Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Neonatal Screen ; 10(3)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39311366

RESUMEN

From 2008 to 2024, the Newborn Screening Translational Research Network (NBSTRN), part of the National Institute of Child Health and Human Development (NICHD) Hunter Kelly Newborn Screening Program, served as a robust infrastructure to facilitate groundbreaking research in newborn screening (NBS), public health, rare disease, and genomics. Over its sixteen years, NBSTRN developed into a significant international network, supporting innovative research on novel technologies to screen, diagnose, treat, manage, and understand the natural history of more than 280 rare diseases. The NBSTRN tools and resources were used by a variety of stakeholders including researchers, clinicians, state NBS programs, parents, families, and policy makers. Resources and expertise for the newborn screening community in ethical, legal, and social issues (ELSI) has been an important area of focus for the NBSTRN and this includes efforts across the NBS system from pilot studies of candidate conditions to public health implementation of screening for new conditions, and the longitudinal follow-up of NBS-identified individuals to inform health outcomes and disease understanding. In 2023, the NBSTRN conducted a survey to explore ELSI issues in NBS research, specifically those encountered by the NBS community. Since NBS research involves collaboration among researchers, state NBS programs, clinicians, and families, the survey was broadly designed and disseminated to engage all key stakeholders. With responses from 88 members of the NBS community, including researchers and state NBS programs, the survey found that individuals rely most on institutional and collegial resources when they encounter ELSI questions. Most survey responses ranked privacy as extremely or very important in NBS research and identified the need for policies that address informed consent in NBS research. The survey results highlight the need for improved collaborative resources and educational programs focused on ELSI for the NBS community. The survey results inform future efforts in ELSI and NBS research in the United States (U.S.) and the rest of the world, including the development of policies and expanded ELSI initiatives and tools that address the needs of all NBS stakeholders.

2.
Mol Genet Metab ; 109(4): 319-28, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23806236

RESUMEN

A trans-National Institutes of Health initiative, Nutrition and Dietary Supplement Interventions for Inborn Errors of Metabolism (NDSI-IEM), was launched in 2010 to identify gaps in knowledge regarding the safety and utility of nutritional interventions for the management of inborn errors of metabolism (IEM) that need to be filled with evidence-based research. IEM include inherited biochemical disorders in which specific enzyme defects interfere with the normal metabolism of exogenous (dietary) or endogenous protein, carbohydrate, or fat. For some of these IEM, effective management depends primarily on nutritional interventions. Further research is needed to demonstrate the impact of nutritional interventions on individual health outcomes and on the psychosocial issues identified by patients and their families. A series of meetings and discussions were convened to explore the current United States' funding and regulatory infrastructure and the challenges to the conduct of research for nutritional interventions for the management of IEM. Although the research and regulatory infrastructure are well-established, a collaborative pathway that includes the professional and advocacy rare disease community and federal regulatory and research agencies will be needed to overcome current barriers.


Asunto(s)
Dieta , Errores Innatos del Metabolismo/dietoterapia , Fenómenos Fisiológicos de la Nutrición , Suplementos Dietéticos , Manejo de la Enfermedad , Vías de Administración de Medicamentos , Humanos , Errores Innatos del Metabolismo/genética , Enfermedades Raras , Estados Unidos
3.
Int J Neonatal Screen ; 9(4)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37987476

RESUMEN

Rapid advances in the screening, diagnosis, and treatment of genetic disorders have increased the number of conditions that can be detected through universal newborn screening (NBS). However, the addition of conditions to the Recommended Uniform Screening Panel (RUSP) and the implementation of nationwide screening has been a slow process taking several years to accomplish for individual conditions. Here, we describe web-based tools and resources developed and implemented by the newborn screening translational research network (NBSTRN) to advance newborn screening research and support NBS stakeholders worldwide. The NBSTRN's tools include the Longitudinal Pediatric Data Resource (LPDR), the NBS Condition Resource (NBS-CR), the NBS Virtual Repository (NBS-VR), and the Ethical, Legal, and Social Issues (ELSI) Advantage. Research programs, including the Inborn Errors of Metabolism Information System (IBEM-IS), BabySeq, EarlyCheck, and Family Narratives Use Cases, have utilized NBSTRN's tools and, in turn, contributed research data to further expand and refine these resources. Additionally, we discuss ongoing tool development to facilitate the expansion of genetic disease screening in increasingly diverse populations. In conclusion, NBSTRN's tools and resources provide a trusted platform to enable NBS stakeholders to advance NBS research and improve clinical care for patients and their families.

4.
Front Genet ; 13: 867337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938011

RESUMEN

Each year, through population-based newborn screening (NBS), 1 in 294 newborns is identified with a condition leading to early treatment and, in some cases, life-saving interventions. Rapid advancements in genomic technologies to screen, diagnose, and treat newborns promise to significantly expand the number of diseases and individuals impacted by NBS. However, expansion of NBS occurs slowly in the United States (US) and almost always occurs condition by condition and state by state with the goal of screening for all conditions on a federally recommended uniform panel. The Newborn Screening Translational Research Network (NBSTRN) conducted the NBS Expansion Study to describe current practices, identify expansion challenges, outline areas for improvement in NBS, and suggest how models could be used to evaluate changes and improvements. The NBS Expansion Study included a workshop of experts, a survey of clinicians, an analysis of data from online repositories of state NBS programs, reports and publications of completed pilots, federal committee reports, and proceedings, and the development of models to address the study findings. This manuscript (Part One) reports on the design, execution, and results of the NBS Expansion Study. The Study found that the capacity to expand NBS is variable across the US and that nationwide adoption of a new condition averages 9.5 years. Four factors that delay and/or complicate NBS expansion were identified. A companion paper (Part Two) presents a use case for each of the four factors and highlights how modeling could address these challenges to NBS expansion.

5.
Front Genet ; 13: 859837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692825

RESUMEN

With the rapid increase in publicly available sequencing data, healthcare professionals are tasked with understanding how genetic variation informs diagnosis and affects patient health outcomes. Understanding the impact of a genetic variant in disease could be used to predict susceptibility/protection and to help build a personalized medicine profile. In the United States, over 3.8 million newborns are screened for several rare genetic diseases each year, and the follow-up testing of screen-positive newborns often involves sequencing and the identification of variants. This presents the opportunity to use longitudinal health information from these newborns to inform the impact of variants identified in the course of diagnosis. To test this, we performed secondary analysis of a 10-year natural history study of individuals diagnosed with metabolic disorders included in newborn screening (NBS). We found 564 genetic variants with accompanying phenotypic data and identified that 161 of the 564 variants (29%) were not included in ClinVar. We were able to classify 139 of the 161 variants (86%) as pathogenic or likely pathogenic. This work demonstrates that secondary analysis of longitudinal data collected as part of NBS finds unreported genetic variants and the accompanying clinical information can inform the relationship between genotype and phenotype.

6.
Int J Neonatal Screen ; 7(3)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208910

RESUMEN

The goal of newborn screening is to improve health outcomes by identifying and treating affected newborns. This manuscript provides an overview of a data tool to facilitate the longitudinal collection of health information on newborns diagnosed with a condition through NBS. The Newborn Screening Translational Research Network (NBSTRN) developed the Longitudinal Pediatric Data Resource (LPDR) to capture, store, analyze, visualize, and share genomic and phenotypic data over the lifespan of NBS identified newborns to facilitate understanding of genetic disease and to assess the impact of early identification and treatment. NBSTRN developed a consensus-based process using clinical care experts to create, maintain, and evolve question and answer sets organized into common data elements (CDEs). The LPDR contains 24,172 core and disease specific CDEs for 118 rare genetic diseases, and the CDEs are being made available through the NIH CDE Repository. The number of CDEs for each condition average of 2200 with a range from 69 to 7944. The LPDR is used by state NBS programs, clinical researchers, and community-based organizations. Case level, de-identified data sets are available for secondary research and data mining. The development of the LPDR for longitudinal data gathering, sharing, and analysis supports research and facilitates the translation of discoveries into clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA