Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Immunity ; 55(9): 1645-1662.e7, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35882236

RESUMEN

Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1ß and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense.


Asunto(s)
Infecciones Bacterianas , Neutrófilos , Receptores Acoplados a Proteínas G , Animales , Ratones , Antibacterianos , Proteínas Portadoras , Defensinas/genética , Disbiosis , Queratinocitos , Receptores Acoplados a Proteínas G/metabolismo , Staphylococcus aureus
2.
Immunity ; 50(5): 1163-1171.e5, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31027996

RESUMEN

Classical itch studies have focused on immunoglobulin E (IgE)-mediated mast cell activation and histamine release. Recently, members of the Mas-related G-protein-coupled receptor (Mrgpr) family have been identified as mast cell receptors, but their role in itch is unclear. Here, we report that mast cell activation via Mrgprb2 evoked non-histaminergic itch in mice independently of the IgE-Fc epsilon RI (FcεRI)-histamine axis. Compared with IgE-FcεRI stimulation, Mrgprb2 activation of mast cells was distinct in both released substances (histamine, serotonin, and tryptase) and the pattern of activated itch-sensory neurons. Mrgprb2 deficiency decreased itch in multiple preclinical models of allergic contact dermatitis (ACD), a pruritic inflammatory skin disorder, and both mast cell number and PAMP1-20 concentrations (agonist of the human Mrgprb2 homolog, MRGPRX2) were increased in human ACD skin. These findings suggest that this pathway may represent a therapeutic target for treating ACD and mast-cell-associated itch disorders in which antihistamines are ineffective.


Asunto(s)
Mastocitos/inmunología , Proteínas del Tejido Nervioso/metabolismo , Prurito/patología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de IgE/metabolismo , Receptores de Neuropéptido/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Histamina/metabolismo , Antagonistas de los Receptores Histamínicos/uso terapéutico , Humanos , Inmunoglobulina E/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Fragmentos de Péptidos/metabolismo , Receptores Acoplados a Proteínas G/genética , Serotonina/metabolismo , Piel/metabolismo , Triptasas/metabolismo , Adulto Joven
3.
Annu Rev Genet ; 51: 103-121, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29178819

RESUMEN

Chronic, persistent itch is a devastating symptom that causes much suffering. In recent years, there has been great progress made in understanding the molecules, cells, and circuits underlying itch sensation. Once thought to be carried by pain-sensing neurons, itch is now believed to be capable of being transmitted by dedicated sensory labeled lines. Members of the Mas-related G protein-coupled receptor (Mrgpr) family demarcate an itch-specific labeled line in the peripheral nervous system. In the spinal cord, the expression of other proteins identifies additional populations of itch-dedicated sensory neurons. However, as evidence for labeled-line coding has mounted, studies promoting alternative itch-coding strategies have emerged, complicating our understanding of the neural basis of itch. In this review, we cover the molecules, cells, and circuits related to understanding the neural basis of itch, with a focus on the role of Mrgprs in mediating itch sensation.


Asunto(s)
Sistema Nervioso Periférico/metabolismo , Prurito/genética , Receptores Acoplados a Proteínas G/genética , Células Receptoras Sensoriales/metabolismo , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPV/genética , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Nocicepción/fisiología , Sistema Nervioso Periférico/fisiopatología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prurito/metabolismo , Prurito/fisiopatología , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/patología , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo
4.
Cell Tissue Res ; 393(2): 393-399, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37314493

RESUMEN

In the past years, it has become clear that the family of Mas-related G protein-coupled receptors plays a central role in neuro-immune communication at mucosal barrier surfaces, in particular in the skin. Remarkably, MRGPR expression at other mucosal surfaces remains poorly characterized. To fill this gap in our understanding, the present study was undertaken to screen and verify the expression of the human MRGPR family members in the mucosal biopsies of the human gastrointestinal (GI) tract. Our findings revealed that, of all human MRGPRs family members, only MRGPRF mRNA is expressed at detectable levels in human mucosal biopsies of both terminal ileum and sigmoid colon. Furthermore, immunohistochemical stainings revealed that MRGPRF is specifically expressed by mucosal entero-endocrine cells (EECs). Overall, this study showed for the first time that the human ileum and colonic mucosa represent a novel expression site for the orphan MRGPRF, more specifically in EECs.


Asunto(s)
Células Endocrinas , Mucosa Intestinal , Humanos , Mucosa Intestinal/metabolismo , Tracto Gastrointestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Colon/metabolismo , Células Endocrinas/metabolismo , Células Enteroendocrinas/metabolismo
5.
J Biol Chem ; 292(42): 17399-17406, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28768771

RESUMEN

Cysteine and serine proteases function via protease-activated and mas-related G-protein-coupled receptors (Mrgprs) to contribute to allergy and inflammation. Der p1 is a cysteine protease and major allergen from the house dust mite and is associated with allergic rhinitis and allergic asthma. Der p1 activates protease-activated receptor 2 and induces the release of the pro-inflammatory cytokine IL-6 from cells. However, the possibility that Der p1 acts on Mrgprs has not been considered. We report here that ratiometric calcium imaging reveals that Der p1 activates the human receptor MRGPRX1 and the mouse homolog MrgprC11, implicated previously in itch. Der p1 cleavage of N-terminal receptor peptides followed by site-directed mutagenesis of the cleavage sites links receptor activation to specific amino acid residues. Der p1 also induced the release of IL-6 from heterologous cells expressing MRGPRX1. In summary, activation of Mrgprs by the allergen Der p1 may contribute to inflammation.


Asunto(s)
Antígenos Dermatofagoides/metabolismo , Proteínas de Artrópodos/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteasas de Cisteína/metabolismo , Hipersensibilidad/metabolismo , Proteolisis , Pyroglyphidae/enzimología , Receptores Acoplados a Proteínas G/metabolismo , Células A549 , Animales , Antígenos Dermatofagoides/farmacología , Proteínas de Artrópodos/farmacología , Cisteína Endopeptidasas/farmacología , Proteasas de Cisteína/farmacología , Células HeLa , Humanos , Hipersensibilidad/genética , Inflamación , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Dominios Proteicos , Receptores Acoplados a Proteínas G/genética
6.
Adv Exp Med Biol ; 904: 87-103, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26900065

RESUMEN

The founding member of the Mas-related G-protein-coupled receptor (Mrgpr) family was discovered in 1986. Since then, many more members of this receptor family have been identified in multiple species, and their physiologic functions have been investigated widely. Because they are expressed exclusively in small-diameter primary sensory neurons, the roles of Mrgpr proteins in pain and itch have been best studied. This review will focus specifically on the current knowledge of their roles in pathological pain and the potential development of new pharmacotherapies targeted at some Mrgprs for the treatment of chronic pain. We will also discuss the limitations and future scope of this receptor family in pain treatment.


Asunto(s)
Analgésicos/farmacología , Nocicepción/fisiología , Manejo del Dolor/métodos , Dolor/fisiopatología , Proteínas Proto-Oncogénicas/fisiología , Receptores Acoplados a Proteínas G/fisiología , Analgésicos/uso terapéutico , Animales , Ganglios Espinales/fisiología , Humanos , Familia de Multigenes , Nocicepción/efectos de los fármacos , Especificidad de Órganos , Dolor/psicología , Primates , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/clasificación , Proteínas Proto-Oncogénicas/efectos de los fármacos , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/efectos de los fármacos , Roedores , Células Receptoras Sensoriales/fisiología , Especificidad de la Especie
7.
Exp Dermatol ; 24(10): 723-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26178975

RESUMEN

Cutaneous neurogenic inflammation (CNI) is frequently associated with skin disorders. CNI is not limited to the retrograde signalling of nociceptive sensory nerve endings but can instead be regarded as a multicellular phenomenon. Thus, soluble mediators participating in communication among sensory nerves, skin and immune cells are key components of CNI. These interactions induce the self-maintenance of CNI, promoting a vicious cycle. Certain G protein-coupled receptors (GPCRs) play a prominent role in these cell interactions and contribute to self-maintenance. Protease-activated receptors 2 and 4 (PAR-2 and PAR-4, respectively) and Mas-related G protein-coupled receptors (Mrgprs) are implicated in the synthesis and release of neuropeptides, proteases and soluble mediators from most cutaneous cells. Regulation of the expression and release of these mediators contributes to the vicious cycle of CNI. The authors propose certain hypothetical therapeutic options to interrupt this cycle, which might reduce skin symptoms and improve patient quality of life.


Asunto(s)
Inflamación Neurogénica/metabolismo , Receptor PAR-2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Trombina/metabolismo , Transducción de Señal , Enfermedades de la Piel/metabolismo , Animales , Humanos , Fenómenos del Sistema Inmunológico , Inflamación Neurogénica/complicaciones , Inflamación Neurogénica/fisiopatología , Células Receptoras Sensoriales/metabolismo , Piel/metabolismo , Enfermedades de la Piel/etiología , Enfermedades de la Piel/fisiopatología
8.
J Allergy Clin Immunol ; 133(2): 448-60, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24373353

RESUMEN

BACKGROUND: Although the cytokine IL-31 has been implicated in inflammatory and lymphoma-associated itch, the cellular basis for its pruritic action is yet unclear. OBJECTIVE: We sought to determine whether immune cell-derived IL-31 directly stimulates sensory neurons and to identify the molecular basis of IL-31-induced itch. METHODS: We used immunohistochemistry and quantitative real-time PCR to determine IL-31 expression levels in mice and human subjects. Immunohistochemistry, immunofluorescence, quantitative real-time PCR, in vivo pharmacology, Western blotting, single-cell calcium imaging, and electrophysiology were used to examine the distribution, functionality, and cellular basis of the neuronal IL-31 receptor α in mice and human subjects. RESULTS: Among all immune and resident skin cells examined, IL-31 was predominantly produced by TH2 and, to a significantly lesser extent, mature dendritic cells. Cutaneous and intrathecal injections of IL-31 evoked intense itch, and its concentrations increased significantly in murine atopy-like dermatitis skin. Both human and mouse dorsal root ganglia neurons express IL-31RA, largely in neurons that coexpress transient receptor potential cation channel vanilloid subtype 1 (TRPV1). IL-31-induced itch was significantly reduced in TRPV1-deficient and transient receptor channel potential cation channel ankyrin subtype 1 (TRPA1)-deficient mice but not in c-kit or proteinase-activated receptor 2 mice. In cultured primary sensory neurons IL-31 triggered Ca(2+) release and extracellular signal-regulated kinase 1/2 phosphorylation, inhibition of which blocked IL-31 signaling in vitro and reduced IL-31-induced scratching in vivo. CONCLUSION: IL-31RA is a functional receptor expressed by a small subpopulation of IL-31RA(+)/TRPV1(+)/TRPA1(+) neurons and is a critical neuroimmune link between TH2 cells and sensory nerves for the generation of T cell-mediated itch. Thus targeting neuronal IL-31RA might be effective in the management of TH2-mediated itch, including atopic dermatitis and cutaneous T-cell lymphoma.


Asunto(s)
Interleucinas/inmunología , Prurito/inmunología , Receptores de Interleucina/inmunología , Células Th2/inmunología , Animales , Canales de Calcio/inmunología , Células Cultivadas , Femenino , Ganglios Espinales/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/inmunología , Receptores de Interleucina/genética , Células Receptoras Sensoriales/inmunología , Piel/inmunología , Canal Catiónico TRPA1 , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/inmunología , Canales de Potencial de Receptor Transitorio/inmunología
9.
J Neurophysiol ; 112(9): 2283-9, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25122701

RESUMEN

Intrathecal administration of the neurotoxin bombesin-saporin reduces or abolishes pruritogen-evoked scratching behavior. We investigated whether spinal neurons that respond to intradermal (ID) injection of pruritogens also respond to spinal superfusion of bombesin and vice versa. Single-unit recordings were made from superficial lumbar spinal dorsal horn neurons in anesthetized mice. We identified neurons with three search strategies: 1) ID injection of the nonhistaminergic itch mediator chloroquine, 2) spinal superfusion of bombesin, and 3) noxious pinch. All units were tested with an array of itch mediators (chloroquine, histamine, SLIGRL, BAM8-22), algogens [capsaicin, allyl isothiocyanate (AITC)], and physical stimuli (brush, pinch, noxious heat, cooling) applied to the hindlimb receptive field. The vast majority of chloroquine-responsive units also responded to bombesin. Of 26 chloroquine-sensitive units tested, most responded to SLIGRL, half responded to histamine and/or BAM8-22, and most responded to capsaicin and/or AITC as well as noxious thermal and mechanical stimuli. Of 29 bombesin-responsive units, a large majority also responded to other itch mediators as well as AITC, capsaicin, and noxious thermal and mechanical stimuli. Responses to successive applications of bombesin exhibited tachyphylaxis. In contrast, of 36 units responsive to noxious pinch, the majority (67%) did not respond to ID chloroquine or spinal bombesin. It is suggested that chloroquine- and bombesin-sensitive spinal neurons signal itch from the skin.


Asunto(s)
Bombesina/farmacología , Células del Asta Posterior/fisiología , Prurito/fisiopatología , Animales , Capsaicina/farmacología , Cloroquina/farmacología , Histamina/farmacología , Calor , Isotiocianatos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Células del Asta Posterior/clasificación , Células del Asta Posterior/efectos de los fármacos , Tacto
10.
Mucosal Immunol ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374664

RESUMEN

Epithelial barriers such as the skin, lung, and gut, in addition to having unique physiologic functions, are designed to preserve tissue homeostasis upon challenge with a variety of allergens, irritants, or pathogens. Both the innate and adaptive immune systems play a critical role in responding to epithelial cues triggered by environmental stimuli. However, the mechanisms by which organs sense and coordinate complex epithelial, stromal, and immune responses have remained a mystery. Our increasing understanding of the anatomic and functional characteristics of the sensory nervous system is greatly advancing a new field of peripheral neuroimmunology and subsequently changing our understanding of mucosal immunology. Herein, we detail how sensory biology is informing mucosal neuroimmunology, even beyond neuroimmune interactions seen within the central and autonomic nervous systems.

11.
Cell Calcium ; 123: 102924, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38964236

RESUMEN

Anoctamin 1 (ANO1/TMEM16A) encodes a Ca2+-activated Cl- channel. Among ANO1's many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca2+ and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca2+ release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca2+ influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.


Asunto(s)
Anoctamina-1 , Dolor , Prurito , Prurito/metabolismo , Prurito/patología , Humanos , Animales , Anoctamina-1/metabolismo , Dolor/metabolismo , Dolor/patología , Ganglios Espinales/metabolismo , Calcio/metabolismo
12.
Cureus ; 15(8): e43219, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37692724

RESUMEN

Overall, there is a great need within sports medicine to ensure that athletes can return from injury in an efficient, yet thorough manner. It is crucial to not avoid necessary difficulties in this process but also to ensure time-efficient rehabilitation. One of the more promising techniques to achieve timely recovery is blood flow restriction (BFR) training. BFR training is a growing and novel development that could be a vital tool to lighten the burden of recovery from injury in athletes. BFR utilizes a pneumatic tourniquet to limit blood flow in specific areas of the body. The use of BFR has been shown to potentially enhance the analgesic effects of exercise-induced hypoalgesia (EIH). By limiting pain, athletes will be less burdened by mobility and loading exercises required for them to effectively return to play. In a field where time away from sports can have massive implications, the need for tools to assist in the acceleration of the rehabilitation process is vital. Much of the work that has already been done in the field has been able to exploit the benefits of EIH and further enhance the body's capabilities through BFR. Studies have compared EIH at low- and high-intensity settings utilizing BFR with both resistance and aerobic exercise. The results of these studies show comparable beta-endorphin levels with high-intensity exercise without BFR and low-intensity exercise with BFR. Low-intensity training with BFR had greater local pain relief, perhaps indicating the promising effects of BFR in enhancing EIH. By reviewing the current literature on this topic, we hope that further progress can be made to better understand the mechanism behind BFR and its ability to enhance EIH. Currently, local metabolites are a major focus for the potential mechanism behind these effects. Mas-related G-protein-coupled receptors (Mrgprs) contribute to local pain pathways via mast cell degranulation. Similarly, chemokine receptor 2/chemokine ligand 2 (CCR2/CCL2) triggers mast cell degranulation and inflammation-induced pain. Finally, pain-reducing effects have been linked to anti-inflammatory IL-10 signaling and anaerobic metabolites via transient receptor potential vanilloid 1 (TRPV1). Through a better understanding of these metabolites and their mechanisms, it is possible to further exploit the use of BFR to not only serve athletes recovering from injury but also apply this information to better serve all patients.

13.
Front Mol Neurosci ; 16: 1186279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965042

RESUMEN

The tachykinin hemokinin-1 (HK-1) is involved in immunological processes, inflammation, and pain. Although the neurokinin 1 receptor (NK1R) is described as its main target, several effects are mediated by currently unidentified receptor(s). The role of HK-1 in pain is controversial, depending on the involvement of peripheral and central sensitization mechanisms in different models. We earlier showed the ability of HK-1 to activate the trigeminovascular system, but the mechanisms need to be clarified. Therefore, in this study, we investigated HK-1-induced transcriptomic alterations in cultured rat trigeminal ganglion (TRG) primary sensory neurons. HK-1 was applied for 6 or 24 h in 1 µM causing calcium-influx in these neurons, 500 nM not inducing calcium-entry was used for comparison. Next-generation sequencing was performed on the isolated RNA, and transcriptomic changes were analyzed to identify differentially expressed (DE) genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. NK1R and Neurokinin receptor 2 (NK2R) were not detected. Neurokinin receptor 3 (NK3R) was around the detection limit, which suggests the involvement of other NKR isoforms or other receptors in HK-1-induced sensory neuronal activation. We found protease-activated receptor 1 (PAR1) and epidermal growth factor receptor (EGFR) as DE genes in calcium signaling. The transmembrane protein anthrax toxin receptor 2 (ANTXR2), a potential novel pain-related target, was upregulated. Acid-sensing ion channel 1; 3 (Asic1,3), N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors decreased, myelin production and maintenance related genes (Mbp, Pmp2, Myef2, Mpz) and GNDF changed by HK-1 treatment. Our data showed time and dose-dependent effects of HK-1 in TRG cell culture. Result showed calcium signaling as altered event, however, we did not detect any of NK receptors. Presumably, the activation of TRG neurons is independent of NK receptors. ANTXR2 is a potential new target, PAR-1 has also important role in pain, however their connection to HK-1 is unknown. These findings might highlight new targets or key mediators to solve how HK-1 acts on TRG.

14.
Br J Pharmacol ; 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36787888

RESUMEN

Inflammatory bowel disease (IBD) is a chronic debilitating condition, hallmarked by persistent inflammation of the gastrointestinal tract. Despite recent advances in clinical treatments, the aetiology of IBD is unknown, and a large proportion of patients are refractory to pharmacotherapy. Understanding IBD immunopathogenesis is crucial to discern the cause of IBD and optimise treatments. Mas-related G protein-coupled receptors (Mrgprs) are a family of approximately 50 G protein-coupled receptors that were first identified over 20 years ago. Originally known for their expression in skin nociceptors and their role in transmitting the sensation of itch in the periphery, new reports have described the presence of Mrgprs in the gastrointestinal tract. In this review, we consider the impact of these findings and assess the evidence that suggests that Mrgprs may be involved in the disrupted homeostatic processes that contribute to gastrointestinal disorders and IBD.

15.
Neurosci Lett ; 744: 135544, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33421487

RESUMEN

Owing to their functional diversity, the Mas-related G-protein-coupled receptor (Mrgpr) family has a role in both itch and pain modulation. While primarily linked to pruritis, Mrgprs were originally characterized in small-diameter nociceptive neurons of dorsal root ganglia (DRG) and trigeminal ganglia. This review will focus on the role Mrgpr's have in pain physiology, discussing recent discoveries as well as how Mrgpr's may provide a new target for the treatment of pathological pain.


Asunto(s)
Nociceptores/metabolismo , Dolor/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Humanos , Mastocitos/metabolismo , Nociceptores/patología , Dolor/diagnóstico , Manejo del Dolor/métodos , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología
16.
Front Pharmacol ; 12: 696729, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194333

RESUMEN

Mast cells (MCs) activated via IgE/FcεRI or MAS-related G protein coupled receptor (Mrgpr)-mediated pathway can release granules that play prominent roles in hypersensitivity reactions. Forsythiae Fructus, a well-known traditional Chinese medicine, has been clinically used for allergic diseases. Although previous studies indicated that Forsythiae Fructus extract inhibited compound 48/80-induced histamine release from MCs, its effect on IgE-dependent MC degranulation and possible underlying mechanisms remain to be explored. Herein, we prepared the forsythiasides-rich extract (FRE) and investigated its action on MC degranulation and explored its underlying mechanism. Our data showed that FRE could dampen IgE/FcεRI- and Mrgpr-mediated MC degranulation in vitro and in vivo. Mechanism study indicated that FRE decreased cytosolic Ca2+ (Ca2+ [c]) level rapidly and reversibly. Moreover, FRE decreased Ca2+ [c] of MCs independent of plasma membrane Ca2+-ATPase (PMCA), sarco/endoplasmic Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). While, along with Ca2+ [c] decrease, the increase of mitochondrial Ca2+ (Ca2+ [m]) occurred simultaneously in FRE-treated RBL-2H3 cells. In the isolated mitochondria, FRE also promoted the subcellular organelle to uptake more extramitochondrial Ca2+. In conclusion, by increasing Ca2+ [m] uptake, FRE decreases Ca2+ [c] level to suppress MC degranulation. Our findings may provide theoretical support for the clinical application of Forsythiae Fructus on allergy and other MC-involved diseases.

17.
Immunol Allergy Clin North Am ; 41(3): 347-359, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34225893

RESUMEN

Dermatitis encompasses a spectrum of inflammatory skin disorders with aberrant immune responses classified as type 1, type 2, and/or type 3. Major advances in the understanding of the pathogenesis of atopic dermatitis (AD) have shed new light on how innate immune responses critically regulate type 2 inflammation and itch. This article highlights the diverse ways by which type 2 immune cells regulate diseases beyond AD. The discovery of human Mas-related G protein-coupled receptor X2 on mast cells has revealed novel T cell-independent and immunoglobulin E-independent mechanisms of allergic contact dermatitis-associated and urticarial itch, respectively.


Asunto(s)
Dermatitis Alérgica por Contacto , Dermatitis Atópica , Humanos , Inmunidad Innata , Mastocitos , Prurito
18.
IBRO Rep ; 9: 258-269, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33089002

RESUMEN

Huntingtin-associated protein 1 (HAP1) is a polyglutamine (polyQ) length-dependent interactor with causal agents in several neurodegenerative diseases and has been regarded as a protective factor against neurodegeneration. In normal rodent brain and spinal cord, HAP1 is abundantly expressed in the areas that are spared from neurodegeneration while those areas with little HAP1 are frequent targets of neurodegeneration. We have recently showed that HAP1 is highly expressed in the spinal dorsal horn and may participate in modification/protection of certain sensory functions. Neurons in the dorsal root ganglia (DRG) transmits sensory stimuli from periphery to spinal cord/brain stem. Nevertheless, to date HAP1 expression in DRG remains unreported. In this study, the expression of HAP1 in cervical, thoracic, lumbar and sacral DRG in adult male mice and its relationships with different chemical markers for sensory neurons were examined using Western blot and immunohistochemistry. HAP1-immunoreactivity was detected in the cytoplasm of DRG neurons, and the percentage of HAP1-immunoreactive (ir) DRG neurons was ranged between 28-31 %. HAP1-immunoreactivity was comparatively more in the small cells (47-58 %) and medium cells (40-44 %) than that in the large cells (9-11 %). Double-immunostaining for HAP1 and markers for nociceptive or mechanoreceptive neurons showed that about 70-80 % of CGRP-, SP-, CB-, NOS-, TRPV1-, CR- and PV-ir neurons expressed HAP1. In contrast, HAP1 was completely lacking in TH-ir neurons. Our current study is the first to clarify that HAP1 is highly expressed in nociceptive/proprioceptive neurons but absent in light-touch-sensitive TH neurons, suggesting the potential importance of HAP1 in pain transduction and proprioception.

19.
Neuroscience ; 410: 55-58, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31047975

RESUMEN

Acute cutaneous exposure to allergen often leads to itch, but seldom pain. The effect of mast cell activation on cutaneous C-fibers was studied using innervated isolated mouse skin preparation that allows for intra-arterial delivery of chemicals to the nerve terminals in the skin. Allergen (ovalbumin) injection into the isolated skin of actively sensitized mice strongly stimulated chloroquine (CQ)-sensitive C-fibers (also referred to as "itch" nerves); on the other hand, CQ-insensitive C-fibers were activated only modestly, if at all. The histamine H1 receptor antagonist pyrilamine abolished itch C-fibers response to histamine, but failed to significantly reduce the response to ovalbumin. Ovalbumin also strongly activated itch C-fibers in skin isolated from Mrgpr-cluster Δ-/- mice. When pyrilamine was studied in the Mrgpr-cluster Δ-/- mice thereby eliminating the influence of both histamine H1 and Mrgpr receptors (MrgprA3 and C11 are selectively expressed by itch nerves), the ovalbumin response was very nearly eliminated. The data indicate that the acute activation of itch C-fibers in mouse skin is largely secondary to the combined effect of activation of histamine H1 and Mrpgr receptors.


Asunto(s)
Alérgenos/toxicidad , Histamina/metabolismo , Terminaciones Nerviosas/metabolismo , Fibras Nerviosas Amielínicas/metabolismo , Prurito/metabolismo , Piel/metabolismo , Animales , Antagonistas de los Receptores Histamínicos H1/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Terminaciones Nerviosas/efectos de los fármacos , Fibras Nerviosas Amielínicas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Prurito/inducido químicamente , Piel/efectos de los fármacos , Piel/inervación
20.
Elife ; 82019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30657454

RESUMEN

Various pathologic conditions result in jaundice, a yellowing of the skin due to a buildup of bilirubin. Patients with jaundice commonly report experiencing an intense non-histaminergic itch. Despite this association, the pruritogenic capacity of bilirubin itself has not been described, and no bilirubin receptor has been identified. Here, we demonstrate that pathophysiologic levels of bilirubin excite peripheral itch sensory neurons and elicit pruritus through MRGPRs, a family of G-protein coupled receptors expressed in primary sensory neurons. Bilirubin binds and activates two MRGPRs, mouse MRGPRA1 and human MRGPRX4. In two mouse models of pathologic hyperbilirubinemia, we show that genetic deletion of either Mrgpra1 or Blvra, the gene that encodes the bilirubin-producing enzyme biliverdin reductase, attenuates itch. Similarly, plasma isolated from hyperbilirubinemic patients evoked itch in wild-type animals but not Mrgpra1-/- animals. Removing bilirubin decreased the pruritogenic capacity of patient plasma. Based on these data, targeting MRGPRs is a promising strategy for alleviating jaundice-associated itch.


Asunto(s)
Bilirrubina/metabolismo , Colestasis/complicaciones , Prurito/etiología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Bilirrubina/sangre , Colestasis/metabolismo , Humanos , Hiperbilirrubinemia/sangre , Hiperbilirrubinemia/enzimología , Ratones , Ratones Noqueados , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Prurito/enzimología , Receptores Acoplados a Proteínas G/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA