Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.251
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Mol Recognit ; 37(4): e3087, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38686731

RESUMEN

Epitope imprinting has shown better prospects to synthesize synthetic receptors for proteins. Here, dual epitope imprinted polymer electrode (DEIP) matrix was fabricated on gold surface of electrochemical quartz crystal microbalance (EQCM) for recognition of target epitope sequence in blood samples of patients suffering from brain fever. Epitope sequences from outer membrane protein Por B of Neisseria meningitidis (MC58) bacteria predicted through immunoinformatic tools were chosen for imprinting. Self-assembled monolayers (SAM) of cysteine appended epitope sequences on gold nanoparticles were subjected to polymerization prior to electrodeposition on gold coated EQCM electrode. The polymeric matrix was woven around the cysteine appended epitope SAMs through multiple monomers (3-sulfo propyl methacrylate potassium salt (3-SPMAP), benzyl methacrylate (BMA)) and crosslinker (N, N'-methylene-bis-acrylamide). On extraction of the peptide sequences, imprinted cavities were able to selectively and specifically bind targeted epitope sequences in laboratory samples as well as 'real' samples of patients. Selectivity of sensor was examined through mismatched peptide sequences and certain plasma proteins also. The sensor was able to show specific binding towards the blood samples of infected patients, even in the presence of 'matrix' and other plasma proteins such as albumin and globulin. Even other peptide sequences, similar to epitope sequences only with one or two amino acid mismatches were also unable to show any binding. The analytical performance of DEIP-EQCM sensor was tested through selectivity, specificity, matrix effect, detection limit (0.68-1.01 nM), quantification limit (2.05-3.05 nM) and reproducibility (RSD ~ 5%). Hence, a diagnostic tool for bacterium causing meningitis is successfully fabricated in a facile manner which will broaden the clinical access and make efficient population screening feasible.


Asunto(s)
Electrodos , Epítopos , Oro , Impresión Molecular , Neisseria meningitidis , Tecnicas de Microbalanza del Cristal de Cuarzo , Epítopos/inmunología , Epítopos/química , Humanos , Neisseria meningitidis/inmunología , Oro/química , Técnicas Biosensibles/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Nanopartículas del Metal/química , Porinas/química , Porinas/inmunología
2.
Electrophoresis ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034741

RESUMEN

Detection of florfenicol (FF) residues in animal-derived foods, as one of the most widely used antibiotics, is critically important to food safety. The fluorescent molecularly imprinted polymer (MIP) was synthesized by surface-initiated atom transfer radical polymerization technique with poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, 4-vinylpyridine, ethylene glycol dimethacrylate, and FF as the matrix, functional monomer, crosslinker, and template molecule, respectively. Meanwhile, N-S co-doped carbon dot (CD) was synthesized with triammonium citrate and thiourea as precursors under microwave irradiation at 400 W for 2.5 min and then integrated into FF-MIP to obtain CD@FF-MIP. For comparison, non-imprinted polymer (NIP) without FF was also prepared. The adsorption capacity of CD@FF-MIP to FF reached 53.1 mg g-1, which was higher than that of FF-MIP (34.7 mg g-1), whereas the adsorption capacity of NIP was only 17.3 mg g-1. The adsorption equilibrium of three materials was reached within 50 min. Particularly, CD@FF-MIP exhibited an excellent fluorescence quenching response to FF in the concentration range of 3-50 µmol L-1. As a result, CD@FF-MIP was successfully utilized to extract FF in milk samples, which were analyzed by high-performance liquid chromatography. The standard recoveries were 95.8%-98.2%, and the relative standard deviation was 1.6%-4.2%. The method showed the advantages of simple operation, high sensitivity, excellent selectivity, and low cost, and also demonstrated a great application prospect in food detection.

3.
Anal Bioanal Chem ; 416(9): 2261-2275, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38117322

RESUMEN

Molecularly imprinted polymers (MIPs) rely on synthetic engineered materials able to selectively bind and intimately recognise a target molecule through its size and functionalities. The way in which MIPs interact with their targets, and the magnitude of this interaction, is closely linked to the chemical properties derived during the polymerisation stages, which tailor them to their specific target. Hence, MIPs are in-deep studied in terms of their sensitivity and cross-reactivity, further being used for monitoring purposes of analytes in complex analytical samples. As MIPs are involved in sensor development within different approaches, a systematic optimisation and rational data-driven sensing is fundamental to obtaining a best-performant MIP sensor. In addition, the closer integration of MIPs in sensor development requires that the inner properties of the materials in terms of sensitivity and selectivity are maintained in the presence of competitive molecules, which focus is currently opened. Identifying computational models capable of predicting and reporting the best-performant configuration of electrochemical sensors based on MIPs is of immense importance. The application of chemometrics using design of experiments (DoE) is nowadays increasingly adopted during optimisation problems, which largely reduce the number of experimental trials. These approaches, together with the emergent machine learning (ML) tool in sensor data processing, represent the future trend in design and management of point-of-care configurations based on MIP sensing. This review provides an overview on the recent application of chemometrics tools in optimisation problems during development and analytical assessment of electrochemical sensors based on MIP receptors. A comprehensive discussion is first presented to cover the recent advancements on response surface methodologies (RSM) in optimisation studies of MIPs design. Therefore, the recent advent of machine learning in sensor data processing will be focused on MIPs development and analytical detection in sensors.

4.
Anal Bioanal Chem ; 416(14): 3335-3347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38661944

RESUMEN

Stanozolol, a synthetic derivative of testosterone, is one of the common doping drugs among athletes and bodybuilders. It is metabolized to a large extent and metabolites are detected in urine for a longer duration than the parent compound. In this study, a novel dummy molecularly imprinted polymer (DMIP) is developed as a sorbent for solid-phase extraction of stanozolol metabolites from spiked human urine samples. The optimized DMIP is composed of stanozolol as the dummy template, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker in a ratio of 1:10:80. The extracted analytes were quantitively determined using a newly developed and validated ultrahigh-performance liquid chromatography tandem mass spectrometry method, where the limits of detection and quantitation were 0.91 and 1.81 ng mL-1, respectively, fulfilling the minimum required performance limit decided on by the World Anti-Doping Agency. The mean percentage extraction recoveries for 3'-hydroxystanozolol, 4ß-hydroxystanozolol, and 16ß-hydroxystanozolol are 97.80% ± 13.80, 83.16% ± 7.50, and 69.98% ± 2.02, respectively. As such, the developed DMISPE can serve as an efficient cost-effective tool for doping and regulatory agencies for simultaneous clean-up of the stanozolol metabolites prior to their quantification.


Asunto(s)
Doping en los Deportes , Límite de Detección , Polímeros Impresos Molecularmente , Extracción en Fase Sólida , Estanozolol , Estanozolol/orina , Extracción en Fase Sólida/métodos , Humanos , Polímeros Impresos Molecularmente/química , Doping en los Deportes/prevención & control , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Detección de Abuso de Sustancias/métodos , Anabolizantes/orina , Anabolizantes/metabolismo , Impresión Molecular/métodos
5.
J Sep Sci ; 47(14): e2400003, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39034895

RESUMEN

Furosemide (FUR), banned in sports events by the World Anti-Doping Agency, is a key target in drug tests, necessitating a pretreatment material capable of selectively, rapidly, and sufficiently separating/enriching analytes from complex matrices. Herein, a metal-mediated magnetic molecularly imprinted polymer (mMIP) was rationally designed and synthesized for the specific capture of FUR. The preparations involved the utilization of chromium (III) as the binding pivot, (3-aminopropyl)triethoxysilane as functional monomer, and Fe3O4 as core, all assembled via free radical polymerization. Both the morphologies and adsorptive properties of the mMIP were characterized using multiple methods. The resulting Cr(III)-mediated mMIP (ChM-mMIP) presented excellent selectivity and specificity toward FUR. Under optimized conditions, the adsorption capacity reached 128.50 mg/g within 10 min, and the imprinting factor was 10.41. Moreover, it was also successfully applied as a dispersive solid-phase extraction material, enabling the detection of FUR concentration as low as 20 ng/mL in human urine samples when coupled with a high-performance liquid chromatography/photodiode array. Overall, this study offers a valuable strategy for the development of novel recognition material.


Asunto(s)
Furosemida , Polímeros Impresos Molecularmente , Humanos , Furosemida/orina , Furosemida/química , Polímeros Impresos Molecularmente/química , Adsorción , Impresión Molecular , Extracción en Fase Sólida , Propiedades de Superficie , Cromatografía Líquida de Alta Presión , Tamaño de la Partícula , Doping en los Deportes/prevención & control , Polímeros/química , Polímeros/síntesis química
6.
J Artif Organs ; 27(1): 77-81, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37060519

RESUMEN

Although direct oral anticoagulants (DOACs) are generally safe and TDM is not required, blood levels of the drug are important information for response decisions in emergency care. In this study, an attempt was made to develop a disposable sensor chip for the rapid detection of edoxaban in blood, a type of DOAC. Molecularly imprinted polymers with edoxaban tosilate as a template and sodium p-styrene sulfonate as a functional monomer were grafted onto the surface of graphite particles, mixed with silicon oil dissolved in ferrocene to form a paste, and filled onto a substrate made of plastic film. Sensor chips were fabricated. The current obtained from this sensor by voltammetry within 150 s depended on the edoxaban concentration. Sensitivity to edoxaban was also confirmed in bovine whole blood. The potential of disposable sensors to rapidly detect edoxaban in whole blood was demonstrated in this study, although selectivity, reproducibility, and sensitivity need to be improved for practical use.


Asunto(s)
Carbono , Polímeros Impresos Molecularmente , Piridinas , Tiazoles , Animales , Bovinos , Reproducibilidad de los Resultados , Técnicas Electroquímicas , Polímeros , Electrodos
7.
Mikrochim Acta ; 191(3): 140, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363397

RESUMEN

A sandwich-structured composite nanoenzyme (NH2-MIL-101(Fe)@Au@MIP) was prepared using molecularly imprinted polymers, metal-organic frameworks, and gold nanoparticles and a highly selective glutathione (GSH) colorimetric sensor was constructed. The inner part of the composite nanoenzymes is a metal-organic framework loaded with gold nanoparticles (AuNPs), NH2-MIL-101(Fe)@Au, which has superior peroxidase-like activity compared with  NH2-MIL-101(Fe). This is due to the surface plasmon resonance effect of AuNPs. GSH can form strong Au-S bonds with AuNPs, which can significantly reduce the enzymatic activity of NH2-MIL-101(Fe)@Au, thereby changing the absorbance at 450 nm of the sensing system. The degree of change in absorbance is correlated with the concentration of GSH. In the outer part, the molecularly imprinted polymer with oxidized glutathione (GSSG) as a dummy template provided specific pores, which significantly improved the selectivity of the sensing system. The sensor showed good GSH sensing performance in the range 1 ~ 50 µM with a lower limit of detection (LOD) of 0.231 µM and good sensing performance in fetal bovine serum, indicating its high potential for clinical diagnostic applications.


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Oro/química , Colorimetría , Nanopartículas del Metal/química , Glutatión
8.
Mikrochim Acta ; 191(5): 270, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630200

RESUMEN

A comparative analysis of molecularly imprinted polymers based on different synthesis techniques was performed for the recognition of molnupiravir (MOL). The polymerizations were performed with 3-thienyl boronic acid (3-TBA) as a functional monomer by electropolymerization (EP) and with guanine methacrylate (GuaM) as a functional monomer by photopolymerization (PP). Morphological and electrochemical characterizations of the developed sensors were investigated to verify the constructed sensors. Moreover, quantum chemical calculations were used to evaluate changes on the electrode surface at the molecular and electronic levels. The dynamic linear range of both designed sensors under optimized experimental conditions was found to be 7.5 × 10-12-2.5 × 10-10 M and 7.5 × 10-13-2.5 × 10-11 M for EP and PP, respectively. The effect of various interfering agents on MOL peak current was assessed for the selectivity of the study. In the presence of 100 times more interfering agents, the RSD and recovery values were determined. The RSD values of GuaM/MOL@MIP/GCE and poly(Py-co-3-PBA)/MOL@MIP/GCE sensors were found to be 1.99% and 1.72%, respectively. Furthermore, the recovery values of the MIP-based sensors were 98.18-102.69% and 98.05-103.72%, respectively. In addition, the relative selectivity coefficient (k') of the proposed sensor was evaluated, and it exhibited good selectivity for MOL with respect to the NIP sensor. The prepared sensor was successfully applied to determine MOL in commercial serum samples and capsule form. In conclusion, the developed sensors provided excellent reproducibility, repeatability, high sensitivity, and selectivity against the MOL molecule.


Asunto(s)
Ácidos Borónicos , Citidina/análogos & derivados , Hidroxilaminas , Polímeros Impresos Molecularmente , Reproducibilidad de los Resultados , Electrodos , Guanina , Metacrilatos
9.
Mikrochim Acta ; 191(6): 332, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748375

RESUMEN

Nifedipine (NIF), as one of the dihydropyridine calcium channel blockers, is widely used in the treatment of hypertension. However, misuse or ingestion of NIF can result in serious health issues such as myocardial infarction, arrhythmia, stroke, and even death. It is essential to design a reliable and sensitive detection method to monitor NIF. In this work, an innovative molecularly imprinted polymer dual-emission fluorescent sensor (CDs@PDA-MIPs) strategy was successfully designed for sensitive detection of NIF. The fluorescent intensity of the probe decreased with increasing NIF concentration, showing a satisfactory linear relationship within the range 1.0 × 10-6 M ~ 5.0 × 10-3 M. The LOD of NIF was 9.38 × 10-7 M (S/N = 3) in fluorescence detection. The application of the CDs@PDA-MIPs in actual samples such as urine and Qiangli Dingxuan tablets has been verified, with recovery ranging from 97.8 to 102.8% for NIF. Therefore, the fluorescent probe demonstrates great potential as a sensing system for detecting NIF.


Asunto(s)
Carbono , Dopamina , Colorantes Fluorescentes , Límite de Detección , Polímeros Impresos Molecularmente , Nifedipino , Puntos Cuánticos , Espectrometría de Fluorescencia , Puntos Cuánticos/química , Nifedipino/química , Nifedipino/análisis , Colorantes Fluorescentes/química , Polímeros Impresos Molecularmente/química , Dopamina/orina , Dopamina/análisis , Carbono/química , Espectrometría de Fluorescencia/métodos , Humanos , Polimerizacion , Impresión Molecular , Comprimidos/análisis
10.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38955823

RESUMEN

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Asunto(s)
Técnicas Biosensibles , Ácidos Borónicos , Oro , Espectrometría Raman , Ácidos Borónicos/química , Técnicas Biosensibles/métodos , Oro/química , Humanos , Espectrometría Raman/métodos , Plata/química , Nanopartículas del Metal/química , Límite de Detección , Transferrina/análisis , Transferrina/química , Impresión Molecular , Polímeros Impresos Molecularmente/química , Glicoproteínas/sangre , Glicoproteínas/química , Materiales Biomiméticos/química , Dopamina/sangre , Dopamina/análisis , Compuestos de Sulfhidrilo
11.
Mikrochim Acta ; 191(4): 172, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433173

RESUMEN

A novel molecularly imprinted nanomaterial (Eu (BTC)-MPS@MIP) was synthesized on the surface of silanized europium-based metal-organic frameworks (Eu (BTC)-MPS) using 1, 3, 5-benzotrioic acid (H3BTC) as a ligand. The resulting Eu (BTC)-MPS@MIP was applied to constructing a smartphone sensing platform for the sensitive and selective detection of clothianidin (CLT) in vegetables. The synthesized Eu (BTC)-MPS@MIP demonstrated the successful formation of a typical core-shell structure featuring a shell thickness of approximately 70 - 80 nm. The developed sensing platform based on Eu (BTC)-MPS@MIP exhibited sensitivity in CLT detection with a detection limit of 4 µg/L and a linear response in the range 0.01 - 10 mg/L at excitation and emission wavelengths of 365 nm and 617 nm, respectively. The fluorescence sensing platform displayed excellent specificity for CLT detection, as evidenced by a high imprinting factor of 3.1. This specificity is primarily attributed to the recognition sites in the molecularly imprinted polymer (MIP) layer. When applied to spiked vegetable samples, the recovery of CLT ranged from 78.9 to 102.0%, with relative standard deviation (RSD) values falling between 2.2 and 6.2%. The quenching mechanism of Eu (BTC)-MPS@MIP toward CLT can be attributed to the inner filter effect (IFE), resulting from the optimal spectral overlap between the absorption spectrum of CLT and the excitation spectra of Eu (BTC)-MPS@MIP. The proposed method has the potential for extension to the detection of other pesticides by replacing the MIP recognition probes.

12.
Mikrochim Acta ; 191(5): 247, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587580

RESUMEN

Alumina inorganic molecularly imprinted polymer (MIP) modified multi-walled carbon nanotubes (MWCNTs) on a glassy carbon electrode (MWCNTs-Al2O3-MIP/GCE) was firstly designed and fabricated by one-step electro deposition technique for the detection of uric acid (UA) in sweat. The UA templates were embedded within the inorganic MIP by co-deposition with Al2O3. Through the evaluation of morphology and structure by Field Emission Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM), it was verified that the specific recognition sites can be fabricated in the electrodeposited Al2O3 molecular imprinted layer. Due to the high selectivity of molecular imprinting holes, the MWCNTs-Al2O3-MIP/GCE electrode demonstrated an impressive imprinting factor of approximately 2.338 compared to the non-molecularly imprinted glassy carbon electrode (MWCNTs-Al2O3-NIP/GCE) toward uric acid detection. Moreover, it exhibited a remarkable limit of detection (LOD) of 50 nM for UA with wide detection range from 50 nM to 600 µM. The MWCNTs-Al2O3-MIP/GCE electrode also showed strong interference resistance against common substances found in sweat. These results highlight the excellent interference resistance and selectivity of MWCNTs-Al2O3-MIP/GCE sensor, positioning it as a novel sensing platform for non-invasive uric acid detection in human sweat.


Asunto(s)
Nanotubos de Carbono , Fosfatos , Sudor , Humanos , Polímeros Impresos Molecularmente , Ácido Úrico , Óxido de Aluminio
13.
Mikrochim Acta ; 191(5): 277, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647714

RESUMEN

Widely used organophosphorus pesticide triazophos (TAP) can easily cumulate in aquatic system due to its high stability chemically and photochemically and thus posing significant threat to aquatic creatures and humans' health. Urging demand for rapid determining TAP in water has risen. Photoelectrochemical (PEC) sensing turns out to be a good candidate for its simplicity in fabrication and swiftness in detection. Nevertheless, traditional PEC sensors often lack selectivity as their signal generation primarily relies on the oxidation of organic compounds in the electrolyte by photo-induced holes. To address this limitation, molecularly imprinted polymers (MIPs) can be in combined with PEC sensors to significantly enhance the selectivity. Here, we present a novel approach utilizing a PEC sensor enhanced by carbon-modified titanium dioxide molecularly imprinted polymers (MIP/C/TiO2 NTs). Carbon quantum dot (CQD) modification of titanium dioxide nanotube arrays (C/TiO2 NTs) was achieved through a one-step anodization process, effectively enhancing visible light absorption by narrowing the band gap of TiO2, and CQDs also function as sensitizer accelerating charge transfer for improved and stable photocurrent signals during detection. Our method further incorporates MIPs to heighten the selectivity of the PEC sensor. Electro-polymerization using cyclic voltammetry was employed to polymerize MIPs with pyrrole as the functional monomer and triazophos as the target molecule. The resultant MIP/C/TiO2 NT sensor exhibited remarkable sensitivity, with a detection limit of 0.03 nM (S/N = 3), alongside exceptional selectivity and stability for triazophos detection in water. This offers a promising avenue for efficient, cost-effective, and rapid monitoring of pesticide contaminants in aquatic environments, contributing to the broader goals of environmental preservation and public health.

14.
Mikrochim Acta ; 191(6): 322, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730044

RESUMEN

The first electrochemical sensor application in the literature is described for the sensitive and selective determination of the selective Janus kinase (JAK)-1 inhibitor abrocitinib (ABR). ABR is approved by the U.S. Food and Drug Administration (FDA) for the treatment of atopic dermatitis. The molecularly imprinted polymer (MIP)-based sensor was designed to incorporate zinc nanoflower (ZnNFs)-graphene oxide (GO) conjugate (ZnNFs@GO), synthesized from the root methanolic extract (RME) of the species Alkanna cappadocica Boiss. et Bal. to improve the porosity and effective surface area of the glassy carbon electrode (GCE). Furthermore, the MIP structure was prepared using ABR as a template molecule, 4-aminobenzoic acid (4-ABA) as a functional monomer, and other additional components. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the surface and structure of the synthesized nanomaterial and MIP-based surface. Among the electrochemical methods, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were preferred for detailed electrochemical characterization, and differential pulse voltammetry (DPV) was preferred for all other electrochemical measurements using 5.0 mM [Fe(CN)6]3-/4- solution as the redox probe. The MIP-based sensor, which was the result of a detailed optimization phase, gave a linear response in the 1.0 × 10-13 - 1.0 × 10-12 M range in standard solution and serum sample. The obtained limit of detection (LOD) and limit of quantification (LOQ) values and recovery studies demonstrated the sensitivity, accuracy, and applicability of the sensor. Selectivity, the most important feature of the MIP-based sensor, was verified by imprinting factor calculations using ibrutinib, ruxolitinib, tofacitinib, zonisamide, and acetazolamide.


Asunto(s)
Técnicas Electroquímicas , Límite de Detección , Polímeros Impresos Molecularmente , Zinc , Polímeros Impresos Molecularmente/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Zinc/química , Grafito/química , Humanos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/análisis , Aminoimidazol Carboxamida/sangre , Aminoimidazol Carboxamida/química , Nanoestructuras/química , Electrodos
15.
Mikrochim Acta ; 191(4): 186, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451316

RESUMEN

A carbon dot (CD) was prepared by o-phenylenediamine and water, which showed bright yellow fluorescence under ultraviolet light irradiation (λ = 580 nm), and verified good fluorescence quenching effect on penicillin G sodium (Png-Na). Using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, and Png-Na as a template, a kind of composite microsphere combining CD and molecularly imprinted polymer (MIP) was synthesized by surface-initiated atomic transfer radical polymerization (SI-ATRP). For reasons of comparison, we also prepared MIP without CD and non-imprinted polymers (NIPs). Through static and dynamic adsorption experiments, the maximum adsorption capacity was 47.05 mg g-1 and the equilibrium time was 30 min. High-performance liquid chromatography (HPLC) was utilized to determine the content of Png-Na in the spiked milk samples. A sensitive, rapid, and simple method for determination of Png-Na in food samples was developed. The utilized approach enabled the quantification of Png-Na within the concentration range 20-1000 µg L-1 (with a limit of detection of 5 µg L-1). The recoveries achieved were in the range 93.3-98.2%, with a relative standard deviation of 1.2-4.2%. The results demonstrated that CD@MIP possessed the capability of specific adsorption and fluorescence detection of Png-Na, enabling simultaneous detection and enrichment of Png-Na in real samples.


Asunto(s)
Leche , Polímeros Impresos Molecularmente , Animales , Adsorción , Penicilina G , Carbono
16.
Mikrochim Acta ; 191(3): 163, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413431

RESUMEN

Carbendazim (CBD) is widely used as a fungicide that acts as a pesticide in farming to prevent crop diseases. However, CBD can remain on crops for a long time. When consumed by humans and animals, it produces a range of toxic symptoms and poses a serious threat to their health. Therefore, the detection of CBD is necessary. Traditional assay strategies for CBD detection, although sensitive and practical, can hardly achieve fast, robust monitoring during food processing and daily life. Here, we designed a novel electrochemical sensor for CBD detection. In this method, iron oxyhydroxide nanomaterial (ß-FeOOH) was first prepared by hydrothermal method. Then, a molecularly imprinted polymer (MIP) layer was electropolymerized on the surface using CBD as the template and resorcinol (RC) as the functional monomer. The synergistic interaction between ß-FeOOH and MIP endows the MIP/ß-FeOOH/CC-based electrochemical sensor with high specificity and sensitivity. Under optimal conditions, the MIP/ß-FeOOH/CC-based sensor showed a wide linear range of 39 pM-80 nM for CBD and a detection limit as low as 25 pM. Therefore, the as-prepared sensor can be a practical and effective tool for pesticide residue detection.


Asunto(s)
Bencimidazoles , Carbamatos , Compuestos Férricos , Impresión Molecular , Polímeros , Animales , Humanos , Polímeros/química , Impresión Molecular/métodos , Polímeros Impresos Molecularmente
17.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257519

RESUMEN

The aims of this study were to investigate the potential of utilising molecularly imprinted polycarbazole layers to detect highly toxic picric acid (PA) and to provide information about their performance. Quantum chemical calculations showed that strong interactions occur between PA and carbazole (bond energy of approximately 31 kJ/mol), consistent with the theoretical requirements for effective molecular imprinting. The performance of the sensors, however, was found to be highly limited, with the observed imprinting factor values for polycarbazole (PCz) layers being 1.77 and 0.95 for layers deposited on Pt and glassy carbon (GC) electrodes, respectively. Moreover, the molecularly imprinted polymer (MIP) layers showed worse performance than unmodified Pt or GC electrodes, for which the lowest limit of detection (LOD) values were determined (LOD values of 0.09 mM and 0.26 mM, respectively, for bare Pt and MIP PCz/Pt, as well as values of 0.11 mM and 0.57 mM for bare GC and MIP PCz/GC). The MIP layers also showed limited selectivity and susceptibility to interfering agents. An initial hypothesis on the reasons for such performance was postulated based on the common properties of conjugated polymers.

18.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731823

RESUMEN

This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 µg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.


Asunto(s)
Portadores de Fármacos , Lamotrigina , Polímeros Impresos Molecularmente , Lamotrigina/química , Portadores de Fármacos/química , Polímeros Impresos Molecularmente/química , Polímeros Impresos Molecularmente/síntesis química , Impresión Molecular/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Liberación de Fármacos , Difracción de Rayos X , Adsorción , Concentración de Iones de Hidrógeno
19.
Molecules ; 29(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38611911

RESUMEN

An environmentally friendly and sustainable approach was adopted to produce a molecularly imprinted polymer (MIP) via electropolymerization, with remarkable electrochemical sensing properties, tested in tyrosine (tyr) detection. The 2,2'-bis(2,2'-bithiophene-5-yl)-3,3'-bithianaphtene (BT2-T4) was chosen as functional monomer and MIP electrosynthesis was carried out via cyclic voltammetry on low-volume (20 µL) screen-printed carbon electrodes (C-SPE) in ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ((BMIM) TFSI). An easy and rapid washing treatment allowed us to obtain the resulting MIP film, directly used for tyr electrochemical detection, carried out amperometrically. The sensor showed a linear response in the concentration range of 15-200 µM, with LOD of 1.04 µM, LOQ of 3.17 µM and good performance in selectivity, stability, and reproducibility. Tyrosine amperometric detection was also carried out in human plasma, resulting in a satisfactory recovery estimation. The work represents the first use of BT2-T4 as a functional monomer for the production of a molecularly imprinted polymer, with a green approach afforded by using a few microliters of a room temperature ionic liquid as an alternative to common organic solvents on screen-printed carbon electrodes, resulting in a valuable system that meets the green chemistry guidelines, which is today an essential criterion in both research and application field.

20.
Int J Environ Health Res ; 34(4): 2015-2030, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37115101

RESUMEN

Milk is one of the most consumed and balanced foods with a high nutritional value which could be contaminated with different chemicals such as antibiotics, melamine, and hormones. Because of the low concentration of these compounds and the complexity of milk samples, there is a need to use sample pre-treatment methods for purification and preconcentration of these compounds before instrumental techniques. Molecular imprinting polymers (MIPs) are synthetic materials with specific recognition sites complementary to the target molecule. MIPs have selectivity for a specific analyte or group of analytes, which could be used to extract and determine contaminants and remove the interfering compounds from complex samples. Compared to other techniques, sample preparation, high selectivity, excellent stability, and low cost are other advantages of using MIPs. The present article gives an overview of the synthesis of MIPs and their application for extracting antibiotics, hormones, and melamine in milk samples.


Asunto(s)
Leche , Polímeros Impresos Molecularmente , Animales , Polímeros Impresos Molecularmente/análisis , Antibacterianos/análisis , Polímeros/química , Hormonas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA