Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sensors (Basel) ; 22(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35458893

RESUMEN

The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars' surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars' surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.


Asunto(s)
Polvo , Medio Ambiente Extraterrestre , Atmósfera
2.
Sci Rep ; 14(1): 15945, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987581

RESUMEN

The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard the Mars 2020 Perseverance rover detected so far some of the most intense fluorescence signals in association with sulfates analyzing abraded patches of rocks at Jezero crater, Mars. To assess the plausibility of an organic origin of these signals, it is key to understand if organics can survive exposure to ambient Martian UV after exposure by the Perseverance abrasion tool and prior to analysis by SHERLOC. In this work, we investigated the stability of organo-sulfate assemblages under Martian-like UV irradiation and we observed that the spectroscopic features of phthalic and mellitic acid embedded into hydrated magnesium sulfate do not change for UV exposures corresponding to at least 48 Martian sols and, thus, should still be detectable in fluorescence when the SHERLOC analysis takes place, thanks to the photoprotective properties of magnesium sulfate. In addition, different photoproduct bands diagnostic of the parent carboxylic acid molecules could be observed. The photoprotective behavior of hydrated magnesium sulfate corroborates the hypothesis that sulfates might have played a key role in the preservation of organics on Mars, and that the fluorescence signals detected by SHERLOC in association with sulfates could potentially arise from organic compounds.

3.
Astrobiology ; 23(8): 825-834, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37405744

RESUMEN

The Mars 2020 Flight System comprises a Cruise Stage; Aeroshell; Entry, Descent, and Landing system; Perseverance rover; and the Ingenuity helicopter. The Perseverance rover was successfully delivered to Jezero Crater on February 18, 2021. Among its science objectives, Perseverance is meant to search for rocks that are capable of preserving chemical traces of ancient life, if it existed, and to core and cache rock and regolith samples. The Perseverance rover is gathering samples for potential return to Earth as part of a Mars Sample Return campaign. Thus, controlling the presence of Earth-sourced biological contamination is important to protect the integrity of the scientific results as well as to comply with international treaty and NASA requirements governing Planetary Protection prior to launch. An unprecedented campaign of sampling and environmental monitoring occurred, which resulted in over 16,000 biological samples collected throughout spacecraft assembly. Engineering design, microbial reduction measures, monitoring, and process controls enabled the mission to limit the total spore bioburden to 3.73 × 105 spores, which provided 25.4% margin against the required limit. Furthermore, the total spore bioburden of all landed hardware was 3.86 × 104, which provided 87% margin against the required limit. This manuscript outlines the Planetary Protection implementation approach and verification methodologies applied to the Mars 2020 flight system and its surrounding environments.


Asunto(s)
Marte , Vuelo Espacial , Medio Ambiente Extraterrestre , Planetas , Nave Espacial , Planeta Tierra
4.
Astrobiology ; 23(8): 846-861, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37192487

RESUMEN

The Sample Tubes on the Mars 2020 Perseverance rover were required to meet strict cleanliness standards for possible organic and inorganic contamination introduction to collected samples. There were also strict planetary protection cleanliness standards required to limit possible biological contamination. Together, these sets of standards also applied to associated hardware, like the Sample Tube hermetic seals. This created unique challenges to manufacturing, cleaning, and verifying the final cleanliness state of the Sample Tubes, which are the main focus of this publication. Documenting the final cleanliness state of the Sample Tubes is critical for future analysis of collected martian samples, of significant interest to the scientific community, and will have implications for possible future missions like Mars Sample Return. An accounting of events that led to the final delivered state of the Sample Tubes on Earth with regard to contamination control cleanliness requirements, precision cleaning, processing, and verification are provided.


Asunto(s)
Marte , Vuelo Espacial , Medio Ambiente Extraterrestre , Nave Espacial , Exobiología , Contención de Riesgos Biológicos
5.
Astrobiology ; 23(8): 888-896, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37222799

RESUMEN

The Mars 2020 mission delivered the Perseverance rover to the surface of Mars using a supersonic parachute manufactured at Airborne Systems, California. The Mars 2020 spacecraft, including the flight parachute, was subject to Planetary Protection spore bioburden compliance. Many previous missions with similar parachutes applied manufacturing specifications for calculating bioburden. Although the Mars 2020 parachute was manufactured in an uncontrolled environment, preliminary sampling of a flight-like parachute manufactured in the same facility suggested that the actual spore bioburden levels were potentially orders of magnitude lower than specification values for uncontrolled manufacturing (100,000 spores/m2). Several experiments were designed and carried out throughout the project timeline in an effort to estimate a representative bioburden for the flight parachute. Tests were performed on various parachute materials, including direct sampling and destructive assays of proxy materials. Different bioburden densities were applied to large continuous areas of the canopy, which experienced minimal handling, and seamed areas of the parachute that were likely to experience more handling during the stitching process. In addition, an approach to account for various thermal zones was developed and applied toward calculating log reduction for the parachute assembly. These various methods that were used toward different areas and materials of the Mars 2020 flight parachute provided a nuanced and data-backed estimate of spore bioburden density that can be adopted by future missions.


Asunto(s)
Marte , Vuelo Espacial , Medio Ambiente Extraterrestre , Nave Espacial , Planetas , Esporas Bacterianas
6.
Anal Chim Acta ; 1276: 341632, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37573113

RESUMEN

In this work, a geological sample of great astrobiological interest was studied through analytical techniques that are currently operating in situ on Mars and others that will operate in the near future. The sample analyzed consisted of an oncoid, which is a type of microbialite, collected in the Salar Carachi Pampa, Argentina. The main peculiarity of microbialites is that they are organo-sedimentary deposits formed by the in situ fixation and precipitation of calcium carbonate due to the growth and metabolic activities of microorganisms. For this reason, the Carachi Pampa oncoid was selected as a Martian analog for astrobiogeochemistry study. In this sense, the sample was characterized by means of the PIXL-like, SuperCam-like and SHERLOC-like instruments, which represent instruments on board the NASA Perseverance rover, and by means of RLS-like and MOMA-like instruments, which represent instruments on board the future ESA Rosalind Franklin rover. It was possible to verify that the most important conclusions and discoveries have been obtained from the combination of the results. Likewise, it was also shown that Perseverance rover-like remote-sensing instruments allowed a first detailed characterization of the biogeochemistry of the Martian surface. With this first characterization, areas of interest for in-depth analysis with Rosalind Franklin-like instruments could be identified. Therefore, from a first remote-sensing elemental identification (PIXL-like instrument), followed by a remote-sensing molecular characterization (SuperCam and SHERLOC-like instruments) and ending with an in-depth microscopic analysis (RLS and MOMA-like instruments), a wide variety of compounds were found. On the one hand, the expected minerals were carbonates, such as aragonite, calcite and high-magnesium calcite. On the other hand, unexpected compounds consisted of minerals related to the Martian/terrestrial surface (feldspars, pyroxenes, hematite) and organic compounds related to the past biological activity related to the oncoid (kerogen, lipid biomarkers and carotenes). Considering samples resembling microbialites have already been found on Mars and that one of the main objectives of the missions is to identify traces of past life, the study of microbialites is a potential way to find biosignatures protected from the inhospitable Martian environment. In addition, it should be noted that in this work, further conclusions have been obtained through the study of the results as a whole, which could also be carried out on Mars.

7.
IMA Fungus ; 14(1): 15, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568226

RESUMEN

During the construction and assembly of the Mars 2020 mission components at two different NASA cleanrooms, several fungal strains were isolated. Based on their colony morphology, two strains that showed yeast-like appearance were further characterized for their phylogenetic position. The species-level classification of these two novel strains, using traditional colony and cell morphology methods combined with the phylogenetic reconstructions using multi-locus sequence analysis (MLSA) based on several gene loci (ITS, LSU, SSU, RPB1, RPB2, CYTB and TEF1), and whole genome sequencing (WGS) was carried out. This polyphasic taxonomic approach supported the conclusion that the two basidiomycetous yeasts belong to hitherto undescribed species. The strain FJI-L2-BK-P3T, isolated from the Jet Propulsion Laboratory Spacecraft Assembly Facility, was placed in the Naganishia albida clade (Filobasidiales, Tremellomycetes), but is genetically and physiologically different from other members of the clade. Another yeast strain FKI-L6-BK-PAB1T, isolated from the Kennedy Space Center Payload Hazardous and Servicing Facility, was placed in the genus Cystobasidium (Cystobasidiales, Cystobasidiomycetes) and is distantly related to C. benthicum. Here we propose two novel species with the type strains, Naganishia kalamii sp. nov. (FJI-L2-BK-P3T = NRRL 64466 = DSM 115730) and Cystobasidium onofrii sp. nov. (FKI-L6-BK-PAB1T = NRRL 64426 = DSM 114625). The phylogenetic analyses revealed that single gene phylogenies (ITS or LSU) were not conclusive, and MLSA and WGS-based phylogenies were more advantageous for species discrimination in the two genera. The genomic analysis predicted proteins associated with dehydration and desiccation stress-response and the presence of genes that are directly related to osmotolerance and psychrotolerance in both novel yeasts described. Cells of these two newly-described yeasts were exposed to UV-C radiation and compared with N. onofrii, an extremophilic UV-C resistant cold-adapted Alpine yeast. Both novel species were UV resistant, emphasizing the need for collecting and characterizing extremotolerant microbes, including yeasts, to improve microbial reduction techniques used in NASA planetary protection programs.

8.
Astrobiology ; 23(8): 835-845, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37584746

RESUMEN

To support NASA's Mars 2020 mission, bioassays were performed to ensure the biological cleanliness of the spacecraft, instruments, and hardware assembly areas. Bioassays began in May 2014, as the first components were assembled, and continued until their launch in July 2020. Over this 6-year period, 1811 bioassay sampling sessions were conducted. To understand the nature of microbiological presence on and around the spacecraft, an archive of organisms resulting from the bioassays was assembled. This archive included 4232 microbial specimens preserved as frozen stocks. To date, more than 3489 microbial isolates have been tested by MALDI-TOF mass spectrometry analysis. Identifications were based on high confidence level matches to known microorganisms in the reference spectra database where 39 distinct genera were identified. Gram-positive bacteria were isolated almost exclusively. Most, but not all, were spore-forming genera. The most prevalent genera isolated in order of frequency were Bacillus, Priestia, Paenibacillus, Staphylococcus, Micrococcus, and Streptomyces. Within the largely represented Bacillus-like genera, the five most prevalent species were cereus, licheniformis, horneckiae, subtilis, and safensis.


Asunto(s)
Bacillus , Marte , Nave Espacial
9.
Astrobiology ; 23(8): 862-879, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37584747

RESUMEN

The Mars 2020 Perseverance rover is equipped with a Sample Caching System (SCS) designed to collect and cache martian core and regolith samples for potential return to Earth. To ensure the integrity of these samples, the mission requirements for each encapsulated sample for return is less than one Earth-sourced viable organism (VO) and more than a 99.9% probability of being free of any Earth-sourced VO. To satisfy the stringent biological contamination requirements in support of return sample science investigations, special bioburden mitigation and reduction approaches were developed and implemented for SCS hardware that would directly contact or be in close proximity to the martian samples. In this study, we describe the implemented approaches for microbiological contamination reduction and mitigation, detail the processes of the SCS aseptic assembly, and report the estimated VO for each returned sample. We found that our conservative estimate of the computed probability of a single VO in the returned sample is more than one order of magnitude lower than the biological contamination requirement while the best estimate exceeds two orders of magnitude.


Asunto(s)
Marte , Vuelo Espacial , Medio Ambiente Extraterrestre , Nave Espacial , Exobiología , Planeta Tierra
10.
Astrobiology ; 22(9): 1081-1098, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35704291

RESUMEN

On Earth, the circulation of Fe-rich fluids in hydrothermal environments leads to characteristic iron mineral deposits, reflecting the pH and redox chemical conditions of the hydrothermal system, and is often associated with chemotroph microorganisms capable of deriving energy from chemical gradients. On Mars, iron-rich hydrothermal sites are considered to be potentially important astrobiological targets for searching evidence of life during exploration missions, such as the Mars 2020 and the ExoMars 2022 missions. In this study, an extinct hydrothermal chimney from the Jaroso hydrothermal system (SE Spain), considered an interesting geodynamic and mineralogical terrestrial analog for Mars, was analyzed using Raman spectroscopy, X-ray diffraction, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The sample consists of a fossil vent in a Miocene shallow-marine sedimentary deposit composed of a marl substrate, an iron-rich chimney pipe, and a central space filled with backfilling deposits and vent condensates. The iron crust is particularly striking due to the combined presence of molecular and morphological indications of a microbial colonization, including mineral microstructures (e.g., stalks, filaments), iron oxyhydroxide phases (altered goethite, ferrihydrite), and organic signatures (carotenoids, organopolymers). The clear identification of pigments by resonance Raman spectroscopy and the preservation of organics in association with iron oxyhydroxides by Raman microimaging demonstrate that the iron crust was indeed colonized by microbial communities. These analyses confirm that Raman spectroscopy is a powerful tool for documenting the habitability of such historical hydrothermal environments. Finally, based on the results obtained, we propose that the ancient iron-rich hydrothermal pipes should be recognized as singular terrestrial Mars analog specimens to support the preparatory work for robotic in situ exploration missions to Mars, as well as during the subsequent interpretation of data returned by those missions.


Asunto(s)
Fósiles , Marte , Exobiología , Sedimentos Geológicos/química , Hierro/análisis , Microscopía Electrónica de Rastreo , Minerales/análisis , Espectrometría por Rayos X , Espectrometría Raman/métodos , Difracción de Rayos X
11.
Anal Chim Acta ; 1209: 339003, 2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35569840

RESUMEN

The 2020s could be called, with little doubt, the "Mars decade". No other period in space exploration history has experienced such interest in placing orbiters, rovers and landers on the Red Planet. In 2021 alone, the Emirates' first Mars Mission (the Hope orbiter), the Chinese Tianwen-1 mission (orbiter, lander and rover), and NASA's Mars 2020 Perseverance rover reached Mars. The ExoMars mission Rosalind Franklin rover is scheduled for launch in 2022. Beyond that, several other missions are proposed or under development. Among these, MMX to Phobos and the very important Mars Sample Return can be cited. One of the key mission objectives of the Mars 2020 and ExoMars 2022 missions is the detection of traces of potential past or present life. This detection relies to a great extent on the analytical results provided by complementary spectroscopic techniques. The development of these novel instruments has been carried out in step with the analytical study of terrestrial analogue sites and materials, which serve to test the scientific capabilities of spectroscopic prototypes while providing crucial information to better understand the geological processes that could have occurred on Mars. Being directly involved in the development of three of the first Raman spectrometers to be validated for space exploration missions (Mars 2020/SuperCam, ExoMars/RLS and RAX/MMX), the present review summarizes some of the most relevant spectroscopy-based analyses of terrestrial analogues carried out over the past two decades. Therefore, the present work describes the analytical results gathered from the study of some of the most distinctive terrestrial analogues of Martian geological contexts, as well as the lessons learned mainly from ExoMars mission simulations conducted at representative analogue sites. Learning from the experience gained in the described studies, a general overview of the scientific outcome expected from the spectroscopic system developed for current and forthcoming planetary missions is provided.


Asunto(s)
Marte , Vuelo Espacial , Medio Ambiente Extraterrestre/química , Espectrometría Raman/métodos
12.
J Fungi (Basel) ; 8(1)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35050006

RESUMEN

A fungal strain (FJII-L10-SW-P1) was isolated from the Mars 2020 spacecraft assembly facility and exhibited biofilm formation on spacecraft-qualified Teflon surfaces. The reconstruction of a six-loci gene tree (ITS, LSU, SSU, RPB1 and RPB2, and TEF1) using multi-locus sequence typing (MLST) analyses of the strain FJII-L10-SW-P1 supported a close relationship to other known Parengyodontium album subclade 3 isolates while being phylogenetically distinct from subclade 1 strains. The zig-zag rachides morphology of the conidiogenous cells and spindle-shaped conidia were the distinct morphological characteristics of the P. album subclade 3 strains. The MLST data and morphological analysis supported the conclusion that the P. album subclade 3 strains could be classified as a new species of the genus Parengyodontium and placed in the family Cordycipitaceae. The name Parengyodontium torokii sp. nov. is proposed to accommodate the strain, with FJII-L10-SW-P1 as the holotype. The genome of the FJII-L10-SW-P1 strain was sequenced, annotated, and the secondary metabolite clusters were identified. Genes predicted to be responsible for biofilm formation and adhesion to surfaces were identified. Homology-based assignment of gene ontologies to the predicted proteome of P. torokii revealed the presence of gene clusters responsible for synthesizing several metabolic compounds, including a cytochalasin that was also verified using traditional metabolomic analysis.

13.
Astrobiology ; 22(9): 1143-1163, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35862422

RESUMEN

The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian-Hesperian locality that once hosted a delta-lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterization from kilometer to micron scales. The highest-resolution textural and chemical information will be provided by correlated WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence spectroscopy), and PIXL (X-ray lithochemistry) analyses, enabling the distributions of organic and mineral phases within rock targets to be comprehensively established. Herein, we analyze Paleoarchean microbial mats from the ∼3.42 Ga Buck Reef Chert (Barberton greenstone belt, South Africa)-considered astrobiological analogues for a putative ancient martian biosphere-following a WATSON-SHERLOC-PIXL protocol identical to that conducted by Perseverance on Mars during all sampling activities. Correlating deep-UV Raman and fluorescence spectroscopic mapping with X-ray elemental mapping, we show that the Perseverance payload has the capability to detect thermally and texturally mature organic materials of biogenic origin and can highlight organic-mineral interrelationships and elemental colocation at fine spatial scales. We also show that the Perseverance protocol obtains very similar results to high-performance laboratory imaging, Raman spectroscopy, and µXRF instruments. This is encouraging for the prospect of detecting microscale organic-bearing textural biosignatures on Mars using the correlative micro-analytical approach enabled by WATSON, SHERLOC, and PIXL; indeed, laminated, organic-bearing samples such as those studied herein are considered plausible analogues of biosignatures from a potential Noachian-Hesperian biosphere. Were similar materials discovered at Jezero crater, they would offer opportunities to reconstruct aspects of the early martian carbon cycle and search for potential fossilized traces of life in ancient paleoenvironments. Such samples should be prioritized for caching and eventual return to Earth.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Planeta Tierra , Exobiología/métodos , Minerales/análisis
14.
J Fungi (Basel) ; 9(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36675851

RESUMEN

National Aeronautics and Space Administration's (NASA) spacecraft assembly facilities are monitored for the presence of any bacteria or fungi that might conceivably survive a transfer to an extraterrestrial environment. Fungi present a broad and diverse range of phenotypic and functional traits to adapt to extreme conditions, hence the detection of fungi and subsequent eradication of them are needed to prevent forward contamination for future NASA missions. During the construction and assembly for the Mars 2020 mission, three fungal strains with unique morphological and phylogenetic properties were isolated from spacecraft assembly facilities. The reconstruction of phylogenetic trees based on several gene loci (ITS, LSU, SSU, RPB, TUB, TEF1) using multi-locus sequence typing (MLST) and whole genome sequencing (WGS) analyses supported the hypothesis that these were novel species. Here we report the genus or species-level classification of these three novel strains via a polyphasic approach using phylogenetic analysis, colony and cell morphology, and comparative analysis of WGS. The strain FJI-L9-BK-P1 isolated from the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) exhibited a putative phylogenetic relationship with the strain Aaosphaeria arxii CBS175.79 but showed distinct morphology and microscopic features. Another JPL-SAF strain, FJII-L3-CM-DR1, was phylogenetically distinct from members of the family Trichomeriaceae and exhibited morphologically different features from the genera Lithohypha and Strelitziana. The strain FKI-L1-BK-DR1 isolated from the Kennedy Space Center facility was identified as a member of Dothideomycetes incertae sedis and is closely related to the family Kirschsteiniotheliaceae according to a phylogenetic analysis. The polyphasic taxonomic approach supported the recommendation for establishing two novel genera and one novel species. The names Aaosphaeria pasadenensis (FJI-L9-BK-P1 = NRRL 64424 = DSM 114621), Pasadenomyces melaninifex (FJII-L3-CM-DR1 = NRRL 64433 = DSM 114623), and Floridaphiala radiotolerans (FKI-L1-BK-DR1 = NRRL 64434 = DSM 114624) are proposed as type species. Furthermore, resistance to ultraviolet-C and presence of specific biosynthetic gene cluster(s) coding for metabolically active compounds are unique to these strains.

15.
Astrobiology ; 22(5): 579-597, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35171004

RESUMEN

Life is known to adapt in accordance with its surrounding environment and sustainable resources available to it. Since harsh conditions would have precluded any possible aerobic evolution of life at the martian surface, it is plausible that martian life, should it exist, would have evolved in such a way as to derive energy from more optimum resources. Iron is one of the most abundant elements present in the martian crust and occurs at about twice the amount present on Earth. Clay minerals contribute to about half the iron found in soils and sediments. On Earth, clay acts as an electron donor as well as an acceptor in the carbon cycles and thereby supports a wide variety of metabolic reactions. In this context, we consider the potential of Fe/Mg smectites, one of the most widely reported hydrated minerals on Mars, for preservation of macro- and microscopic biosignatures. We proceed by understanding the environmental conditions during the formation of smectites and various microbes and metabolic processes associated with them as indicated in Earth-based studies. We also explore the possibility of biosignatures and their identification within the Mars 2020 landing site (Jezero Crater) by using the astrobiological payloads on board the Perseverance rover.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Arcilla , Sedimentos Geológicos , Hierro , Minerales , Silicatos
16.
Anal Chim Acta ; 1209: 339837, 2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35569848

RESUMEN

The SuperCam instrument, onboard the Perseverance rover (Mars 2020 mission) is designed to perform remote analysis on the Martian surface employing several spectroscopic techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR), Time-Resolved Fluorescence (TRF) and Visible and Infrared (VISIR) reflectance. In addition, SuperCam also acquires high-resolution images using a color remote micro-imager (RMI) as well as sounds with its microphone. SuperCam has three main subsystems, the Mast Unit (MU) where the laser for chemical analysis and collection optics are housed, the Body Unit (BU) where the different spectrometers are located inside the rover, and the SuperCam Calibration Target (SCCT) located on the rover's deck to facilitate calibration tests at similar ambient conditions as the analyzed samples. To perform adequate calibrations on Mars, the 22 mineral samples included in the complex SCCT assembly must have a very homogeneous distribution of major and minor elements. The analysis and verification of such homogeneity for the 5-6 replicates of the samples included in the SCCT has been the aim of this work. To verify the physic-chemical homogeneity of the calibration targets, micro Energy Dispersive X-ray Fluorescence (EDXRF) imaging was first used on the whole surface of the targets, then the relative abundances of the detected elements were computed on 20 randomly distributed areas of 100 × 100 µm. For those targets showing a positive Raman response, micro-Raman spectroscopy imaging was performed on the whole surface of the targets at a resolution of 100 × 100 µm. The %RSD values (percent of relative standard deviation of mean values) for the major elements measured with EDXRF were compared with similar values obtained by two independent LIBS set-ups at spot sizes of 300 µm in diameter. The statistical analysis showed which elements were homogeneously distributed in the 22 mineral targets of the SCCT, providing their uncertainty values for further calibration. Moreover, nine of the 22 targets showed a good Raman response and their mineral distributions were also studied. Those targets can be also used for calibration purposes of the Raman part of SuperCam using the wavenumbers of their main Raman bands proposed in this work.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Calibración , Medio Ambiente Extraterrestre/química , Minerales/análisis , Espectrometría Raman/métodos
17.
Space Sci Rev ; 217(1): 20, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33583960

RESUMEN

Nine simulations are used to predict the meteorology and aeolian activity of the Mars 2020 landing site region. Predicted seasonal variations of pressure and surface and atmospheric temperature generally agree. Minimum and maximum pressure is predicted at Ls ∼ 145 ∘ and 250 ∘ , respectively. Maximum and minimum surface and atmospheric temperature are predicted at Ls ∼ 180 ∘ and 270 ∘ , respectively; i.e., are warmest at northern fall equinox not summer solstice. Daily pressure cycles vary more between simulations, possibly due to differences in atmospheric dust distributions. Jezero crater sits inside and close to the NW rim of the huge Isidis basin, whose daytime upslope (∼east-southeasterly) and nighttime downslope (∼northwesterly) winds are predicted to dominate except around summer solstice, when the global circulation produces more southerly wind directions. Wind predictions vary hugely, with annual maximum speeds varying from 11 to 19 ms - 1 and daily mean wind speeds peaking in the first half of summer for most simulations but in the second half of the year for two. Most simulations predict net annual sand transport toward the WNW, which is generally consistent with aeolian observations, and peak sand fluxes in the first half of summer, with the weakest fluxes around winter solstice due to opposition between the global circulation and daytime upslope winds. However, one simulation predicts transport toward the NW, while another predicts fluxes peaking later and transport toward the WSW. Vortex activity is predicted to peak in summer and dip around winter solstice, and to be greater than at InSight and much greater than in Gale crater. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11214-020-00788-2.

18.
Astrobiology ; 21(5): 511-525, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33493410

RESUMEN

The search for organic biosignatures on Mars will depend on finding material protected from the destructive ambient radiation. Solar ultraviolet can induce photochemical degradation of organic compounds, but certain clays have been shown to preserve organic material. We examine how the SHERLOC instrument on the upcoming Mars 2020 mission will use deep-ultraviolet (UV) (248.6 nm) Raman and fluorescence spectroscopy to detect a plausible biosignature of adenosine 5'-monophosphate (AMP) adsorbed onto Ca-montmorillonite clay. We found that the spectral signature of AMP is not altered by adsorption in the clay matrix but does change with prolonged exposure to the UV laser over dosages equivalent to 0.2-6 sols of ambient martian UV. For pure AMP, UV exposure leads to breaking of the aromatic adenine unit, but in the presence of clay the degradation is limited to minor alteration with new Raman peaks and increased fluorescence consistent with formation of 2-hydroxyadenosine, while 1 wt % Mg perchlorate increases the rate of degradation. Our results confirm that clays are effective preservers of organic material and should be considered high-value targets, but that pristine biosignatures may be altered within 1 sol of martian UV exposure, with implications for Mars 2020 science operations and sample caching.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Adenosina Monofosfato , Percloratos , Espectrometría de Fluorescencia , Rayos Ultravioleta
19.
Space Sci Rev ; 217(1): 24, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33612866

RESUMEN

Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 µrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 µrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.

20.
Space Sci Rev ; 217(3): 48, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776548

RESUMEN

NASA's Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA