RESUMEN
Highly cytotoxic maytansine derivatives are widely used in targeted tumor delivery. Structure-activity studies published earlier suggested the C9 carbinol to be a key element necessary to retain the potency. However, in 1984 a patent was published by Takeda in which the synthesis of 9-thioansamitocyn (AP3SH) was described and its activity in xenograft models was shown. In this article we summarize the results of an extended study of the anti-tumor properties of AP3SH. Like other maytansinoids, it induces apoptosis and arrests the cell cycle in the G2/M phase. It is metabolized in liver microsomes predominately by C3A4 isoform and doesn't inhibit any CYP isoforms except CYP3A4 (midazolam, IC50 7.84 µM). No hERG inhibition, CYP induction or mutagenicity in Ames tests were observed. AP3SH demonstrates high antiproliferative activity against 25 tumor cell lines and tumor growth inhibition in U937 xenograft model. Application of AP3SH as a cytotoxic payload in drug delivery system was demonstrated by us earlier.
Asunto(s)
Antineoplásicos , Maitansina , Humanos , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Línea Celular Tumoral , Ciclo Celular , División CelularRESUMEN
Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.
Asunto(s)
Antineoplásicos , Productos Biológicos , Inmunoconjugados , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Animales , Productos Biológicos/uso terapéutico , Productos Biológicos/química , Productos Biológicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química , Inmunoconjugados/farmacologíaRESUMEN
Cryptophycin-52 (Cp-52) is potentially the most potent anticancer drug known, with IC50 values in the low picomolar range, but its binding site on tubulin and mechanism of action are unknown. Here, we have determined the binding site of Cp-52, and its parent compound, cryptophycin-1, on HeLa tubulin, to a resolution of 3.3 Å and 3.4 Å, respectively, by cryo-EM and characterized this binding further by molecular dynamics simulations. The binding site was determined to be located at the tubulin interdimer interface and partially overlap that of maytansine, another cytotoxic tubulin inhibitor. Binding induces curvature both within and between tubulin dimers that is incompatible with the microtubule lattice. Conformational changes occur in both α-tubulin and ß-tubulin, particularly in helices H8 and H10, with distinct differences between α and ß monomers and between Cp-52-bound and cryptophycin-1-bound tubulin. From these results, we have determined: (i) the mechanism of action of inhibition of both microtubule polymerization and depolymerization, (ii) how the affinity of Cp-52 for tubulin may be enhanced, and (iii) where linkers for targeted delivery can be optimally attached to this molecule.
Asunto(s)
Depsipéptidos/química , Lactamas/química , Lactonas/química , Tubulina (Proteína)/química , Microscopía por Crioelectrón , Depsipéptidos/farmacología , Células HeLa , Humanos , Lactamas/farmacología , Lactonas/farmacología , Dominios ProteicosRESUMEN
Maytansinol is a valuable precursor for the preparation of maytansine derivatives (known as maytansinoids). Inspired by the intriguing structure of the macrocycle and the success in targeted cancer therapy of the derivatives, we explored the maytansinol acylation reaction. As a result, we were able to obtain a series of derivatives with novel modifications of the maytansine scaffold. We characterized these molecules by docking studies, by a comprehensive biochemical evaluation, and by determination of their crystal structures in complex with tubulin. The results shed further light on the intriguing chemical behavior of maytansinoids and confirm the relevance of this peculiar scaffold in the scenario of tubulin binders.
Asunto(s)
Maitansina , Neoplasias , Humanos , Maitansina/análogos & derivados , Microtúbulos , Tubulina (Proteína) , Moduladores de TubulinaRESUMEN
Maytansinoids, the chemical derivatives of Maytansine, are commonly used as potent cytotoxic payloads in antibody-drug conjugates (ADC). Structure-activity-relationship studies had identified the C3 ester side chain as a critical element for antitumor activity of maytansinoids. The maytansinoids bearing the methyl group at C3 position with D configuration were about 100 to 400-fold less cytotoxic than their corresponding L-epimers toward various cell lines. The detailed mechanism of how chirality affects the anticancer activity remains elusive. In this study, we determined the high-resolution crystal structure of tubulin in complex with maytansinol, L-DM1-SMe and D-DM1-SMe. And we found the carbonyl oxygen atom of the ester moiety and the tail thiomethyl group at C3 side chain of L-DM1-SMe form strong intramolecular interaction with the hydroxyl at position 9 and the benzene ring, respectively, fixing the bioactive conformation and enhancing the binding affinity. Additionally, ligand-based and structure-based virtually screening methods were used to screen the commercially macrocyclic compounds library, and 15 macrocyclic structures were picketed out as putatively new maytansine-site inhibitors. Our study provides a possible strategy for the rational discovery of next-generation maytansine site inhibitors.
Asunto(s)
Antineoplásicos/farmacología , Maitansina/análogos & derivados , Tubulina (Proteína)/metabolismo , Animales , Antineoplásicos/química , Descubrimiento de Drogas , Ésteres/química , Ésteres/farmacología , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Maitansina/química , Maitansina/farmacología , Modelos Moleculares , PorcinosRESUMEN
BACKGROUND: Although many treatments for breast cancer are available, poor tumour targeting limits the effectiveness of most approaches. Consequently, it is difficult to achieve satisfactory results with monotherapies. The lack of accurate diagnostic and monitoring methods also limit the benefits of cancer treatment. The aim of this study was to design a nanocarrier comprising porous gold nanoshells (PGNSs) co-decorated with methoxy polyethylene glycol (mPEG) and trastuzumab (Herceptin®, HER), a therapeutic monoclonal antibody that binds specifically to human epidermal receptor-2 (HER2)-overexpressing breast cancer cells. Furthermore, a derivative of the microtubule-targeting drug maytansine (DM1) was incorporated in the PGNSs. METHODS: Prepared PGNSs were coated with mPEG, DM1 and HER via electrostatic interactions and Au-S bonds to yield DM1-mPEG/HER-PGNSs. SK-BR-3 (high HER2 expression) and MCF-7 (low HER2) breast cancer cells were treated with DM1-mPEG/HER-PGNSs, and cytotoxicity was evaluated in terms of cell viability and apoptosis. The selective uptake of the coated PGNSs by cancer cells and subsequent intracellular accumulation were studied in vitro and in vivo using inductively coupled plasma mass spectrometry and fluorescence imaging. The multimodal imaging feasibility and synergistic chemo-photothermal therapeutic efficacy of the DM1-mPEG/HER-PGNSs were investigated in breast cancer tumour-bearing mice. The molecular mechanisms associated with the anti-tumour therapeutic use of the nanoparticles were also elucidated. RESULT: The prepared DM1-mPEG/HER-PGNSs had a size of 78.6 nm and displayed excellent colloidal stability, photothermal conversion ability and redox-sensitive drug release. These DM1-mPEG/HER-PGNSs were taken up selectively by cancer cells in vitro and accumulated at tumour sites in vivo. Moreover, the DM1-mPEG/HER-PGNSs enhanced the performance of multimodal computed tomography (CT), photoacoustic (PA) and photothermal (PT) imaging and enabled chemo-thermal combination therapy. The therapeutic mechanism involved the induction of tumour cell apoptosis via the activation of tubulin, caspase-3 and the heat shock protein 70 pathway. M2 macrophage suppression and anti-metastatic functions were also observed. CONCLUSION: The prepared DM1-mPEG/HER-PGNSs enabled nanodart-like tumour targeting, visibility by CT, PA and PT imaging in vivo and powerful tumour inhibition mediated by chemo-thermal combination therapy in vivo. In summary, these unique gold nanocarriers appear to have good potential as theranostic nanoagents that can serve both as a probe for enhanced multimodal imaging and as a novel targeted anti-tumour drug delivery system to achieve precision nanomedicine for cancers.
Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Oro/química , Imagen Multimodal/métodos , Nanocáscaras/química , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Liberación de Fármacos , Reducción Gradual de Medicamentos , Quimioterapia , Femenino , Humanos , Células MCF-7 , Macrófagos , Maitansina/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oxidación-Reducción , Terapia Fototérmica , Polietilenglicoles/química , Porosidad , Receptor ErbB-2/metabolismoRESUMEN
The genus Maytenus is a member of the Celastraceae family, of which several species have long been used in traditional medicine. Between 1976 and 2021, nearly 270 new compounds have been isolated and elucidated from the genus Maytenus. Among these, maytansine and its homologues are extremely rare in nature. Owing to its unique skeleton and remarkable bioactivities, maytansine has attracted many synthetic endeavors in order to construct its core structure. In this paper, the current status of the past 45 years of research on Maytenus, with respect to its chemical and biological activities are discussed. The chemical research includes its structural classification into triterpenoids, sesquiterpenes and alkaloids, along with several chemical synthesis methods of maytansine or maytansine fragments. The biological activity research includes activities, such as anti-tumor, anti-bacterial and anti-inflammatory activities, as well as HIV inhibition, which can provide a theoretical basis for the better development and utilization of the Maytenus.
Asunto(s)
Alcaloides/química , Maitansina/análogos & derivados , Maytenus/química , Fitoquímicos/química , Sesquiterpenos/química , Triterpenos/química , Alcaloides/clasificación , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/aislamiento & purificación , Fármacos Anti-VIH/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Humanos , Maitansina/aislamiento & purificación , Maitansina/farmacología , Maytenus/metabolismo , Estructura Molecular , Fitoquímicos/clasificación , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Plantas Medicinales , Sesquiterpenos/clasificación , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Relación Estructura-Actividad , Triterpenos/clasificación , Triterpenos/aislamiento & purificación , Triterpenos/farmacologíaRESUMEN
Cytotoxic small-molecule drugs have a major influence on the fate of antibody-drug conjugates (ADCs). An ideal cytotoxic agent should be highly potent, remain stable while linked to ADCs, kill the targeted tumor cell upon internalization and release from the ADCs, and maintain its activity in multidrug-resistant tumor cells. Lessons learned from successful and failed experiences in ADC development resulted in remarkable progress in the discovery and development of novel highly potent small molecules. A better understanding of such small-molecule drugs is important for development of effective ADCs. The present review discusses requirements making a payload appropriate for antitumor ADCs and focuses on the main characteristics of commonly-used cytotoxic payloads that showed acceptable results in clinical trials. In addition, the present study represents emerging trends and recent advances of payloads used in ADCs currently under clinical trials.
Asunto(s)
Antineoplásicos/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , HumanosRESUMEN
Gold nanoparticles are promising drug delivery agents with the potential to deliver chemotherapeutic agents to tumour sites. The highly cytotoxic maytansinoid tubulin inhibitor DM1 has been attached to gold nanoparticles and shows tumour growth inhibition in mouse models of hepatocellular carcinoma. Attempting to improve the stability of the gold-cytotoxin bond led to the design and synthesis of novel maytansinoids with improved potency in cell viability assays and improved in vivo tolerability compared to the DM1 analogues. These novel maytansines may also have applications in other methods of drug delivery, for example as the cytotoxic component of antibody drug conjugates.
Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Oro/química , Neoplasias Hepáticas/tratamiento farmacológico , Maitansina/administración & dosificación , Nanoconjugados/química , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/patología , Maitansina/análogos & derivados , Maitansina/farmacología , Ratones , Modelos Moleculares , Moduladores de Tubulina/administración & dosificación , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologíaRESUMEN
Kadcyla® (T-DM1), an antibody-drug conjugates (ADCs) for HER2+ breast cancer treatment, has been approved by the Food and Drug Administration (FDA) in 2013. An ADC of random lysine conjugation, it has difficulties in DAR control and unsatisfactory PK due to uneven DAR distribution. It also gives rise to aggregation during conjugation because of the hydrophobicity nature of the cytotoxin, DM1. The linker-drug in T-DM1, SMCC-DM1 is hydrophobic and requires certain percentage of organic solvent such as DMA in the conjugation solution, limiting the manufacturing process in an organic-solvent-compatible device and adding extra costs. To address these problems, a site-specific conjugation method was developed involving full reduction of antibody and full conjugation with the bridge-like conjugator-drug, based on the work of Caddick and co-workers, to obtain a site-directed antibody-drug conjugate with DAR 4. The bridge-like conjugator was assembled with SMCC-DM1 and different lengths of hydrophilic polyethylene glycol (PEG) moiety. By applying PEG moiety in the side chain of the linker-drug, the organic solvent used in the conjugation can be reduced. When the PEG length is about 26 units, organic solvent is no longer needed in the conjugation. Reducing the amount of organic solvent in conjugation could also diminish the aggregation occurrence during the conjugation. Moreover, the conjugation configuration with the designed conjugator was also discussed in the article. The binding affinity of the resulting ADCs did not show significant decrease and the cell based assay and animal study have shown the comparable results with T-DM1.
Asunto(s)
Antineoplásicos/síntesis química , Disulfuros/química , Inmunoconjugados/química , Maitansina/análogos & derivados , Polietilenglicoles/síntesis química , Trastuzumab/química , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoconjugados/uso terapéutico , Inmunoconjugados/toxicidad , Maitansina/síntesis química , Maitansina/uso terapéutico , Maitansina/toxicidad , Ratones SCID , Estructura Molecular , Oxidación-Reducción , Polietilenglicoles/química , Polietilenglicoles/uso terapéutico , Receptor ErbB-2/metabolismo , Solventes/química , Sulfuros/síntesis química , Sulfuros/química , Sulfuros/uso terapéutico , Trastuzumab/uso terapéutico , Trastuzumab/toxicidadRESUMEN
Antibody-drug conjugates (ADC) rely on the target-binding specificity of an antibody to selectively deliver potent drugs to cancer cells. IgG antibody half-life is regulated by neonatal Fc receptor (FcRn) binding. Histidine 435 of human IgG was mutated to alanine (H435A) to explore the effect of FcRn binding on the pharmacokinetics, efficacy, and tolerability of two separate maytansine-based ADC pairs with noncleavable linkers, (c-DM1 and c-H435A-DM1) and (7v-Cys-may and 7v-H435A-Cys-may). The in vitro cell-killing potency of each pair of ADCs was similar, demonstrating that H435A showed no measurable impact on ADC bioactivity. The H435A mutant antibodies showed no detectable binding to human or mouse FcRn in vitro, whereas their counterpart wild-type IgG ADCs were found to bind to FcRn at pH = 6.0. In xenograft bearing SCID mice expressing mouse FcRn, the AUC of 7v-Cys-may was 1.6-fold higher than that of 7v-H435A-may, yet the observed efficacy was similar. More severe thrombocytopenia was observed with 7v-H435A-Cys-may as compared to 7v-Cys-may at multiple dose levels. The AUC of c-DM1 was approximately 3-fold higher than that of c-H435A-DM1 in 786-0 xenograft bearing SCID mice, which led to a 3-fold difference in efficacy by dose. Murine FcRn knockout, human FcRn transgenic line 32 SCID animals bearing 786-0 xenografts showed an amplified exposure difference between c-DM1 and c-H435A-DM1 as compared to murine FcRn expressing SCID mice, leading to a 10-fold higher dose required for efficacy despite a 6-fold higher AUC of the c-H435A-DM1. The accelerated clearance observed for the noncleavable maytansine ADCs with the H435A FcRn mutation led to reduced efficacy at equivalent doses and exacerbation of clinical pathology parameters (decreased tolerability) at equivalent doses. The results show that reduced ADC clearance mediated by FcRn modulation can improve therapeutic index.
Asunto(s)
Anticuerpos/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoconjugados/farmacología , Inmunoglobulina G/metabolismo , Receptores Fc/metabolismo , Animales , Anticuerpos/genética , Ligando CD27/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunoconjugados/química , Maitansina/metabolismo , Ratones , Ratones SCID , Receptores Fc/genéticaRESUMEN
Coltuximab ravtansine (SAR3419) is an antibody-drug conjugate (ADC) targeting CD19 created by conjugating a derivative of the potent microtubule-acting cytotoxic agent, maytansine, to a version of the anti-CD19 antibody, anti-B4, that was humanized as an IgG1 by variable domain resurfacing. Four different linker-maytansinoid constructs were synthesized (average â¼3.5 maytansinoids/antibody for each) to evaluate the impact of linker-payload design on the activity of the maytansinoid-ADCs targeting CD19. The ADC composed of DM4 (N(2')-deacetyl-N(2')-[4-mercapto-4-methyl-1-oxopentyl]maytansine) conjugated to antibody via the N-succinimidyl-4-(2-pyridyldithio)butyrate (SPDB) linker was selected for development as SAR3419. A molar ratio for DM4/antibody of between 3 and 5 was selected for the final design of SAR3419. Evaluation of SAR3419 in Ramos tumor xenograft models showed that the minimal effective single dose was about 50 µg/kg conjugated DM4 (â¼2.5 mg/kg conjugated antibody), while twice this dose gave complete regressions in 100% of the mice. SAR3419 arrests cells in the G2/M phase of the cell cycle, ultimately leading to apoptosis after about 24 h. The results of in vitro and in vivo studies with SAR3419 made with DM4 that was [(3)H]-labeled at the C20 methoxy group of the maytansinoid suggest a mechanism of internalization and intracellular trafficking of SAR3419, ultimately to lysosomes, in which the antibody is fully degraded, releasing lysine-N(ε)-SPDB-DM4 as the initial metabolite. Subsequent intracellular reduction of the disulfide bond between linker and DM4 generates the free thiol species, which is then converted to S-methyl DM4 by cellular methyl transferase activity. We provide evidence to suggest that generation of S-methyl DM4 in tumor cells may contribute to in vivo tumor eradication via bystander killing of neighboring tumor cells. Furthermore, we show that S-methyl DM4 is converted to the sulfoxide and sulfone derivatives in the liver, suggesting that hepatic catabolism of the payload to less cytotoxic maytansinoid species contributes to the overall therapeutic window of SAR3419. This compound is currently in phase II clinical evaluation for the treatment of diffuse large B cell lymphoma.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Maitansina/análogos & derivados , Animales , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética , Puntos de Control del Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Fase G2/efectos de los fármacos , Humanos , Hígado/metabolismo , Linfoma/tratamiento farmacológico , Maitansina/química , Maitansina/farmacocinética , Maitansina/uso terapéutico , Ratones , Ratones SCID , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Determining drug to antibody ratios (DAR) for antibody-drug conjugates (ADCs) in early research and development can be hampered by difficulties in accurate weighing of the effector payload and subsequent determination of its extinction coefficient. Two maytansinoids, DM1 and DM4, potent antimitotic agents used in clinical ADCs, were derivatized with the compact fluorophore BODIPY FL using two different linker designs. We identified DM1-mal-BODIPY as a conjugate with little through-space interaction between the maytansinoid and BODIPY chromophores. The 1:1 stoichiometry between the maytansinoid and BODIPY makes the molar concentration of both components equal and the extinction coefficient of the maytansinoid in proportion with the known BODIPY chromophore according to Beer's Law. By only derivatizing 50 µg of unpurified DM1 and analyzing about 25 µg of DM1-mal-BODIPY by UV-vis, we determined εDM1 252 nm and εDM1 280 nm as 26â¯355 ± 360 and 5230 ± 160 cm(-1) M(-1), respectively. These values are nearly identical to those accepted for DM1 based on weighing >100 mg of pure sample. Surprisingly, some of the maytansinoid-BODIPY conjugates that were synthesized were partially or completely fluorescence-quenched. The green fluorescence of quenched DM4-acetamide-BODIPY could be fully restored in the presence of an antibody designed to tightly bind maytansine. We exploited this observation to develop a simple "mix and read" fluorogenic immunoassay for detection of nanogram quantities of maytansinoids.
Asunto(s)
Compuestos de Boro/química , Inmunoconjugados/química , Maitansina/química , Modelos TeóricosRESUMEN
PURPOSE: Many antibody-drug conjugates (ADCs) become active only after antigen-mediated internalization and release of the cytotoxic agent via antibody degradation. Quantifying these processes can provide critical information on the suitability of a particular receptor target or antibody for ADC therapy by providing insight into the amount of cytotoxic agent released. We describe a simple and inexpensive radiolabel assay to monitor this process in cultured cancer cells. METHODS: Monoclonal antibodies were trace-labeled at their lysine residues by treatment with the N-hydroxysuccinimide ester of [(3)H]propionic acid. Human cancer cell cultures were treated with the labeled antibody at concentrations sufficient to saturate the targeted antigen. After washing to remove unbound antibody, cells were incubated and analyzed for antigen expression, conjugate degradation and catabolite formation. Results were compared with data obtained from similar assays run with radiolabeled antibody-[(3)H]maytansinoid conjugates ([(3)H]AMCs). To exemplify the method, studies were conducted with a panel of [(3)H]propionamide-antibodies to evaluate processing efficiency in EGFR-expressing SCCHN cell lines, and in NHL cell lines expressing the B-cell targets CD19, CD20, CD22 and CD37. RESULTS: Use of the [(3)H]propionamide-antibody assay yielded cell-mediated processing results similar to those obtained with corresponding maytansinoid ADCs. Further exploration allowed comparison of expression levels, antigen-dependent degradation, and catabolite formation across a panel of EGFR-expressing SCCHN cell lines, and for multiple targets in various B-cell cancer indications. CONCLUSIONS: The [(3)H]propionamide-antibody assay described here is a sensitive, facile method which enables rapid and robust assessment of relative antibody processing amounts for target, antibody, and cell line evaluation.
Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Inmunoconjugados/farmacología , Maitansina/análogos & derivados , Maitansina/farmacología , Terapia Molecular Dirigida , Anticuerpos Monoclonales Humanizados/química , Línea Celular Tumoral , Humanos , Inmunoconjugados/química , Maitansina/química , Ensayo de Unión Radioligante , TritioRESUMEN
Advanced colorectal cancer (CRC) responds poorly to current adjuvant therapies, partially due to its immunosuppressive intestinal microenvironment. We found that myeloid-derived suppressor cells (MDSCs) were enriched in orthotopic tumors due to treatment-induced succinate release, which activated tuft cells and upregulated interleukin 25 (IL-25) and interleukin 13 (IL-13). We engineered a cabozantinib (Cabo)-encapsulated and maytansine (DM1)-conjugated synthetic high-density lipoprotein (ECCD-sHDL) to modulate the tumor microenvironment. DM1 induced immunogenic cell death and promoted the maturation of dendritic cells. Meanwhile, Cabo alleviated DM1-induced succinate release, preventing tuft cell activation, downregulating IL-25 and IL-13 secretion, and reducing intratumoral MDSC infiltration. ECCD-sHDL increased the densities of active cytotoxic T lymphocytes (CTLs) and M1 macrophages in the tumors, effectively inhibiting tumor growth and metastasis, thereby prolonging survival in murine CRC models. Our study sheds light on the mechanism of treatment-induced immunosuppression in orthotopic CRC and demonstrates that this combinatorial therapy could be an effective treatment for CRC.
RESUMEN
Despite considerable effort, application of monoclonal antibody technology has had only modest success in improving treatment outcomes in patients with solid tumours. Enhancing the cancer cell-killing activity of antibodies through conjugation to highly potent cytotoxic 'payloads' to create antibody-drug conjuates (ADCs) offers a strategy for developing anti-cancer drugs of great promise. Early ADCs exhibited side-effect profiles similar to those of 'classical' chemotherapeutic agents and their performance in clinical trials in cancer patients was generally poor. However, the recent clinical development of ADCs that have highly potent tubulin-acting agents as their payloads have profoundly changed the outlook for ADC technology. Twenty-five such ADCs are in clinical development and one, brentuximab vedotin, was approved by the FDA in August, 2011, for the treatment of patients with Hodgkin's lymphoma and patients with anaplastic large cell lymphoma, based on a high rate of durable responses in single arm phase II clinical trials. More recently, a second ADC, trastuzumab emtansine, has shown excellent anti-tumour activity with the presentation of results of a 991-patient randomized phase III trial in patients with HER2-positive metastatic breast cancer. Treatment with this ADC (single agent) resulted in a significantly improved progression-free survival of 9.6 months compared with 6.4 months for lapatinib plus capecitabine in the comparator arm and significantly prolonged overall survival. Besides demonstrating excellent efficacy, these ADCs were remarkably well tolerated. Thus these, and other ADCs in development, promise to achieve the long sought goal of ADC technology, that is, of having compounds with high anti-tumour activity at doses where adverse effects are generally mild.
Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos/administración & dosificación , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Anticuerpos Monoclonales/efectos adversos , Antineoplásicos/efectos adversos , Diseño de Fármacos , Humanos , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Maytansine is a pharmacologically active 19-membered ansamacrolide derived from various medicinal plants and microorganisms. Among the most studied pharmacological activities of maytansine over the past few decades are anticancer and anti-bacterial effects. The anticancer mechanism of action is primarily mediated through interaction with the tubulin thereby inhibiting the assembly of microtubules. This ultimately leads to decreased stability of microtubule dynamics and cause cell cycle arrest, resulting in apoptosis. Despite its potent pharmacological effects, the therapeutic applications of maytansine in clinical medicine are quite limited due to its non-selective cytotoxicity. To overcome these limitations, several derivatives have been designed and developed mostly by modifying the parent structural skeleton of maytansine. These structural derivatives exhibit improved pharmacological activities as compared to maytansine. The present review provides a valuable insight into maytansine and its synthetic derivatives as anticancer agents.
Asunto(s)
Antineoplásicos , Maitansina , Maitansina/farmacología , Maitansina/uso terapéutico , Microtúbulos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo , Tubulina (Proteína)/metabolismoRESUMEN
Even though maytansine was first discovered from Celastraceae plants, it was later proven to be an endophytic bacterial metabolite. However, a pure bacterial culture cannot synthesize maytansine. Therefore, an exclusive interaction between plant and endophytes is required for maytansine production. Unfortunately, our understanding of plant-endophyte interaction is minimal, and critical questions remain. For example: how do endophytes synthesize maytansine inside their plant host, and what is the impact of maytansine production in plant secondary metabolites? Our study aimed to address these questions. We selected Gymnosporia heterophylla as our model and used amino-hydroxybenzoic acid (AHBA) synthase and halogenase genes as biomarkers, as these two genes respond to biosynthesize maytansine. As a result, we found a consortium of seven endophytes involved in maytansine production in G. heterophylla, based on genome mining and gene expression experiments. Subsequently, we evaluated the friedelin synthase (FRS) gene's expression level in response to biosynthesized 20-hydroxymaytenin in the plant. We found that the FRS expression level was elevated and linked with the expression of the maytansine biosynthetic genes. Thus, we achieved our goals and provided new evidence on endophyte-endophyte and plant-endophyte interactions, focusing on maytansine production and its impact on plant metabolite biosynthesis in G. heterophylla.
RESUMEN
DNA materials have emerged as potential nanocarriers for targeted cancer therapy to precisely deliver cargos with specific purposes. The short half-life and low bioavailability of DNA materials due to their interception by the reticuloendothelial system and blood clearance further limit their clinical translation. This study employs an HER2-targeted DNA-aptamer-modified DNA tetrahedron (HApt-tFNA) as a drug delivery system, and combines maytansine (DM1) to develop the HApt-DNA tetrahedron/DM1 conjugate (HApt-tFNA@DM1, HTD, HApDC) for targeted therapy of HER2-positive cancer. To optimize the pharmacokinetics and tumor-aggregation of HTD, a biomimetic camouflage is applied to embed HTD. The biomimetic camouflage is constructed by merging the erythrocyte membrane with pH-responsive functionalized synthetic liposomes, thus with excellent performance of drug delivery and tumor-stimulated drug release. The hybrid erythrosome-based nanoparticles show better inhibition of HER2-positive cancer than other drug formulations and exhibit superior biosafety. With the strengths of precise delivery, increased drug loading, sensitive tumor probing, and prolonged circulation time, the HApDC represents a promising nanomedicine to treat HER2-positive tumors. Notably, this study developsa dual-targeting nanoparticle by combining pH-sensitive camouflage and HApDC, initiating an important step toward the development and application of DNA-based medicine and biomimetic cell membrane materials in cancer treatment and other potential biological applications.
Asunto(s)
Neoplasias de la Mama , Maitansina , Humanos , Femenino , Maitansina/farmacología , Maitansina/uso terapéutico , Neoplasias de la Mama/patología , Biomimética , Línea Celular Tumoral , ADN , Concentración de Iones de Hidrógeno , Receptor ErbB-2/metabolismoRESUMEN
Purpose: Maytansine (DM1) is a potent anticancer drug and limited in clinical application due to its poor water solubility and toxic side effects. Zein is widely used in nano drug delivery systems due to its good biocompatibility. In this study, we prepared DM1-loaded zein nanoparticles (ZNPs) to achieve tumor targeting and reduce toxic side effects of DM1. Methods: ZNPs were prepared by phase separation and Box-Behnken design was used to optimize the formulation. Then, confocal fluorescence microscope and flow cytometry were used to determine cellular uptake of ZNPs. A549 cells were cultured in vitro to study cytotoxicity and used to establish tumor xenografts in nude mice. Biodistribution and antitumor activity of ZNPs were performed in vivo experiments. In addition, we also performed histological and immunohistochemical examinations on tumors and viscera. Results: The optimal prescription was obtained by using 120 µL zein added to 2 mL water under stirring in 300 rpm. The encapsulation efficiency and drug loading were 82.97 ± 0.80% and 3.32 ± 0.03%, respectively. We found that DM1-loaded ZNPs have a strong inhibitory effect on A549 cells, which stemmed from the ability of ZNPs to enhance cellular uptake. Furthermore, we demonstrated that DM1-loaded ZNPs exhibits a better antitumor efficacy than DM1, which tumor inhibition rate were 97.3% and 92.7%, respectively. The biodistribution revealed that ZNPs could targeted to tumor. Finally, we confirmed by histological that DM1-loaded ZNPs are nontoxic. Conclusion: DM1-loaded ZNPs have considerable antitumor activity. Thus, DM1-loaded ZNPs are a promising treatment of non-small cell lung cancer.