Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 470
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(23): e2300453120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252960

RESUMEN

MuSK is a receptor tyrosine kinase (RTK) that plays essential roles in the formation and maintenance of the neuromuscular junction. Distinct from most members of RTK family, MuSK activation requires not only its cognate ligand agrin but also its coreceptors LRP4. However, how agrin and LRP4 coactivate MuSK remains unclear. Here, we report the cryo-EM structure of the extracellular ternary complex of agrin/LRP4/MuSK in a stoichiometry of 1:1:1. This structure reveals that arc-shaped LRP4 simultaneously recruits both agrin and MuSK to its central cavity, thereby promoting a direct interaction between agrin and MuSK. Our cryo-EM analyses therefore uncover the assembly mechanism of agrin/LRP4/MuSK signaling complex and reveal how MuSK receptor is activated by concurrent binding of agrin and LRP4.


Asunto(s)
Agrina , Receptores Colinérgicos , Receptores Colinérgicos/metabolismo , Agrina/química , Agrina/metabolismo , Proteínas Relacionadas con Receptor de LDL/química , Transducción de Señal , Unión Neuromuscular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
2.
Mol Ther ; 32(7): 2176-2189, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38734896

RESUMEN

The disassembly of the neuromuscular junction (NMJ) is an early event in amyotrophic lateral sclerosis (ALS), ultimately leading to motor dysfunction and lethal respiratory paralysis. The hexanucleotide GGGGCC repeat expansion in the C9orf72 gene is the most common genetic mutation, and the dipeptide repeat (DPR) proteins have been shown to cause neurodegeneration. While no drugs can treat ALS patients efficiently, new treatment strategies are urgently needed. Here, we report that a MuSK agonist antibody alleviates poly-PR-induced NMJ deficits in C9orf72-ALS mice. The HB9-PRF/F mice, which express poly-PR proteins in motor neurons, exhibited impaired motor behavior and NMJ deficits. Mechanistically, poly-PR proteins interacted with Agrin to disrupt the interaction between Agrin and Lrp4, leading to attenuated activation of MuSK. Treatment with a MuSK agonist antibody rescued NMJ deficits, and extended the lifespan of C9orf72-ALS mice. Moreover, impaired NMJ transmission was observed in C9orf72-ALS patients. These findings identify the mechanism by which poly-PR proteins attenuate MuSK activation and NMJ transmission, highlighting the potential of promoting MuSK activation with an agonist antibody as a therapeutic strategy to protect NMJ function and prolong the lifespan of ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Modelos Animales de Enfermedad , Unión Neuromuscular , Proteínas Tirosina Quinasas Receptoras , Animales , Unión Neuromuscular/metabolismo , Unión Neuromuscular/efectos de los fármacos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Humanos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Longevidad/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/efectos de los fármacos , Agrina/metabolismo , Agrina/genética , Ratones Transgénicos , Anticuerpos/farmacología , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética
3.
J Biol Chem ; 299(8): 104962, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356721

RESUMEN

Collagen Q (ColQ) is a nonfibrillar collagen that plays a crucial role at the vertebrate neuromuscular junction (NMJ) by anchoring acetylcholinesterase to the synapse. ColQ also functions in signaling, as it regulates acetylcholine receptor clustering and synaptic gene expression, in a manner dependent on muscle-specific kinase (MuSK), a key protein in NMJ formation and maintenance. MuSK forms a complex with low-density lipoprotein receptor-related protein 4 (LRP4), its coreceptor for the proteoglycan agrin at the NMJ. Previous studies suggested that ColQ also interacts with MuSK. However, the molecular mechanisms underlying ColQ functions and ColQ-MuSK interaction have not been fully elucidated. Here, we investigated whether ColQ binds directly to MuSK and/or LRP4 and whether it modulates agrin-mediated MuSK-LRP4 activation. Using coimmunoprecipitation, pull-down, plate-binding assays, and surface plasmon resonance, we show that ColQ binds directly to LRP4 but not to MuSK and that ColQ interacts indirectly with MuSK through LRP4. In addition, we show that the LRP4 N-terminal region, which contains the agrin-binding sites, is also crucial for ColQ binding to LRP4. Moreover, ColQ-LRP4 interaction was reduced in the presence of agrin, suggesting that agrin and ColQ compete for binding to LRP4. Strikingly, we reveal ColQ has two opposing effects on agrin-induced MuSK-LRP4 signaling: it constitutively reduces MuSK phosphorylation levels in agrin-stimulated myotubes but concomitantly increases MuSK accumulation at the muscle cell surface. Our results identify LRP4 as a major receptor of ColQ and provide new insights into mechanisms of ColQ signaling and acetylcholinesterase anchoring at the NMJ.


Asunto(s)
Acetilcolinesterasa , Agrina , Colágeno , Unión Neuromuscular , Humanos , Acetilcolinesterasa/metabolismo , Agrina/genética , Agrina/metabolismo , Colágeno/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Unión Neuromuscular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
4.
Eur J Neurosci ; 59(12): 3292-3308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38650308

RESUMEN

Muscle-specific kinase myasthenia gravis (MuSK MG) is caused by autoantibodies against MuSK in the neuromuscular junction (NMJ). MuSK MG patients have fluctuating, fatigable skeletal muscle weakness, in particular of bulbar muscles. Severity differs greatly between patients, in spite of comparable autoantibody levels. One explanation for inter-patient and inter-muscle variability in sensitivity might be variations in compensatory muscle responses. Previously, we developed a passive transfer mouse model for MuSK MG. In preliminary ex vivo experiments, we observed that muscle contraction of some mice, in particular those with milder myasthenia, had become partially insensitive to inhibition by µ-Conotoxin-GIIIB, a blocker of skeletal muscle NaV1.4 voltage-gated sodium channels. We hypothesised that changes in NaV channel expression profile, possibly co-expression of (µ-Conotoxin-GIIIB insensitive) NaV1.5 type channels, might lower the muscle fibre's firing threshold and facilitate neuromuscular synaptic transmission. To test this hypothesis, we here performed passive transfer in immuno-compromised mice, using 'high', 'intermediate' and 'low' dosing regimens of purified MuSK MG patient IgG4. We compared myasthenia levels, µ-Conotoxin-GIIIB resistance and muscle fibre action potential characteristics and firing thresholds. High- and intermediate-dosed mice showed clear, progressive myasthenia, not seen in low-dosed animals. However, diaphragm NMJ electrophysiology demonstrated almost equal myasthenic severities amongst all regimens. Nonetheless, low-dosed mouse diaphragms showed a much higher degree of µ-Conotoxin-GIIIB resistance. This was not explained by upregulation of Scn5a (the NaV1.5 gene), lowered muscle fibre firing thresholds or histologically detectable upregulated NaV1.5 channels. It remains to be established which factors are responsible for the observed µ-Conotoxin-GIIIB insensitivity and whether the NaV repertoire change is compensatory beneficial or a bystander effect.


Asunto(s)
Músculo Esquelético , Animales , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Humanos , Miastenia Gravis/metabolismo , Miastenia Gravis/fisiopatología , Miastenia Gravis/inmunología , Modelos Animales de Enfermedad , Femenino , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/inmunología , Canales de Sodio Activados por Voltaje/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/efectos de los fármacos , Autoanticuerpos , Masculino , Conotoxinas/farmacología , Inmunización Pasiva
5.
Biochem Biophys Res Commun ; 731: 150400, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024975

RESUMEN

Neuromuscular signal transmission is affected in various diseases including myasthenia gravis, congenital myasthenic syndromes, and sarcopenia. We used an ATF2-luciferase system to monitor the phosphorylation of MuSK in HEK293 cells introduced with MUSK and LRP4 cDNAs to find novel chemical compounds that enhanced agrin-mediated acetylcholine receptor (AChR) clustering. Four compounds with similar chemical structures carrying benzene rings and heterocyclic rings increased the luciferase activities 8- to 30-folds, and two of them showed continuously graded dose dependence. The effects were higher than that of disulfiram, a clinically available aldehyde dehydrogenase inhibitor, which we identified to be the most competent preapproved drug to enhance ATF2-luciferase activity in the same assay system. In C2C12 myotubes, all the compounds increased the area, intensity, length, and number of AChR clusters. Three of the four compounds increased the phosphorylation of MuSK, but not of Dok7, JNK. ERK, or p38. Monitoring cell toxicity using the neurite elongation of NSC34 neuronal cells as a surrogate marker showed that all the compounds had no effects on the neurite elongation up to 1 µM. Extensive docking simulation and binding structure prediction of the four compounds with all available human proteins using AutoDock Vina and DiffDock showed that the four compounds were unlikely to directly bind to MuSK or Dok7, and the exact target remained unknown. The identified compounds are expected to serve as a seed to develop a novel therapeutic agent to treat defective NMJ signal transmission.


Asunto(s)
Fibras Musculares Esqueléticas , Receptores Nicotínicos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Animales , Ratones , Línea Celular , Humanos , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Genes Reporteros , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Familia de Multigenes , Transducción de Señal/efectos de los fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neuritas , Bungarotoxinas/farmacología , Benceno/farmacología , Compuestos Heterocíclicos/farmacología , Simulación del Acoplamiento Molecular
6.
Development ; 148(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34714331

RESUMEN

The receptor tyrosine kinase MuSK, its co-receptor Lrp4 and the Agrin ligand constitute a signaling pathway that is crucial in axial muscle for neuromuscular synapse development, yet whether this pathway functions similarly in appendicular muscle is unclear. Here, using the larval zebrafish pectoral fin, equivalent to tetrapod forelimbs, we show that, similar to axial muscle, developing appendicular muscles form aneural acetylcholine receptor (AChR) clusters prior to innervation. As motor axons arrive, neural AChR clusters form, eventually leading to functional synapses in a MuSK-dependent manner. We find that loss of Agrin or Lrp4 function, which abolishes synaptic AChR clusters in axial muscle, results in enlarged presynaptic nerve regions and progressively expanding appendicular AChR clusters, mimicking the consequences of motoneuron ablation. Moreover, musk depletion in lrp4 mutants partially restores synaptic AChR patterning. Combined, our results provide compelling evidence that, in addition to the canonical pathway in which Agrin/Lrp4 stimulates MuSK activity, Agrin/Lrp4 signaling in appendicular muscle constrains MuSK-dependent neuromuscular synapse organization. Thus, we reveal a previously unappreciated role for Agrin/Lrp4 signaling, thereby highlighting distinct differences between axial and appendicular synapse development.


Asunto(s)
Agrina/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Proteínas de Pez Cebra/metabolismo , Aletas de Animales/inervación , Aletas de Animales/metabolismo , Animales , Axones/metabolismo , Proteínas de Homeodominio/genética , Proteínas Relacionadas con Receptor de LDL/genética , Músculo Esquelético/inervación , Mutación , Receptores Colinérgicos/metabolismo , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/genética
7.
Clin Genet ; 105(2): 226-227, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37849383

RESUMEN

We report the third case of FADS due to biallelic DOK7 variants, which further strengthens the association of DOK7 with this lethal phenotype and lack of genotype phenotype correlation.


Asunto(s)
Artrogriposis , Humanos , Artrogriposis/genética , Fenotipo , Proteínas Musculares/genética
8.
Chem Senses ; 492024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591752

RESUMEN

The scent of musk plays a unique role in the history of perfumery. Musk odorants comprise 6 diverse chemical classes and perception differences in strength and quality among human panelists have long puzzled the field of olfaction research. Three odorant receptors (OR) had recently been described for musk odorants: OR5AN1, OR1N2, and OR5A2. High functional expression of the difficult-to-express human OR5A2 was achieved by a modification of the C-terminal domain and the link between sensory perception and receptor activation for the trilogy of these receptors and their key genetic variants was investigated: All 3 receptors detect only musky smelling compounds among 440 commercial fragrance compounds. OR5A2 is the key receptor for the classes of polycyclic and linear musks and for most macrocylic lactones. A single P172L substitution reduces the sensitivity of OR5A2 by around 50-fold. In parallel, human panelists homozygous for this mutation have around 40-60-fold higher sensory detection threshold for selective OR5A2 ligands. For macrocyclic lactones, OR5A2 could further be proven as the key OR by a strong correlation between in vitro activation and the sensory detection threshold in vivo. OR5AN1 is the dominant receptor for the perception of macrocyclic ketones such as muscone and some nitromusks, as panelists with a mutant OR5A2 are still equally sensitive to these ligands. Finally, OR1N2 appears to be an additional receptor involved in the perception of the natural (E)-ambrettolide. This study for the first time links OR activation to sensory perception and genetic polymorphisms for this unique class of odorants.


Asunto(s)
Ácidos Grasos Monoinsaturados , Percepción Olfatoria , Receptores Odorantes , Olfato , Humanos , Genotipo , Lactonas , Odorantes , Receptores Odorantes/metabolismo , Olfato/genética
9.
FASEB J ; 37(2): e22742, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583723

RESUMEN

The Chinese forest musk deer (FMD; Moschus berezovskii) is an endangered artiodactyl mammal. Musk secreted by the musk gland of male has extremely high economic and medicinal value. However, the molecular and cellular characteristics of the musk gland have not been studied. Here, we investigated the diversity and transcriptional composition of musk gland cell types and the effect of cell type-specific chromatin accessibility on gene expression using single-nucleus RNA sequencing (snRNA-seq) and single-nucleus ATAC sequencing (snATAC-seq) association analysis. Based on uniform manifold approximation and projection (UMAP) analysis, we identified 13 cell types from the musk gland, which included two different acinar cells (cluster 0 and cluster 10). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that many pathways related to musk secretion were enriched in acinar cells. Our analysis also revealed acinar cell core transcription factors and core target genes, and further constructed acinar cell-specific regulatory networks. In cluster 0, 11 core target genes (Nedd4l, Adcy9, Akr1c1, Vapb, Me1, Acsl1, Acss3, Srd5a1, Scnn1a, Acadm, and Nceh1) possibly related to musk secretion were regulated by 24 core transcription factors (SP3, NFIC, NR6A1, EHF, RUNX1, TFAP2A, RREB1, GRHL2, NFIB, ELF1, MAX, KLF5, REL, HES1, POU2F3, TFDP1, NR2C1, ATF7, MEIS1, NR4A2, NFIA, PBX1, ZNF652, and NFKB1). In cluster 10, four core target genes (Akr1c1, Pcca, Atp1b1, and Sgk1) possibly related to musk secretion were regulated by 10 core transcription factors (BARX2, EHF, PBX1, RUNX1, NFIB, FOXP1, KLF3, KLF6, ETV6, and NR3C2). Moreover, the credibility of snRNA-seq and snATAC-seq data was verified by fluorescence in situ hybridization and immunohistochemistry. Finally, cell communication analysis demonstrated that the two types of acinar cells mainly have communications in musk secretion-related processes. In conclusion, we provided important insights and invaluable resources for the molecular and cellular characteristics of the musk gland, which will lay a foundation for the study of musk secretion mechanism in the future.


Asunto(s)
Ciervos , Masculino , Animales , Ciervos/genética , Ciervos/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , ARN/metabolismo , Hibridación Fluorescente in Situ , Bosques , ARN Nuclear Pequeño/metabolismo
10.
Muscle Nerve ; 69(5): 637-642, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38456240

RESUMEN

INTRODUCTION/AIMS: The global incidence and prevalence of myasthenia gravis (MG) range between 6-31/million and 10-37/100,000, respectively. Sardinia is a high-risk region for different immune-mediated disorders, but the epidemiology of MG remains unclear. We determined the epidemiology of MG with acetylcholine receptor (AChR)-immunoglobulin G (IgG) and muscle-specific tyrosine kinase (MuSK)-IgG in the district of Sassari (North-Western Sardinia; population, 325,288). METHODS: From the laboratory of the University Hospital of Sassari (reference for AChR/MuSK-IgG testing in Sardinia since 1998) and the main neurology units in Sardinia, we retrospectively identified MG patients with (1) AChR-IgG and/or MuSK-IgG positivity by radioimmunoprecipitation assay; and (2) residency in the district of Sassari. Incidence (January 2010-December 2019) and prevalence (December 31, 2019) were calculated. RESULTS: A total of 202 patients were included (incident, 107; prevalent, 180). Antibody specificities were AChR (n = 187 [93%]) and MuSK (n = 15 [7%]). The crude MG incidence (95% confidence interval) was 32.6 (26.8-39.2)/million, while prevalence was 55.3 (47.7-63.9)/100,000. After age-standardization to the world population, incidence decreased to 18.4 (14.3-22.5)/million, while prevalence decreased to 31.6 (26.1-37.0)/100,000. Among incident cases, age strata (years) at MG onset were: <18 (2%), 18-49 (14%), 50-64 (21%), and ≥65 (63%). DISCUSSION: Sardinia is a high-risk region for MG, with a prevalence that exceeds the European threshold for rare disease. Identification of the environmental and genetic determinants of this risk may improve our understanding of disease pathophysiology.


Asunto(s)
Autoanticuerpos , Miastenia Gravis , Humanos , Estudios Retrospectivos , Proteínas Tirosina Quinasas Receptoras , Miastenia Gravis/epidemiología , Receptores Colinérgicos , Inmunoglobulina G
11.
Eur J Neurol ; 31(4): e16189, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38164996

RESUMEN

BACKGROUND AND PURPOSE: Inhibition of the neonatal Fc receptor (FcRn) for IgG is a promising new therapeutic strategy for antibody-mediated disorders. We report our real-life experience with efgartigimod (EFG) in 19 patients with generalized myasthenia gravis (gMG) along a clinical follow-up of 14 months. METHODS: EFG was administered according to the GENERATIVE protocol (consisting of a Fixed period of two treatment cycles [given 1 month apart] of four infusions at weekly intervals, followed by a Flexible period of re-cycling in case of worsening). Eight patients were positive for acetylcholine receptor antibody, four for muscle-specific tyrosine kinase antibody, and two for lipoprotein-related protein 4 antibody, and five were classified as triple negative. Efficacy of EFG was assessed by the Myasthenia Gravis Activities of Daily Living, Myasthenia Gravis Composite, and Quantitative Myasthenia Gravis scales. RESULTS: Fifty-three percent of patients needed three treatment cycles, 26% needed four, and 21% needed five along the 14-month clinical follow-up. Meaningful improvement was observed at the end of each cycle with the clinical scores adopted. EFG had a dramatic effect on disease course, as during the year before treatment eight of 19 patients (42%) were hospitalized, and 15 of 19 (79%) needed treatment with plasma exchange or immunoglobulins; three of 19 (16%) were admitted to the intensive care unit. During EFG, none of the patients was hospitalized and only one patient required plasma exchange and intravenous immunoglobulins. No major side effects or infusion-related reactions occurred. CONCLUSIONS: We observed that EFG was safe and modified significantly the course of the disease along a 14-month follow-up. Our experience strengthens the role of FcRn inhibition as an effective new tool for long-term treatment of gMG.


Asunto(s)
Actividades Cotidianas , Miastenia Gravis , Recién Nacido , Humanos , Miastenia Gravis/tratamiento farmacológico , Autoanticuerpos , Intercambio Plasmático
12.
Environ Sci Technol ; 58(12): 5524-5533, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466636

RESUMEN

The high environmental concentrations, persistence, and toxicity of synthetic musk compounds (SMCs) necessitate a better grasp of their fate in wastewater treatment plants (WWTPs). To investigate the importance of WWTPs as pathways of SMCs to the environment, air and wastewater samples were collected at four WWTPs in Ontario, Canada. Polycyclic musks (PCMs) were present at higher concentrations than nitro musks (NMs) and macrocyclic musks (MCMs). Three PCMs [galaxolide (HHCB), tonalide (AHTN), and iso-E super (OTNE)] were the most abundant compounds (0.30-680 ng/m3 in air, 0.40-15 µg/L in influent, and 0.007-6.0 µg/L in effluent). Analyses of multiyear data suggest that risk management measures put in place have been effective in reducing the release of many SMCs into the environment. The highest removal efficiency, up to almost 100% of some SMCs, was observed for the plant with the longest solid retention time. A fugacity-based model was established to simulate the transport and fate of SMCs in the WWTP, and good agreement was obtained between the measured and modeled values. These findings indicate that the levels of certain SMCs discharged into the atmospheric and aquatic environments were substantial, potentially resulting in exposure to both humans and wildlife.


Asunto(s)
Ácidos Grasos Monoinsaturados , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Aguas Residuales , Ontario , Benzopiranos/análisis
13.
Neurol Sci ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967883

RESUMEN

Myasthenia gravis (MG) is a rare, autoimmune, neurological disorder. Most MG patients have autoantibodies against acetylcholine receptors (AChRs). Some have autoantibodies against muscle-specific tyrosine kinase (MuSK) or lipoprotein-receptor-related protein 4 (LRP4), and some are seronegative. Standard of care, which includes anti-cholinesterase drugs, thymectomy, corticosteroids (CS), and off-label use of non-steroidal immunosuppressive drugs (NSISTs), is bounded by potential side effects and limited efficacy in refractory generalized MG (gMG) patients. This highlights the need for new therapeutic approaches for MG. Eculizumab, a monoclonal antibody that inhibits the complement system, has been recently approved in Italy for refractory gMG. A panel of 11 experts met to discuss unmet therapeutic needs in the acute and chronic phases of the disease, as well as the standard of care for refractory patients. Survival was emphasized as an acute phase outcome. In the chronic phase, persistent remission and early recognition of exacerbations to prevent myasthenic crisis and respiratory failure were considered crucial. Refractory patients require treatments with fast onset of action, improved tolerability, and the ability to slow disease progression and increase life expectancy. The Panel agreed that eculizumab would presumably meet the therapeutic needs of many refractory gMG patients. The panel concluded that the unmet needs of current standard of care treatments for gMG are significant. Evaluating new therapeutic options accurately is essential to find the best balance between efficacy and tolerability for each patient. Collecting real-world data on novel molecules in routine clinical practice is necessary to address unmet needs.

14.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753489

RESUMEN

Human immunoglobulin (Ig) G4 usually displays antiinflammatory activity, and observations of IgG4 autoantibodies causing severe autoimmune disorders are therefore poorly understood. In blood, IgG4 naturally engages in a stochastic process termed "Fab-arm exchange" in which unrelated IgG4s exchange half-molecules continuously. The resulting IgG4 antibodies are composed of two different binding sites, thereby acquiring monovalent binding and inability to cross-link for each antigen recognized. Here, we demonstrate that this process amplifies autoantibody pathogenicity in a classic IgG4-mediated autoimmune disease: muscle-specific kinase (MuSK) myasthenia gravis. In mice, monovalent anti-MuSK IgG4s caused rapid and severe myasthenic muscle weakness, whereas the same antibodies in their parental bivalent form were less potent or did not induce a phenotype. Mechanistically this could be explained by opposing effects on MuSK signaling. Isotype switching to IgG4 in an autoimmune response thereby may be a critical step in the development of disease. Our study establishes functional monovalency as a pathogenic mechanism in IgG4-mediated autoimmune disease and potentially other disorders.


Asunto(s)
Autoanticuerpos/inmunología , Inmunoglobulina G/inmunología , Miastenia Gravis/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Colinérgicos/inmunología , Animales , Anticuerpos Biespecíficos/administración & dosificación , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/inmunología , Autoanticuerpos/administración & dosificación , Autoanticuerpos/genética , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/genética , Masculino , Ratones , Miastenia Gravis/patología , Mioblastos , Unión Neuromuscular/inmunología , Unión Neuromuscular/patología , Fosforilación/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
15.
Parasitol Res ; 123(6): 231, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829429

RESUMEN

Cryptosporidium spp. are protozoa commonly found in domestic and wild animals. Limited information is available on Cryptosporidium in deer worldwide. In this study, 201 fecal samples were collected from Alpine musk deer on three farms in Gansu Province, China. Detection and subtyping of Cryptosporidium were performed by PCR and sequence analysis of the SSU rRNA and gp60 genes. The prevalence of Cryptosporidium infection in Alpine musk deer was 3.9% (8/201), with infection rates of 1.0% (1/100), 2.8% (1/36), and 9.2% (6/65) in three different farms. All positive samples for Cryptosporidium were from adult deer. Two Cryptosporidium species were identified, including C. parvum (n = 2) and C. xiaoi (n = 6). The C. parvum isolates were subtyped as IIdA15G1, while the C. xiaoi isolates were subtyped as XXIIIa (n = 2) and XXIIIg (n = 4). The IIdA15G1 subtype of C. parvum was found for the first time in deer. These results provide important insights into the identity and human infectious potential of Cryptosporidium in farmed Alpine musk deer.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Ciervos , Heces , Animales , Ciervos/parasitología , Criptosporidiosis/parasitología , Criptosporidiosis/epidemiología , Cryptosporidium/genética , Cryptosporidium/aislamiento & purificación , Cryptosporidium/clasificación , China/epidemiología , Heces/parasitología , Prevalencia , ADN Protozoario/genética , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Genotipo , ADN Ribosómico/genética , ADN Ribosómico/química
16.
Artículo en Inglés | MEDLINE | ID: mdl-38646418

RESUMEN

In multiple instance learning (MIL), a bag represents a sample that has a set of instances, each of which is described by a vector of explanatory variables, but the entire bag only has one label/response. Though many methods for MIL have been developed to date, few have paid attention to interpretability of models and results. The proposed Bayesian regression model stands on two levels of hierarchy, which transparently show how explanatory variables explain and instances contribute to bag responses. Moreover, two selection problems are simultaneously addressed; the instance selection to find out the instances in each bag responsible for the bag response, and the variable selection to search for the important covariates. To explore a joint discrete space of indicator variables created for selection of both explanatory variables and instances, the shotgun stochastic search algorithm is modified to fit in the MIL context. Also, the proposed model offers a natural and rigorous way to quantify uncertainty in coefficient estimation and outcome prediction, which many modern MIL applications call for. The simulation study shows the proposed regression model can select variables and instances with high performance (AUC greater than 0.86), thus predicting responses well. The proposed method is applied to the musk data for prediction of binding strengths (labels) between molecules (bags) with different conformations (instances) and target receptors. It outperforms all existing methods, and can identify variables relevant in modeling responses.

17.
Genes Dev ; 30(9): 1058-69, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27151977

RESUMEN

Motor axons approach muscles that are prepatterned in the prospective synaptic region. In mice, prepatterning of acetylcholine receptors requires Lrp4, a LDLR family member, and MuSK, a receptor tyrosine kinase. Lrp4 can bind and stimulate MuSK, strongly suggesting that association between Lrp4 and MuSK, independent of additional ligands, initiates prepatterning in mice. In zebrafish, Wnts, which bind the Frizzled (Fz)-like domain in MuSK, are required for prepatterning, suggesting that Wnts may contribute to prepatterning and neuromuscular development in mammals. We show that prepatterning in mice requires Lrp4 but not the MuSK Fz-like domain. In contrast, prepatterning in zebrafish requires the MuSK Fz-like domain but not Lrp4. Despite these differences, neuromuscular synapse formation in zebrafish and mice share similar mechanisms, requiring Lrp4, MuSK, and neuronal Agrin but not the MuSK Fz-like domain or Wnt production from muscle. Our findings demonstrate that evolutionary divergent mechanisms establish muscle prepatterning in zebrafish and mice.


Asunto(s)
Evolución Biológica , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/embriología , Unión Neuromuscular/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de Homeodominio , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas Tirosina Quinasas Receptoras/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
18.
J Stroke Cerebrovasc Dis ; 33(8): 107628, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38342273

RESUMEN

OBJECTIVES: Ischemic stroke (IS) is a leading cause of morbidity and mortality globally. This study aimed to investigate the role of exosomes (Exo) derived from bone marrow mesenchymal stem cells (BMSCs) treated with Musk Ketone (Mus treated-Exo) in the development of IS injury. METHODS: BMSCs were pretreated with 10 µM Mus for 36 h, and Exo derived from these Mus-treated BMSCs (Mus-treated Exo) were extracted. Rats with middle cerebral artery occlusion (MCAO) were administered either 2 mg/kg of control Exo (Ctrl-Exo), 2 mg/kg of Mus treated-Exo, or 10 µM Mus. Neurological deficit and cerebral infarction in the MCAO rats were assessed utilizing neurological scores and TTC staining. Neuronal apoptosis, activation of microglia/macrophages, and inflammation were evaluated through TUNEL staining, immunofluorescence staining, and western blot analysis, respectively. RESULTS: Our findings revealed that Mus-treated Exo possessed a more pronounced neuroprotective effect on MCAO rats when compared to Ctrl-Exo and Mus treatment alone. Specifically, Mus treated-Exo effectively ameliorated neurological function, reduced the volume of cerebral infarction, and diminished hemispheric swelling in MCAO rats. Moreover, it inhibited neuronal apoptosis and activation of microglia/macrophages, promoted the expression of the anti-apoptotic protein Bcl-2 while decreasing the expression of pro-apoptotic protein Bax, Cleaved-caspase 3, and pro-inflammatory factors IL-6 and COX-2. CONCLUSIONS: The findings imply that Mus treated-Exo could confer neuroprotection in rats affected by IS, potentially by attenuating apoptosis and neuroinflammation. The underlying mechanisms, however, warrant further investigation. Mus treated-Exo shows potential as a new therapeutic strategy for IS.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Exosomas , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular Isquémico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Animales , Exosomas/trasplante , Exosomas/metabolismo , Apoptosis/efectos de los fármacos , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Células Cultivadas , Microglía/efectos de los fármacos , Microglía/patología , Microglía/metabolismo , Recuperación de la Función , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Mediadores de Inflamación/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Conducta Animal/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos
19.
Rev Neurol (Paris) ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39379218

RESUMEN

Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder characterized by muscle weakness and fatigue. The disease is primarily caused by antibodies targeting acetylcholine receptors (AChR) and muscle-specific kinase (MuSK) proteins at the neuromuscular junction. Traditional treatments for MG, such as acetylcholinesterase inhibitors, corticosteroids, and immunosuppressants, have shown efficacy but are often associated with significant long-term side effects and variable patient response rates. Notably, approximately 15% of patients exhibit inadequate responses to these standard therapies. Recent advancements in molecular therapies, including monoclonal antibodies, B cell-depleting agents, complement inhibitors, Fc receptor antagonists, and chimeric antigen receptor (CAR) T cell-based therapies, have introduced promising alternatives for MG treatment. These novel therapeutic approaches offer potential improvements in targeting specific immune pathways involved in MG pathogenesis. This review highlights the progress and challenges in developing and implementing these molecular therapies. It discusses their mechanisms, efficacy, and the potential for personalized medicine in managing MG. The integration of new molecular therapies into clinical practice could significantly transform the treatment landscape of MG, offering more effective and tailored therapeutic options for patients who do not respond adequately to traditional treatments. These innovations underscore the importance of ongoing research and clinical trials to optimize therapeutic strategies and improve the quality of life for individuals with MG.

20.
J Environ Sci (China) ; 143: 47-59, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644023

RESUMEN

Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.


Asunto(s)
Apoptosis , Ciervos , Dietilhexil Ftalato , Estrés Oxidativo , Animales , Apoptosis/efectos de los fármacos , Dietilhexil Ftalato/toxicidad , Estrés Oxidativo/efectos de los fármacos , Peroxiredoxina VI/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Disruptores Endocrinos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA