). Therefore, we conclude that this ancient gene has been repurposed by alternative splicing to produce a regulatory long-noncoding RNA in the human heart that affects cardiac myosin composition.


Asunto(s)
Miosinas Cardíacas/metabolismo , Miocardio/metabolismo , Cadenas Pesadas de Miosina/metabolismo , ARN Largo no Codificante/genética , Miosinas Cardíacas/química , Humanos , Células Madre Pluripotentes Inducidas , MicroARNs/genética , Simulación de Dinámica Molecular , Miocardio/citología , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/química , Conformación Proteica
20.
Am J Med Genet A ; 188(9): 2772-2776, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35491958

RESUMEN

MYH7, encoding the myosin heavy chain sarcomeric ß-myosin heavy chain, is a common cause of both hypertrophic and dilated cardiomyopathy. Additionally, families with left ventricular noncompaction cardiomyopathy (LVNC) and congenital heart disease (CHD), typically septal defects or Ebstein anomaly, have been identified to have heterozygous pathogenic variants in MHY7. One previous case of single ventricle CHD with heart failure due to a MYH7 variant has been identified. Herein, we present a single center's experience of complex CHD due to MYH7 variants. Three probands with a history of CHD, LVNC, and/or arrhythmias were identified to have MYH7 variants through multigene panel testing or exome sequencing. These three patients collectively had 12 affected family members, four with a history of Ebstein anomaly and seven with a history of LVNC. These findings suggest a wider phenotypic spectrum in MYH7-related CHD than previously understood. Further investigation into the possible role of MYH7 in CHD and mechanism of disease is necessary to fully delineate the phenotypic spectrum of MYH7-related cardiac disease. MYH7 should be considered for families with multiple individuals with complex CHD in the setting of a family history of LVNC or arrhythmias.


Asunto(s)
Cardiomiopatías , Anomalía de Ebstein , Cardiopatías Congénitas , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/genética , Miosinas Cardíacas/genética , Cardiomiopatías/etiología , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/genética , Humanos , Mutación , Cadenas Pesadas de Miosina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA