Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Toxicol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162819

RESUMEN

Developmental exposure to carbamates, organophosphates, and pyrethroids has been associated with impaired neurodevelopmental outcomes. Sex-specific differences following chronic insecticide exposure are rather common in vivo. Therefore, we assessed the chronic effects of in vitro exposure to different carbamates (carbaryl, methomyl and aldicarb), organophosphates [chlorpyrifos (CPF), chlorpyrifos-oxon (CPO), and 3,5,6,trichloropyridinol (TCP)], and pyrethroids [permethrin, alpha-cypermethrin and 3-phenoxy benzoic acid (3-PBA)] on neuronal network development in sex-separated rat primary cortical cultures using micro-electrode array (MEA) recordings. Our results indicate that exposure for 1 week to carbaryl inhibited neurodevelopment in male cultures, while a hyperexcitation was observed in female cultures. Methomyl and aldicarb evoked a hyperexcitation after 2 weeks of exposure, which was more pronounced in female cultures. In contrast to acute MEA results, exposure to ≥ 10 µM CPF caused hyperexcitation in both sexes after 10 days. Interestingly, exposure to 10 µM CPO induced a clear hyperexcitation after 10 days of exposure in male but not female cultures. Exposure to 100 µM CPO strongly inhibited neuronal development. Exposure to the type I pyrethroid permethrin resulted in a hyperexcitation at 10 µM and a decrease in neuronal development at 100 µM. In comparison, exposure to ≥ 10 µM of the type II pyrethroid alpha-cypermethrin decreased neuronal development. In female but not in male cultures, exposure to 1 and 10 µM permethrin changed (network) burst patterns, with female cultures having shorter (network) bursts with fewer spikes per (network) burst. Together, these results show that MEA recordings are suitable for measuring sex-specific developmental neurotoxicity in vitro. Additionally, pyrethroid exposure induced effects on neuronal network development at human-relevant concentrations. Finally, chronic exposure has different effects on neuronal functioning compared to acute exposure, highlighting the value of both exposure paradigms.

2.
Sensors (Basel) ; 24(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38793822

RESUMEN

PURPOSE: Our aim was to use intracortical recording to enable the tracking of ischemic infarct development over the first few critical hours of ischemia with a high time resolution in pigs. We employed electrophysiological measurements to obtain quick feedback on neural function, which might be useful for screening, e.g., for the optimal dosage and timing of agents prior to further pre-clinical evaluation. METHODS: Micro-electrode arrays containing 16 (animal 1) or 32 electrodes (animal 2-7) were implanted in the primary somatosensory cortex of seven female pigs, and continuous electrical stimulation was applied at 0.2 Hz to a cuff electrode implanted on the ulnar nerve. Ischemic stroke was induced after 30 min of baseline recording by injection of endothelin-1 onto the cortex adjacent to the micro-electrode array. Evoked responses were extracted over a moving window of 180 s and averaged across channels as a measure of cortical excitability. RESULTS: Across the animals, the cortical excitability was significantly reduced in all seven 30 min segments following endothelin-1 injection, as compared to the 30 min preceding this intervention. This difference was not explained by changes in the anesthesia, ventilation, end-tidal CO2, mean blood pressure, heart rate, blood oxygenation, or core temperature, which all remained stable throughout the experiment. CONCLUSIONS: The animal model may assist in maturing neuroprotective approaches by testing them in an accessible model of resemblance to human neural and cardiovascular physiology and body size. This would constitute an intermediate step for translating positive results from rodent studies into human application, by more efficiently enabling effective optimization prior to chronic pre-clinical studies in large animals.


Asunto(s)
Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Animales , Porcinos , Femenino , Accidente Cerebrovascular Isquémico/fisiopatología , Endotelina-1/metabolismo , Endotelina-1/farmacología , Estimulación Eléctrica , Corteza Somatosensorial/fisiopatología , Corteza Somatosensorial/fisiología , Isquemia Encefálica/fisiopatología , Monitoreo Fisiológico/métodos
3.
J Pharmacol Sci ; 148(2): 267-278, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35063143

RESUMEN

Construction of in vitro functional assay systems using human-induced pluripotent stem cells (iPSCs) as indicators for evaluating seizure liability of compounds has been anticipated. Imbalance of excitation/inhibition (E/I) inputs triggers seizure; however, the appropriate ratio of E/I neurons for evaluating seizure liability of compounds in a human iPSC-derived neural network is unknown. Here, five neural networks with varying E/I ratios (88/12, 84/16, 74/26, 58/42, and 48/52) were constructed by altering the ratios of glutamatergic (E) and GABA (I) neurons. The responsiveness of each network against six seizurogenic compounds and two GABA receptor agonists was then examined by using six representative parameters. The 52% GABA neuron network, which had the highest ratio of GABA neurons, showed the most marked response to seizurogenic compounds, however, it suggested the possibility of producing false positives. Moreover, analytical parameters were found to vary with E/I ratio and to differ for seizurogenic compounds with different mechanism of action (MoA) even at the same E/I ratio. Clustering analysis using six parameters showed the balance of 84/16, which is the closest to the biological balance, was the most suitable for detection of concentration-dependent change and classification of the MoA of seizurogenic compounds. These results suggest the importance of using a human-iPSC-derived neural network similar to the E/I balance of the living body in order to improve the prediction accuracy in the in vitro seizure liability assessment.


Asunto(s)
Corteza Cerebral/fisiología , Fenómenos Electrofisiológicos/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Red Nerviosa/fisiología , Convulsiones/inducido químicamente , Células Cultivadas , Corteza Cerebral/citología , Agonistas del GABA/farmacología , Neuronas GABAérgicas , Humanos , Red Nerviosa/citología
4.
Pharm Res ; 38(7): 1179-1186, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34244893

RESUMEN

PURPOSE: Pharmaceutical buffer systems, especially for injectable biologics such as monoclonal antibodies, are an important component of successful FDA-approved medications. Clinical studies indicate that buffer components may be contributing factors for increased injection site pain. METHODS: To determine the potential nociceptive effects of clinically relevant buffer systems, we developed an in vitro multi-electrode array (MEA) based recording system of rodent dorsal root ganglia (DRG) sensory neuron cell culture. This system monitors sensory neuron activity/firing as a surrogate of nociception when challenged with buffer components used in formulating monoclonal antibodies and other injectable biologics. RESULTS: We show that citrate salt and citrate mannitol buffer systems cause an increase in mean firing rate, burst frequency, and burst duration in DRG sensory neurons, unlike histidine or saline buffer systems at the same pH value. Lowering the concentration of citrate leads to a lower firing intensity of DRG sensory neurons. CONCLUSION: Increased activity/firing of DRG sensory neurons has been suggested as a key feature underlying nociception. Our results support the utility of an in vitro MEA assay with cultured DRG sensory neurons to probe the nociceptive potential of clinically relevant buffer components used in injectable biologics.


Asunto(s)
Productos Biológicos/administración & dosificación , Reacción en el Punto de Inyección/prevención & control , Inyecciones/efectos adversos , Nocicepción/efectos de los fármacos , Dolor/prevención & control , Animales , Productos Biológicos/química , Tampones (Química) , Células Cultivadas , Evaluación Preclínica de Medicamentos/instrumentación , Electrodos , Ganglios Espinales/citología , Dolor/etiología , Cultivo Primario de Células , Ratas , Células Receptoras Sensoriales/efectos de los fármacos
5.
Sensors (Basel) ; 20(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823521

RESUMEN

The detection of neuroelectrophysiology while performing optogenetic modulation can provide more reliable and useful information for neural research. In this study, an optical fiber and a microelectrode array were integrated through hot-melt adhesive bonding, which combined optogenetics and electrophysiological detection technology to achieve neuromodulation and neuronal activity recording. We carried out the experiments on the activation and electrophysiological detection of infected neurons at the depth range of 900-1250 µm in the brain which covers hippocampal CA1 and a part of the upper cortical area, analyzed a possible local inhibition circuit by combining opotogenetic modulation and electrophysiological characteristics and explored the effects of different optical patterns and light powers on the neuromodulation. It was found that optogenetics, combined with neural recording technology, could provide more information and ideas for neural circuit recognition. In this study, the optical stimulation with low frequency and large duty cycle induces more intense neuronal activity and larger light power induced more action potentials of neurons within a certain power range (1.032 mW-1.584 mW). The present study provided an efficient method for the detection and modulation of neurons in vivo and an effective tool to study neural circuit in the brain.


Asunto(s)
Microelectrodos , Fibras Ópticas , Optogenética , Potenciales de Acción , Neuronas
6.
Mikrochim Acta ; 186(3): 200, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30796537

RESUMEN

The electroanalytical detection of the neurotransmitter dopamine (DA) in the presence of uric acid (UA) is explored for the first time using commercially procured nanodiamonds (NDs). These are electrically wired via surface modification upon screen-printed graphite macroelectrodes (SPEs). The surface coverage of the NDs on the SPEs was explored in order to optimize electroanalytical outputs to result in well-resolved signals and in low limits of detection. The (electro)analytical outputs are observed to be more sensitive than those achieved at bare (unmodified) SPEs. Such responses, previously reported in the academic literature have been reported to be electrocatalytic and have been previously attributed to the presence of surface sp2 carbon and oxygenated species on the surface of the NDs. However, XPS analysis reveals the commercial NDs to be solely composed of nonconductive sp3 carbon. The low/negligible electroconductivity of the NDs was further confirmed when ND paste electrodes were fabricated and found to exhibit no electrochemical activity. The electroanalytical enhancement, when using NDs electronically wired upon SPEs, is attributed not to the NDs themselves being electrocatalytic, as reported previously, but rather changes in mass transport where the inert NDs block the underlying electroactive SPEs and create a random array of graphite microelectrodes. The electrode was applied to simultaneous sensing of DA and UA at pH 5.5. Figures of merit include (a) low working potentials of around 0.27 and 0.35 V (vs. Ag/AgCl); and (b) detection limits of 5.7 × 10-7 and 8.9 × 10-7 M for DA and UA, respectively. Graphical abstract The electroanalytical enhancement of screen-printed electrodes modified with inert/non-conductive nanodiamonds is due to a change in mass transfer where the inert nanodiamonds facilitate the production of a random microelectrode array.

7.
Exp Eye Res ; 176: 210-218, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30003883

RESUMEN

The purpose was to evaluate retinal function by measuring pupillary responses to sinusoidal transcorneal electrostimulation in healthy young human subjects. This work also translates data from analogous in vitro experiments and connects it to the pupillary responses obtained in human experiments. 14 healthy human subjects participated (4 males, 10 females); for the in vitro experiments, two male healthy mouse retinas (adult wild-type C57B/6J) were used. Pupillary responses to sinusoidal transcorneal electrostimulation of varying stimulus carrier frequencies (10, 20 Hz; envelope frequency constantly kept at 1.2 Hz) and intensities (10, 20, 50 µA) were recorded and compared with those obtained with light stimulation (1.2 Hz sinusoidal blue, red light). A strong correlation between the sinusoidal stimulation (electrical as well as light) and the pupillary sinusoidal response was found. The difference between the lag of electrical and light stimulation allowed the estimation of an intensity threshold for pupillary responses to transcorneal electrostimulation (mean ±â€¯SD: 30 ±â€¯10 µA (10 Hz); 38 ±â€¯10 µA (20 Hz)). A comparison between the results of the two stimulation frequencies showed a not statistically significant smaller lag for 10 Hz (10 Hz: 633 ±â€¯90 ms; 20 Hz: 725 ±â€¯178 ms; 50 µA intensity). Analogous in vitro experiments on murine retinas indicated a selective stimulation of photoreceptors and bipolar cells (lower frequencies) and retinal ganglion cells (higher frequencies) and lower stimulation thresholds for the retinal network with sinusoidal compared to pulsatile stimulation - emphasizing that sinusoidal waveforms are well-suited to our purposes. We demonstrate that pupillary responses to sinusoidal transcorneal electrostimulation are measurable as an objective marker in healthy young subjects, even at very low stimulus intensities. By using this unique approach, we unveil the potential for an estimation of the individual intensity threshold and a selective activation of different retinal cell types in humans by varying the stimulation frequency. This technique may have broad clinical utility as well as specific relevance in the monitoring of patients with hereditary retinal disorders, especially as implemented in study protocols for novel therapies, e.g. retinal prostheses or gene therapies.


Asunto(s)
Estimulación Eléctrica , Fosfenos/fisiología , Reflejo Pupilar/fisiología , Retina/fisiología , Percepción Visual/fisiología , Adulto , Animales , Córnea/fisiología , Femenino , Voluntarios Sanos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa , Células Fotorreceptoras de Vertebrados/fisiología , Células Bipolares de la Retina/fisiología , Células Ganglionares de la Retina/fisiología
8.
BMC Neurosci ; 18(1): 49, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28606117

RESUMEN

BACKGROUND: The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. RESULTS: In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/f ß distribution, for different values of ß ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring ß closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of ß, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. CONCLUSIONS: Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Animales , Estimulación Eléctrica , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
9.
Neurotoxicology ; 102: 58-67, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599286

RESUMEN

Exposure to pesticides, such as carbamates, organophosphates, organochlorines and pyrethroids, has been linked to various health problems, including neurotoxicity. Although most in vivo studies use only male rodents, some studies have shown in vivo sex-specific effects after acute exposure. Since in vivo studies are costly and require a large number of animals, in vitro assays that take sex-specific effects into account are urgently needed. We therefore assessed the acute effects of exposure to different carbamates (methomyl, aldicarb and carbaryl), organophosphates (chlorpyrifos (CPF), chlorpyrifos-oxon (CPO) and 3,5,6-trichloropyridinol), organochlorines (endosulfan, dieldrin and lindane) and pyrethroids (permethrin, alpha-cypermethrin and 3-phenoxy-benzoic acid (3-PBA)) on neuronal network function in sex-separated rat primary cortical cultures using micro-electrode array (MEA) recordings. Our results indicate that exposure to the carbamate carbaryl and the organophosphates CPF and CPO decreased neuronal activity, with CPO being the most potent. Notably, (network) burst patterns differed between CPF and CPO, with CPO inducing fewer, but more intense (network) bursts. Exposure to low micromolar levels of endosulfan induced a hyperexcitation, most likely due to the antagonistic effects on GABA receptors. Interestingly, females were more sensitive to endosulfan than males. Exposure to dieldrin and lindane also increased neuronal activity, albeit less than endosulfan and without sex-specific effects. Exposure to type I pyrethroid permethrin increased neuronal activity, while exposure to type II pyrethroid alpha-cypermethrin strongly decreased neuronal activity. The increase seen after permethrin exposure was more pronounced in males than in females. Together, these results show that acute exposure to different classes of pesticides exerts differential effects on neuronal activity. Moreover, it shows that MEA recordings are suited to detect sex-specific neurotoxic effects in vitro.


Asunto(s)
Corteza Cerebral , Insecticidas , Neuronas , Animales , Insecticidas/toxicidad , Neuronas/efectos de los fármacos , Femenino , Masculino , Corteza Cerebral/efectos de los fármacos , Ratas , Células Cultivadas , Potenciales de Acción/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Microelectrodos , Ratas Wistar
10.
Front Pharmacol ; 15: 1308547, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873414

RESUMEN

We investigated drug-induced acute neuronal electrophysiological changes using Micro-Electrode arrays (MEA) to rat primary neuronal cell cultures. Data based on 6-key MEA parameters were analyzed for plate-to-plate vehicle variability, effects of positive and negative controls, as well as data from over 100 reference drugs, mostly known to have pharmacological phenotypic and clinical outcomes. A Least Absolute Shrinkage and Selection Operator (LASSO) regression, coupled with expert evaluation helped to identify the 6-key parameters from many other MEA parameters to evaluate the drug-induced acute neuronal changes. Calculating the statistical tolerance intervals for negative-positive control effects on those 4-key parameters helped us to develop a new weighted hazard scoring system on drug-induced potential central nervous system (CNS) adverse effects (AEs). The weighted total score, integrating the effects of a drug candidate on the identified six-pivotal parameters, simply determines if the testing compound/concentration induces potential CNS AEs. Hereto, it uses four different categories of hazard scores: non-neuroactive, neuroactive, hazard, or high hazard categories. This new scoring system was successfully applied to differentiate the new compounds with or without CNS AEs, and the results were correlated with the outcome of in vivo studies in mice for one internal program. Furthermore, the Random Forest classification method was used to obtain the probability that the effect of a compound is either inhibitory or excitatory. In conclusion, this new neuronal scoring system on the cell assay is actively applied in the early de-risking of drug development and reduces the use of animals and associated costs.

11.
Food Chem Toxicol ; 184: 114438, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191119

RESUMEN

Toxicity testing of botanicals is challenging because of their chemical complexity and variability. Since botanicals may affect many different modes of action involved in neuronal function, we used microelectrode array (MEA) recordings of primary rat cortical cultures to screen 16 different botanical extracts for their effects on cell viability and neuronal network function in vitro. Our results demonstrate that extract materials (50 µg/mL) derived from goldenseal, milk thistle, tripterygium, and yohimbe decrease mitochondrial activity following 7 days exposure, indicative of cytotoxicity. Importantly, most botanical extracts alter neuronal network function following acute exposure. Extract materials (50 µg/mL) derived from aristolochia, ephedra, green tea, milk thistle, tripterygium, and usnea inhibit neuronal activity. Extracts of kava, kratom and yohimbe are particularly potent and induce a profound inhibition of neuronal activity at the low dose of 5 µg/mL. Extracts of blue cohosh, goldenseal and oleander cause intensification of the bursts. Aconite extract (5 µg/mL) evokes a clear hyperexcitation with a marked increase in the number of spikes and (network) bursts. The distinct activity patterns suggest that botanical extracts have diverse modes of action. Our combined data also highlight the applicability of MEA recordings for hazard identification and potency ranking of botanicals.


Asunto(s)
Hydrastis , Extractos Vegetales , Animales , Ratas , Microelectrodos , Extractos Vegetales/toxicidad , Pruebas de Toxicidad , Neuronas
12.
Front Cell Neurosci ; 18: 1389580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784710

RESUMEN

Engineered 3D neural tissues made of neurons and glial cells derived from human induced pluripotent stem cells (hiPSC) are among the most promising tools in drug discovery and neurotoxicology. They represent a cheaper, faster, and more ethical alternative to in vivo animal testing that will likely close the gap between in vitro animal models and human clinical trials. Micro-Electrode Array (MEA) technology is known to provide an assessment of compound effects on neural 2D cell cultures and acute tissue preparations by real-time, non-invasive, and long-lasting electrophysiological monitoring of spontaneous and evoked neuronal activity. Nevertheless, the use of engineered 3D neural tissues in combination with MEA biochips still involves series of constraints, such as drastically limited diffusion of oxygen and nutrients within tissues mainly due to the lack of vascularization. Therefore, 3D neural tissues are extremely sensitive to experimental conditions and require an adequately designed interface that provides optimal tissue survival conditions. A well-suited technique to overcome this issue is the combination of the Air-Liquid Interface (ALI) tissue culture method with the MEA technology. We have developed a full 3D neural tissue culture process and a data acquisition system composed of high-end electronics and novel MEA biochips based on porous, flexible, thin-film membranes integrating recording electrodes, named as "Strip-MEA," to allow the maintenance of an ALI around the 3D neural tissues. The main motivation of the porous MEA biochips development was the possibility to monitor and to study the electrical activity of 3D neural tissues under different recording configurations, (i) the Strip-MEA can be placed below a tissue, (ii) or by taking advantage of the ALI, be directly placed on top of the tissue, or finally, (iii) it can be embedded into a larger neural tissue generated by the fusion of two (or more) tissues placed on both sides of the Strip-MEA allowing the recording from its inner part. This paper presents the recording and analyses of spontaneous activity from the three positioning configurations of the Strip-MEAs. Obtained results are discussed with the perspective of developing in vitro models of brain diseases and/or impairment of neural network functioning.

13.
Brain Res Bull ; 198: 27-35, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37084982

RESUMEN

Electromagnetic stimulation (EMS) has proven to be useful for the focal suppression of epileptiform activity (EFA) in the hippocampus. There is a critical period during EFA for achieving the transition from brief interictal discharges (IIDs) to prolonged ictal discharges (IDs), and it is unknown whether EMS can modulate this transition. Therefore, this study aimed to evaluate the intensity- and time-dependent effect of EMS on the transition of EFA. A juvenile rat EFA model was constructed by perfusing magnesium-free artificial cerebrospinal fluid (aCSF) on brain slices, and the induced EFA was recorded using a micro-electrode array (MEA) platform. After a stable EFA event was recorded for some time, real-time pulsed magnetic stimulation with low and high peak-to-peak input magnetic field intensities was carried out. A 5-min intervention with real-time magnetic fields with low intensity was found to reduce the amplitude of IDs (ID events still existed), whereas a 5-min intervention with real-time magnetic fields with high input voltages completely suppressed IDs. Short-time magnetic fields (9 s and 1 min) with high or low input intensity had no effect on EFA. Real-time magnetic fields can block the normal EFA process from IIDs to IDs (i.e., a complete EFA cycle) and this suppression effect is dependent on input intensities and intervention duration. The experimental findings further indicate that magnetic stimulation may be chosen as an alternative antiepileptic therapy.


Asunto(s)
Anticonvulsivantes , Hipocampo , Ratas , Animales , Anticonvulsivantes/farmacología , Electrodos
14.
Biosens Bioelectron ; 229: 115227, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36940662

RESUMEN

Currently, only a few small devices are capable of continuously recording the physiological states of neurons in real time. Micro-electrode arrays (MEAs) are widely used as electrophysiological technology to detect the excitability of neurons non-invasively. However, the development of miniaturized and multi-parameter MEAs capable of real-time recording remains challenging. In this study, an on-chip micro-electrode and platinum resistor array (MEPRA) biosensor was designed and fabricated to monitor both the electrical and temperature signals of cells synchronously in real time. Such on-chip sensor maintains high sensitivity and stability. The MEPRA biosensor was further used to investigate the effects of propionic acid (PA) on primary neurons. The results demonstrate that PA affects the temperature and firing frequency of primary cortical neurons in concentration-dependent manners. The changes of temperature and firing frequency work in tandem with neuronal physiological status, including neuron viability, intracellular calcium concentration, neural plasticity, and mitochondrial function. This highly biocompatible, stable, and sensitive MEPRA biosensor may provide high-precision reference information for investigating the physiological responses of neuron cells under various conditions.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Electrodos , Neuronas/fisiología , Microelectrodos
15.
Front Endocrinol (Lausanne) ; 13: 795225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528003

RESUMEN

In diabetes mellitus (DM) treatment, Continuous Glucose Monitoring (CGM) linked with insulin delivery becomes the main strategy to improve therapeutic outcomes and quality of patients' lives. However, Blood Glucose (BG) regulation with CGM is still hampered by limitations of algorithms and glucose sensors. Regarding sensor technology, current electrochemical glucose sensors do not capture the full spectrum of other physiological signals, i.e., lipids, amino acids or hormones, relaying the general body status. Regarding algorithms, variability between and within patients remains the main challenge for optimal BG regulation in closed-loop therapies. This work highlights the simulation benefits to test new sensing and control paradigms which address the previous shortcomings for Type 1 Diabetes (T1D) closed-loop therapies. The UVA/Padova T1DM Simulator is the core element here, which is a computer model of the human metabolic system based on glucose-insulin dynamics in T1D patients. That simulator is approved by the US Food and Drug Administration (FDA) as an alternative for pre-clinical testing of new devices and closed-loop algorithms. To overcome the limitation of standard glucose sensors, the concept of an islet-based biosensor, which could integrate multiple physiological signals through electrical activity measurement, is assessed here in a closed-loop insulin therapy. This investigation has been addressed by an interdisciplinary consortium, from endocrinology to biology, electrophysiology, bio-electronics and control theory. In parallel to the development of an islet-based closed-loop, it also investigates the benefits of robust control theory against the natural variability within a patient population. Using 4 meal scenarios, numerous simulation campaigns were conducted. The analysis of their results then introduces a discussion on the potential benefits of an Artificial Pancreas (AP) system associating the islet-based biosensor with robust algorithms.


Asunto(s)
Técnicas Biosensibles , Diabetes Mellitus Tipo 1 , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Hipoglucemiantes/uso terapéutico , Insulina , Sistemas de Infusión de Insulina , Estados Unidos
16.
J Toxicol Sci ; 47(10): 429-437, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184562

RESUMEN

Antibiotic-associated encephalopathy (AAE) is a central nervous system disorder caused by antibiotics administration and classified into three types based on clinical symptoms. Type 1 AAE causes seizures and myoclonus, type 2 causes psychiatric symptoms, and type 3 is characterized by cerebellar ataxia. In this study, we investigated whether the electrical activity of in vitro human iPSC-derived neurons to antibiotics could be classified based on the 3 types of AAEs classified by clinical symptoms. Glutamatergic, GABAergic neurons and astrocytes differentiated from human iPS cells were seeded on micro-electrode array (MEA). The cumulative administration of 13 different antimicrobials detected changes in neural activity that differed according to AAE type. Next, we classified the antimicrobials by principal component analysis (PCA) and confirmed the AAE type of each agent. We found that Types 1-3 AAE agents were distributed separately. The classification of antibiotics depending on electrophysiological response characteristics was consistent with the clinical practice classification of AAEs. In conclusion, the combination of electrophysiological responses of human iPS cell-derived neural networks measured by MEA plus multivariate analysis methods will effectively detect and classify antibiotics developmental risks.


Asunto(s)
Encefalopatías , Células Madre Pluripotentes Inducidas , Antibacterianos/toxicidad , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Convulsiones
17.
Front Neurosci ; 16: 873664, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677356

RESUMEN

Brain-state alternation is important for long-term memory formation. Each brain state can be identified with a specific process in memory formation, e.g., encoding during wakefulness or consolidation during sleeping. The hippocampal-neocortical dialogue was proposed as a hypothetical framework for systems consolidation, which features different cross-frequency couplings between the hippocampus and distributed neocortical regions in different brain states. Despite evidence supporting this hypothesis, little has been reported about how information is processed with shifts in brain states. To address this gap, we developed an in vitro neocortical-hippocampal coculture model to study how activity coupling can affect connections between coupled networks. Neocortical and hippocampal neurons were cultured in two different compartments connected by a micro-tunnel structure. The network activity of the coculture model was recorded by microelectrode arrays underlying the substrate. Rhythmic bursting was observed in the spontaneous activity and electrical evoked responses. Rhythmic bursting activity in one compartment could couple to that in the other via axons passing through the micro-tunnels. Two types of coupling patterns were observed: slow-burst coupling (neocortex at 0.1-0.5 Hz and hippocampus at 1 Hz) and fast burst coupling (neocortex at 20-40 Hz and hippocampus at 4-10 Hz). The network activity showed greater synchronicity in the slow-burst coupling, as indicated by changes in the burstiness index. Network synchronicity analysis suggests the presence of different information processing states under different burst activity coupling patterns. Our results suggest that the hippocampal-neocortical coculture model possesses multiple modes of burst activity coupling between the cortical and hippocampal parts. With the addition of external stimulation, the neocortical-hippocampal network model we developed can elucidate the influence of state shifts on information processing.

18.
Front Neurosci ; 16: 951964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267241

RESUMEN

Comprehensive electrophysiological characterizations of human induced pluripotent stem cell (hiPSC)-derived neuronal networks are essential to determine to what extent these in vitro models recapitulate the functional features of in vivo neuronal circuits. High-density micro-electrode arrays (HD-MEAs) offer non-invasive recording with the best spatial and temporal resolution possible to date. For 3 months, we tracked the morphology and activity features of developing networks derived from a transgenic hiPSC line in which neurogenesis is inducible by neurogenic transcription factor overexpression. Our morphological data revealed large-scale structural changes from homogeneously distributed neurons in the first month to the formation of neuronal clusters over time. This led to a constant shift in position of neuronal cells and clusters on HD-MEAs and corresponding changes in spatial distribution of the network activity maps. Network activity appeared as scarce action potentials (APs), evolved as local bursts with longer duration and changed to network-wide synchronized bursts with higher frequencies but shorter duration over time, resembling the emerging burst features found in the developing human brain. Instantaneous firing rate data indicated that the fraction of fast spiking neurons (150-600 Hz) increases sharply after 63 days post induction (dpi). Inhibition of glutamatergic synapses erased burst features from network activity profiles and confirmed the presence of mature excitatory neurotransmission. The application of GABAergic receptor antagonists profoundly changed the bursting profile of the network at 120 dpi. This indicated a GABAergic switch from excitatory to inhibitory neurotransmission during circuit development and maturation. Our results suggested that an emerging GABAergic system at older culture ages is involved in regulating spontaneous network bursts. In conclusion, our data showed that long-term and continuous microscopy and electrophysiology readouts are crucial for a meaningful characterization of morphological and functional maturation in stem cell-derived human networks. Most importantly, assessing the level and duration of functional maturation is key to subject these human neuronal circuits on HD-MEAs for basic and biomedical applications.

19.
Physiol Behav ; 238: 113467, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34033847

RESUMEN

Increases in human life expectancy have led to increases in the prevalence of senile dementia and neurodegenerative diseases. This is a major problem because there are no curative treatments for these diseases, and patients with unmanaged cognitive and neurodegenerative symptoms experience many social problems. Sulforaphane is a type of organosulfur compound known as an isothiocyanate. It is derived from glucoraphanin, a compound found in cruciferous vegetables such as broccoli, brussels sprouts, and cabbages, via an enzymatic reaction that is triggered by plant damage (e.g., chewing). Sulforaphane exhibits activity against cancer, inflammation, depression, and severe cardiac diseases. It can also alleviate oxidative stress and neural dysfunction in the brain. However, there is insufficient knowledge about the electrophysiological and behavioral basis of the effects of sulforaphane on learning and memory. Therefore, we evaluated whether acute sulforaphane administration affected long-term potentiation (LTP) in organotypic cultured rat hippocampal tissues. We also measured the effect of sulforaphane on the performance of three behavioral tests, the Y-maze test, the passive avoidance test, and the Morris water maze, which assess short-term memory, avoidance memory, and short and long-term spatial memory, respectively. We found that sulforaphane increased the total field excitatory postsynaptic potential (fEPSP) in a dose-dependent manner after high frequency stimulation and attenuated scopolamine-induced interference of the fEPSP in the hippocampal CA1 area. Sulforaphane also restored cognitive function and inhibited memory impairment as indicated by the alleviation of the negative neurological effects of scopolamine, i.e, a lowered ratio of spontaneous alternation in the Y-maze, a reduced step-through latency in the passive avoidance test, and an increased navigation time in the Morris water maze. These results indicate that sulforaphane can effectively prevent the attenuation of LTP and cognitive abilities induced by cholinergic and muscarinic receptor blockade. Further research is warranted to explore the potential therapeutic and prophylactic utility of sulforaphane for improving learning and memory, especially in those suffering from neurodegenerative disorders.


Asunto(s)
Potenciación a Largo Plazo , Escopolamina , Animales , Reacción de Prevención , Hipocampo , Humanos , Isotiocianatos/farmacología , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Ratas , Escopolamina/toxicidad , Sulfóxidos
20.
Brain Sci ; 11(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34827452

RESUMEN

Dissociated cortical neurons in vitro display spontaneously synchronized, low-frequency firing patterns, which can resemble the slow wave oscillations characterizing sleep in vivo. Experiments in humans, rodents, and cortical slices have shown that awakening or the administration of activating neuromodulators decrease slow waves, while increasing the spatio-temporal complexity of responses to perturbations. In this study, we attempted to replicate those findings using in vitro cortical cultures coupled with micro-electrode arrays and chemically treated with carbachol (CCh), to modulate sleep-like activity and suppress slow oscillations. We adapted metrics such as neural complexity (NC) and the perturbational complexity index (PCI), typically employed in animal and human brain studies, to quantify complexity in simplified, unstructured networks, both during resting state and in response to electrical stimulation. After CCh administration, we found a decrease in the amplitude of the initial response and a marked enhancement of the complexity during spontaneous activity. Crucially, unlike in cortical slices and intact brains, PCI in cortical cultures displayed only a moderate increase. This dissociation suggests that PCI, a measure of the complexity of causal interactions, requires more than activating neuromodulation and that additional factors, such as an appropriate circuit architecture, may be necessary. Exploring more structured in vitro networks, characterized by the presence of strong lateral connections, recurrent excitation, and feedback loops, may thus help to identify the features that are more relevant to support causal complexity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA