Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(21): 5448-5464.e22, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34624221

RESUMEN

Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin's hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL "jumps ship" from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , Conformación de Ácido Nucleico , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Hidrólisis , Cinética , Microscopía de Fuerza Atómica , Modelos Moleculares , Proteínas Nucleares/metabolismo , Conformación Proteica , Cohesinas
2.
Cell ; 173(5): 1165-1178.e20, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29706548

RESUMEN

Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Genoma , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Cromosomas/metabolismo , Proteínas de Unión al ADN , Humanos , Ratones , Mutagénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Cohesinas
3.
Cell ; 169(4): 693-707.e14, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475897

RESUMEN

The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Acetiltransferasas/metabolismo , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN , Elongasas de Ácidos Grasos , Edición Génica , Humanos , Complejos Multiproteicos/metabolismo , Proteínas Represoras/metabolismo , Cohesinas
4.
Genes Dev ; 37(7-8): 277-290, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37055084

RESUMEN

The evolutionarily conserved cohesin complex mediates sister chromatid cohesion and facilitates mitotic chromosome condensation, DNA repair, and transcription regulation. These biological functions require cohesin's two ATPases, formed by the Smc1p and Smc3p subunits. Cohesin's ATPase activity is stimulated by the Scc2p auxiliary factor. This stimulation is inhibited by Eco1p acetylation of Smc3p at an interface with Scc2p. It was unclear how cohesin's ATPase activity is stimulated by Scc2p or how acetylation inhibits Scc2p, given that the acetylation site is distal to cohesin's ATPase active sites. Here, we identify mutations in budding yeast that suppressed the in vivo defects caused by Smc3p acetyl-mimic and acetyl-defective mutations. We provide compelling evidence that Scc2p activation of cohesin ATPase depends on an interface between Scc2p and a region of Smc1p proximal to cohesin's Smc3p ATPase active site. Furthermore, substitutions at this interface increase or decrease ATPase activity to overcome ATPase modulation by acetyl-mimic and acetyl-null mutations. Using these observations and an existing cryo-EM structure, we propose a model for regulating cohesin ATPase activity. We suggest that Scc2p binding to Smc1p causes the adjacent Smc1p residues and ATP to shift, stimulating Smc3p's ATPase. This stimulatory shift is inhibited through acetylation of the distal Scc2p-Smc3p interface.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Acetilación , Cromátides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cohesinas
5.
Genes Dev ; 37(7-8): 259-260, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37045607

RESUMEN

Cohesin is an ATPase that drives chromosome organization through the generation of intramolecular loops and sister chromatid cohesion. Cohesin's ATPase is stimulated by Scc2 binding but attenuated by acetylation of its Smc3 subunit. In this issue of Genes & Development, Boardman and colleagues (pp. 277-290) take a genetic approach to generate a mechanistic model for the opposing regulation of cohesin's ATPase by Scc2 and Smc3 acetylation. Their findings provide in vivo insight into how this important genome organizer functions in vivo.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina , Cromátides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Genes Dev ; 35(1-2): 65-81, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33334824

RESUMEN

During developmental progression the genomes of immune cells undergo large-scale changes in chromatin folding. However, insights into signaling pathways and epigenetic control of nuclear architecture remain rudimentary. Here, we found that in activated neutrophils calcium influx rapidly recruited the cohesin-loading factor NIPBL to thousands of active enhancers and promoters to dictate widespread changes in compartment segregation. NIPBL recruitment to enhancers and promoters occurred with distinct kinetics. The induction of NIPBL-binding was coordinate with increased P300, BRG1 and RNA polymerase II occupancy. NIPBL-bound enhancers were associated with NFAT, PU.1, and CEBP cis elements, whereas NIPBL-bound promoters were enriched for GC-rich DNA sequences. Using an acute degradation system, we found that the histone acetyltransferases P300 and CBP maintained H3K27ac abundance and facilitated NIPBL occupancy at enhancers and that active transcriptional elongation is essential to maintain H3K27ac abundance. Chromatin remodelers, containing either of the mutually exclusive BRG1 and BRM ATPases, promoted NIPBL recruitment at active enhancers. Conversely, at active promoters, depletion of BRG1 and BRM showed minimal effect on NIPBL occupancy. Finally, we found that calcium signaling in both primary innate and adaptive immune cells swiftly induced NIPBL occupancy. Collectively, these data reveal how transcriptional regulators, histone acetyltransferases, chromatin remodelers, and transcription elongation promote NIPBL occupancy at active enhancers while the induction of NIPLB occupancy at promoters is primarily associated with GC-rich DNA sequences.


Asunto(s)
Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Elementos de Facilitación Genéticos/fisiología , Genoma/fisiología , Regiones Promotoras Genéticas/fisiología , Transducción de Señal/fisiología , Animales , Proteínas de Ciclo Celular/inmunología , Células Cultivadas , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Ratones , Factores de Transcripción NFATC/metabolismo , Neutrófilos/citología , Transporte de Proteínas , Elongación de la Transcripción Genética
7.
Mol Cell ; 79(6): 917-933.e9, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32755595

RESUMEN

Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , ADN/ultraestructura , Intercambio de Cromátides Hermanas/genética , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Microscopía por Crioelectrón , ADN/genética , Conformación de Ácido Nucleico , Conformación Proteica , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Cohesinas
8.
J Cell Sci ; 136(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37288770

RESUMEN

Sister chromatid cohesion is a multi-step process implemented throughout the cell cycle to ensure the correct transmission of chromosomes to daughter cells. Although cohesion establishment and mitotic cohesion dissolution have been extensively explored, the regulation of cohesin loading is still poorly understood. Here, we report that the methyltransferase NSD3 is essential for mitotic sister chromatid cohesion before mitosis entry. NSD3 interacts with the cohesin loader complex kollerin (composed of NIPBL and MAU2) and promotes the chromatin recruitment of MAU2 and cohesin at mitotic exit. We also show that NSD3 associates with chromatin in early anaphase, prior to the recruitment of MAU2 and RAD21, and dissociates from chromatin when prophase begins. Among the two NSD3 isoforms present in somatic cells, the long isoform is responsible for regulating kollerin and cohesin chromatin-loading, and its methyltransferase activity is required for efficient sister chromatid cohesion. Based on these observations, we propose that NSD3-dependent methylation contributes to sister chromatid cohesion by ensuring proper kollerin recruitment and thus cohesin loading.


Asunto(s)
Proteínas de Ciclo Celular , Cromátides , Histona Metiltransferasas , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Histona Metiltransferasas/metabolismo , Cohesinas
9.
Cell Mol Life Sci ; 81(1): 439, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39453535

RESUMEN

The Cornelia de Lange syndrome (CdLS) is a rare genetic disease, which is characterized by a cohesinopathy. Mutations of the NIPBL gene are observed in 65% of CdLS patients. A novel iPSC (induced Pluripotent Stem Cell) line was reprogrammed from the leukocytes of a CdLS patient carrying a missense mutation of the NIPBL gene. A mutation-corrected isogenic iPSC-line and two iPSC-lines generated from the healthy parents were used as controls. The iPSC lines were differentiated along the hepatocyte-lineage. Comparative immunofluorescence, RNA-seq and ATAC-seq analyses were performed on undifferentiated and differentiated iPSCs. In addition, chromatin organization was studied by ChIP-Seq analysis on the patient derived iPSCs as well as the respective controls. Relative to the mutation-corrected and the healthy-parents iPSCs, the patient-derived counterparts are defective in terms of differentiation along the hepatocyte-lineage. One-third of the genes selectively up-regulated in CdLS-derived iPSCs and hepatic cells are non-protein-coding genes. By converse, most of the selectively down-regulated genes code for transcription factors and proteins regulating neural differentiation. Some of the transcriptionally silenced loci, such as the DPP6 gene on chromosome 7q36.2 and the ZNF gene cluster on chromosome 19p12, are located in closed-chromatin regions. Relative to the corresponding controls, the global transcriptomic differences observed in CdLS undifferentiated iPSCs are associated with altered chromatin accessibility, which was confirmed by ChIP-Seq analysis. Thus, the deficits in the differentiation along the hepatocyte lineage observed in our CdLS patient is likely to be due to a transcriptional dysregulation resulting from a cohesin-dependent alteration of chromatin accessibility.


Asunto(s)
Proteínas de Ciclo Celular , Diferenciación Celular , Cromatina , Síndrome de Cornelia de Lange , Hepatocitos , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Síndrome de Cornelia de Lange/metabolismo , Diferenciación Celular/genética , Cromatina/metabolismo , Cromatina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Hepatocitos/metabolismo , Mutación
10.
Proc Natl Acad Sci U S A ; 119(18): e2201029119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476527

RESUMEN

Cornelia de Lange syndrome (CdLS) is a developmental multisystem disorder frequently associated with mutations in NIPBL. CdLS is thought to arise from developmental gene regulation defects, but how NIPBL mutations cause these is unknown. Here we show that several NIPBL mutations impair the DNA loop extrusion activity of cohesin. Because this activity is required for the formation of chromatin loops and topologically associating domains, which have important roles in gene regulation, our results suggest that defects in cohesin-mediated loop extrusion contribute to the etiology of CdLS by altering interactions between developmental genes and their enhancers.


Asunto(s)
Síndrome de Cornelia de Lange , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , ADN/genética , Síndrome de Cornelia de Lange/genética , Humanos , Mutación , Cohesinas
11.
Am J Med Genet A ; 194(11): e63793, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39394947

RESUMEN

Pathogenic variants in the cohesin genes, NIPBL and SMC1A, both cause Cornelia de Lange syndrome (CdLS), a rare genetic disorder associated with developmental delay and intellectual disability. This study aimed to compare sleep behaviors across individuals with CdLS caused by a variant in NIPBL or SMC1A, and identify relationships between sleep and behavior functioning. A total of 31 caregivers of individuals with a variant in NIPBL (N = 22) or SMC1A (N = 9) completed questionnaires regarding their child's sleep behaviors, behavior regulation, attention, and autistic features (repetitive behaviors and social communication difficulties) as part of the Coordination of Rare Diseases (CoRDS) registry. Findings showed a trend of increased behavior regulation difficulties and repetitive behaviors in the NIPBL compared to the SMC1A participants. Both groups presented with a similar degree of attention, social communication, and sleep challenges. In the whole sample, sleep disturbance was strongly correlated with more behavior regulation difficulties, a relationship that was more robust in the NIPBL sample. In brief, study results support our prior observations of greater behavior difficulties among those with a variant in NIPBL as compared to SMC1A. Preliminary findings point to unique associations between sleep and behavior regulation in the NIPBL group, suggesting sleep interventions may yield differential effects on behavior management across variants.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Síndrome de Cornelia de Lange , Sueño , Humanos , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/fisiopatología , Síndrome de Cornelia de Lange/psicología , Femenino , Masculino , Proteínas de Ciclo Celular/genética , Niño , Proteínas Cromosómicas no Histona/genética , Sueño/genética , Sueño/fisiología , Preescolar , Adolescente , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/fisiopatología , Encuestas y Cuestionarios , Mutación/genética , Adulto
12.
Am J Med Genet A ; 194(5): e63512, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38135466

RESUMEN

Post-zygotic mosaicism is a well-known biological phenomenon characterized by the presence of genetically distinct lineages of cells in the same individual due to post-zygotic de novo mutational events. It has been identified in about 13% of Cornelia de Lange (CdLS) syndrome patients with a molecular diagnosis, an unusual high frequency. Here, we report the case of a patient affected by classic CdLS harboring post-zygotic mosaicism for two different likely pathogenic variants at the same nucleotide position in NIPBL. Double somatic mosaicism has never been reported in CdLS and only rarely recognized in human diseases. Possible pathogenetic mechanisms are discussed.


Asunto(s)
Síndrome de Cornelia de Lange , Humanos , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Proteínas de Ciclo Celular/genética , Mosaicismo , Fenotipo
13.
Am J Med Genet A ; 194(9): e63641, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725242

RESUMEN

Next-generation phenotyping (NGP) can be used to compute the similarity of dysmorphic patients to known syndromic diseases. So far, the technology has been evaluated in variant prioritization and classification, providing evidence for pathogenicity if the phenotype matched with other patients with a confirmed molecular diagnosis. In a Nigerian cohort of individuals with facial dysmorphism, we used the NGP tool GestaltMatcher to screen portraits prior to genetic testing and subjected individuals with high similarity scores to exome sequencing (ES). Here, we report on two individuals with global developmental delay, pulmonary artery stenosis, and genital and limb malformations for whom GestaltMatcher yielded Cornelia de Lange syndrome (CdLS) as the top hit. ES revealed a known pathogenic nonsense variant, NM_133433.4: c.598C>T; p.(Gln200*), as well as a novel frameshift variant c.7948dup; p.(Ile2650Asnfs*11) in NIPBL. Our results suggest that NGP can be used as a screening tool and thresholds could be defined for achieving high diagnostic yields in ES. Training the artificial intelligence (AI) with additional cases of the same ethnicity might further increase the positive predictive value of GestaltMatcher.


Asunto(s)
Síndrome de Cornelia de Lange , Fenotipo , Humanos , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/patología , Masculino , Femenino , Niño , Nigeria , Preescolar , Proteínas de Ciclo Celular/genética , Secuenciación del Exoma , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Lactante
14.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884729

RESUMEN

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Asunto(s)
Defectos del Tabique Interventricular , Humanos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Defectos del Tabique Interventricular/genética , Mutación , Factores de Transcripción/genética
15.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279279

RESUMEN

The human STAG2 protein is an essential component of the cohesin complex involved in cellular processes of gene expression, DNA repair, and genomic integrity. Somatic mutations in the STAG2 sequence have been associated with various types of cancer, while congenital variants have been linked to developmental disorders such as Mullegama-Klein-Martinez syndrome, X-linked holoprosencephaly-13, and Cornelia de Lange syndrome. In the cohesin complex, the direct interaction of STAG2 with DNA and with NIPBL, RAD21, and CTCF proteins has been described. The function of STAG2 within the complex is still unknown, but it is related to its DNA binding capacity and is modulated by its binding to the other three proteins. Every missense variant described for STAG2 is located in regions involved in one of these interactions. In the present work, we model the structure of 12 missense variants described for STAG2, as well as two other variants of NIPBl and two of RAD21 located at STAG2 interaction zone, and then analyze their behavior through molecular dynamic simulations, comparing them with the same simulation of the wild-type protein. This will allow the effects of variants to be rationalized at the atomic level and provide clues as to how STAG2 functions in the cohesin complex.


Asunto(s)
Cohesinas , Discapacidades del Desarrollo , Humanos , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cohesinas/genética , Síndrome de Cornelia de Lange/genética , ADN , Mutación , Mutación Missense , Discapacidades del Desarrollo/genética
16.
Am J Med Genet A ; 191(8): 2113-2131, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37377026

RESUMEN

Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.


Asunto(s)
Síndrome de Cornelia de Lange , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Factores de Transcripción/genética , Proteínas de Ciclo Celular/genética , Fenotipo , Mutación , Genómica , Estudios de Asociación Genética , Factores de Elongación Transcripcional/genética , Histona Desacetilasas/genética , Proteínas Represoras/genética
17.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958548

RESUMEN

Cornelia de Lange Syndrome (CdLS) patients, who frequently carry a mutation in NIPBL, present an increased incidence of outflow tract (OFT)-related congenital heart defects (CHDs). Nipbl+/- mice recapitulate a number of phenotypic traits of CdLS patients, including a small body size and cardiac defects, but no study has specifically focused on the valves. Here, we show that adult Nipbl+/- mice present aortic valve thickening, a condition that has been associated with stenosis. During development, we observed that OFT septation and neural crest cell condensation was delayed in Nipbl+/- embryos. However, we did not observe defects in the deployment of the main lineages contributing to the semilunar valves. Indeed, endocardial endothelial-to-mesenchymal transition (EndMT), analysed via outflow tract explants, and neural crest migration, analysed via genetic lineage tracing, did not significantly differ in Nipbl+/- mice and their wild-type littermates. Our study provides the first direct evidence for valve formation defects in Nipbl+/- mice and points to specific developmental defects as an origin for valve disease in patients.


Asunto(s)
Proteínas de Ciclo Celular , Síndrome de Cornelia de Lange , Cardiopatías Congénitas , Animales , Humanos , Ratones , Válvula Aórtica , Proteínas de Ciclo Celular/genética , Síndrome de Cornelia de Lange/genética , Haploinsuficiencia , Cardiopatías Congénitas/genética , Mutación
18.
Hum Mutat ; 43(12): 1882-1897, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35842780

RESUMEN

Cornelia de Lange syndrome (CdLS; MIM# 122470) is a rare developmental disorder. Pathogenic variants in 5 genes explain approximately 50% cases, leaving the other 50% unsolved. We performed whole genome sequencing (WGS) ± RNA sequencing (RNA-seq) in 5 unsolved trios fulfilling the following criteria: (i) clinical diagnosis of classic CdLS, (ii) negative gene panel sequencing from blood and saliva-isolated DNA, (iii) unaffected parents' DNA samples available and (iv) proband's blood-isolated RNA available. A pathogenic de novo mutation (DNM) was observed in a CdLS differential diagnosis gene in 3/5 patients, namely POU3F3, SPEN, and TAF1. In the other two, we identified two distinct deep intronic DNM in NIPBL predicted to create a novel splice site. RT-PCRs and RNA-Seq showed aberrant transcripts leading to the creation of a novel frameshift exon. Our findings suggest the relevance of WGS in unsolved suspected CdLS cases and that deep intronic variants may account for a proportion of them.


Asunto(s)
Síndrome de Cornelia de Lange , Humanos , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Diagnóstico Diferencial , Proteínas de Ciclo Celular/genética , Intrones , Mutación , Análisis de Secuencia de ARN , Fenotipo
19.
Clin Genet ; 102(2): 117-122, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35470444

RESUMEN

BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies.


Asunto(s)
Síndrome de Cornelia de Lange , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Niño , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Femenino , Genómica , Humanos , Mutación , Proteínas Nucleares/genética , Fenotipo , Embarazo , Factores de Transcripción/genética
20.
Semin Cell Dev Biol ; 90: 181-186, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30096364

RESUMEN

A cohesin-loading factor (NIPBL) is one of important regulatory factors in the maintenance of 3D genome organization and function, by interacting with a large number of factors, e.g. cohesion, CCCTC-binding factor (CTCF) or cohesin complex component. The present article overviews the critical and regulatory roles of NIBPL in cohesion loading on chromotin and in gene expression and transcriptional signaling. We explore molecular mechanisms by which NIPBL recruits endogenous histone deacetylase (HDAC) to induce histone deacetylation and influence multi-dimensions of genome, through which NIPBL "hop" movement in chromatin regulates gene expression and alters genome folding. NIPBL regulates the process of CTCF and cohesion into chromatin loops and topologically associated domains, binding of cohesion and H3K4mes3 through interaction among promoters and enhancers. HP1 recruits NIPBL to DNA damage site through RNF8/RNF168 ubiquitylation pathway. NIPBL contributes to regulation of genome-controlled gene expression through the influence of cohesin in chromosome structure. NIPBL interacts with cohesin and then increases transcriptional activities of REC8 promoter, leading to up-regulation of gene expression. NIPBL movement among chromosomal loops regulates gene expression through dynamic alterations of genome organization. Thus, we expect a new and deep insight to understand dynamics of chromosome and explore potential strategies of therapiesc on basis of NIPBL.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromosomas Humanos/genética , Inestabilidad Genómica , Cromosomas Humanos/metabolismo , Expresión Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA