RESUMEN
HER2 amplification occurs in approximately 5% of colorectal cancer (CRC) cases and is associated only partially with clinical response to combined human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR)-targeted treatment. An alternative approach based on adoptive cell therapy using T cells engineered with anti-HER2 chimeric antigen receptor (CAR) proved to be toxic due to on-target/off-tumor activity. Here we describe a combinatorial strategy to safely target HER2 amplification and carcinoembryonic antigen (CEA) expression in CRC using a synNotch-CAR-based artificial regulatory network. The natural killer (NK) cell line NK-92 was engineered with an anti-HER2 synNotch receptor driving the expression of a CAR against CEA only when engaged. After being transduced and sorted for HER2-driven CAR expression, cells were cloned. The clone with optimal performances in terms of specificity and amplitude of CAR induction demonstrated significant activity in vitro and in vivo specifically against HER2-amplified (HER2amp)/CEA+ CRC models, with no effects on cells with physiological HER2 levels. The HER2-synNotch/CEA-CAR-NK system provides an innovative, scalable, and safe off-the-shelf cell therapy approach with potential against HER2amp CRC resistant or partially responsive to HER2/EGFR blockade.
Asunto(s)
Neoplasias Colorrectales , Receptor ErbB-2 , Receptores Quiméricos de Antígenos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Animales , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Ratones , Línea Celular Tumoral , Antígeno Carcinoembrionario/inmunología , Antígeno Carcinoembrionario/genética , Amplificación de Genes , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Inmunoterapia/métodos , Inmunoterapia Adoptiva/métodos , Modelos Animales de Enfermedad , FemeninoRESUMEN
Natural killer (NK) cell is a valuable tool for immunotherapy in cancer treatment, both the cultured cell line NK92 and primary NK cells are widely studied and used in research and clinical trials. Clinical observations witnessed the improvement of patients' NK cells in terms of cell counts and cytotoxic activity upon dasatinib treatment, an approved drug for chronic myeloid leukaemia and Ph+ acute lymphocytic leukaemia. Several studies supported the clinical observations, yet others argued a detrimental effect of dasatinib on NK cells. Due to the complex conditions in different studies, the definite influence of dasatinib on NK92 and primary NK cells remains to be settled. Here, we used a well-defined in vitro system to evaluate the effects of dasatinib on NK92 cells and peripheral blood (PB)-NK cells. By co-culturing NK cells with dasatinib to test the cell counts and target cell-killing activities, we surprisingly found that the chemical influenced oppositely on these two types of NK cells. While dasatinib suppressed NK92 cell proliferation and cytotoxic activity, it improved PB-NK-killing tumour cells. RNA sequencing analysis further supported this finding, uncovering several proliferating and cytotoxic pathways responding invertedly between them. Our results highlighted an intrinsic difference between NK92 and PB-NK cells and may build clues to understand how dasatinib interacts with NK cells in vivo.
Asunto(s)
Antineoplásicos , Citotoxicidad Inmunológica , Humanos , Dasatinib/farmacología , Dasatinib/uso terapéutico , Dasatinib/metabolismo , Células Asesinas Naturales/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea CelularRESUMEN
TIGIT is an alternative checkpoint receptor (CR) whose inhibition promotes Graft-versus-Leukemia effects of NK cells. Given the significant immune-permissiveness of NK cells circulating in acute myeloid leukemia (AML) patients, we asked whether adoptive transfer of activated NK cells would benefit from additional TIGIT-blockade. Hence, we characterized cytokine-induced memory-like (CIML)-NK cells and NK cell lines for the expression of inhibitory CRs. In addition, we analyzed the transcription of CR ligands in AML patients (CCLE and Beat AML 2.0 cohort) in silico and evaluated the efficacy of CR blockade using in vitro cytotoxicity assays, CD69, CD107a and IFN-γ expression. Alternative but not classical CRs were abundantly expressed on healthy donor NK cells and even further upregulated on CIML-NK cells. In line with our finding that CD155, one important TIGIT-ligand, is reliably expressed on AMLs, we show improved killing of CD155+-AML blasts by NK-92 but interestingly not CIML-NK cells in the presence of TIGIT-blockade. Additionally, our in silico data (n = 671) show that poor prognosis AML patients rather displayed a CD86low CD112/CD155high phenotype, whereas patients with a better outcome rather exhibited a CD86high CD112/CD155low phenotype. Collectively, our data evidence that the complex CR ligand expression profile on AML blasts may be one explanation for the intrinsic NK cell exhaustion observed in AML patients which might be overcome with adoptive NK-92 transfer in combination with TIGIT-blockade.
Asunto(s)
Memoria Inmunológica , Células Asesinas Naturales , Leucemia Mieloide Aguda , Receptores Inmunológicos , Receptores Virales , Humanos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Receptores Inmunológicos/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Receptores Virales/metabolismo , Citocinas/metabolismo , Masculino , FemeninoRESUMEN
Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells has shown promising results in early-phase clinical studies. However, advancing CAR-NK cell therapeutic efficacy is imperative. In this study, we investigated the impact of a fourth-generation CD19-targeted CAR (CAR.19) coexpressing IL-27 on NK-92 cells. We observed a significant improvement in NK-92 cell proliferation and cytotoxicity activity against B-cell cancer cell lines, both in vitro and in a xenograft mouse B-cell lymphoma model. Our systematic transcriptome analysis of the activated NK-92 CAR variants further supports the potential of IL-27 in fourth-generation CARs to overcome limitations of NK cell-based targeted tumor therapies by providing essential growth and activation signals. Integrating IL-27 into CAR-NK cells emerges as a promising strategy to enhance their therapeutic potential and elicit robust responses against cancer cells. These findings contribute substantially to the mounting evidence supporting the potential of fourth-generation CAR engineering in advancing NK cell-based immunotherapies.
Asunto(s)
Inmunoterapia Adoptiva , Células Asesinas Naturales , Receptores Quiméricos de Antígenos , Ensayos Antitumor por Modelo de Xenoinjerto , Células Asesinas Naturales/inmunología , Humanos , Animales , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Ratones , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Antígenos CD19/inmunología , Proliferación Celular , Linfoma de Células B/terapia , Linfoma de Células B/inmunología , Citotoxicidad InmunológicaRESUMEN
Adoptive cellular immunotherapy as a promising and alternative cancer therapy platform is critical for future clinical applications. Natural killer (NK) cells have attracted attention as an important type of innate immune regulatory cells that can rapidly kill multiple adjacent cancer cells. However, these cells are significantly less effective in treating solid tumors than in treating hematological tumors. Herein, we report the synthesis of a Fe3O4-PEG-CD56/Avastin@Ce6 nanoprobe labeled with NK-92 cells that can be used for adoptive cellular immunotherapy, photodynamic therapy and dual-modality imaging-based in vivo fate tracking. The labeled NK-92 cells specifically target the tumor cells, which increases the amount of cancer cell apoptosis in vitro. Furthermore, the in vivo results indicate that the labeled NK-92 cells can be used for tumor magnetic resonance imaging and fluorescence imaging, adoptive cellular immunotherapy, and photodynamic therapy after tail vein injection. These data show that the developed multifunctional nanostructure is a promising platform for efficient innate immunotherapy, photodynamic treatment and noninvasive therapeutic evaluation of breast cancer.
Asunto(s)
Neoplasias de la Mama , Antígeno CD56 , Células Asesinas Naturales , Fotoquimioterapia , Polietilenglicoles , Neoplasias de la Mama/terapia , Humanos , Femenino , Animales , Fotoquimioterapia/métodos , Ratones , Polietilenglicoles/química , Línea Celular Tumoral , Antígeno CD56/metabolismo , Inmunoterapia Adoptiva/métodos , Apoptosis/efectos de los fármacos , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos BALB C , Ratones DesnudosRESUMEN
Communication between natural killer cells (NK cells) and monocytes/macrophages may play an important role in immunomodulation and regulation of inflammatory processes. The aim of this research was to investigate the impact of NK cell-derived large extracellular vesicles on monocyte function because this field is understudied. We studied how NK-cell derived large extracellular vesicles impact on THP-1 cells characteristics after coculturing: phenotype, functions were observed with flow cytometry. In this study, we demonstrated the ability of large extracellular vesicles produced by NK cells to integrate into the membranes of THP-1 cells and influence the viability, phenotype, and functional characteristics of the cells. The results obtained demonstrate the ability of large extracellular vesicles to act as an additional component in the immunomodulatory activity of NK cells in relation to monocytes.
Asunto(s)
Vesículas Extracelulares , Células Asesinas Naturales , Monocitos , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/citología , Células THP-1 , Técnicas de Cocultivo , Comunicación Celular/inmunología , Supervivencia Celular , Macrófagos/inmunología , Macrófagos/metabolismoRESUMEN
BACKGROUND: Interleukin (IL)-2 is a key cytokine capable of modulating the immune response by activating natural killer (NK) cells. This study was recruited to explore the therapeutic potential of IL-2-activated NK-92 cells in endometriosis in vitro. METHODS: Ectopic endometrial stromal cells (EESCs) were isolated and co-cultured with IL-2-activated NK-92 cells at varying effector-to-target (E:T) ratios (1:0 [Control], 1:1, 1:3, and 1:9). The viability, cytotoxicity, and cell surface antigen expression of IL-2-activated NK-92 cells were assessed. The viability, apoptosis, invasion, and migration ability of EESCs co-cultured with NK-92 cells at different ratios were evaluated. The apoptosis-related proteins, invasion and migration-related proteins as well as MEK/ERK pathway were examined via western blot. Each experiment was repeated three times. RESULTS: IL-2 activation enhanced NK-92 cytotoxicity in a concentration-dependent manner. Co-culturing EESCs with IL-2-activated NK-92 cells at E:T ratios of 1:1, 1:3, and 1:9 reduced EESC viability by 20%, 45%, and 70%, respectively, compared to the control group. Apoptosis rates in EESCs increased in correlation with the NK-92 cell proportion, with the highest rate observed at a 1:9 ratio. Moreover, EESC invasion and migration were significantly inhibited by IL-2-activated NK-92 cells, with a 60% reduction in invasion and a 50% decrease in migration at the 1:9 ratio. Besides, the MEK/ERK signalling pathway was down-regulated in EESCs by IL-2-activated NK-92 cells. CONCLUSION: IL-2-activated NK-92 cells exhibit potent cytotoxic effects against EESCs. They promote EESC apoptosis and inhibit viability, invasion, and migration through modulating the MEK/ERK signalling pathway.
Endometriosis is a common chronic systemic disease affecting approximately 190 million women worldwide. However, clinical treatments for endometriosis remain challenging due to the scarcity of high-quality scientific evidence and conflicting available guidelines. This research was designed to explore whether interleukin (IL)-2 affected the progression of endometriosis by modulating endometrial stromal cell apoptosis and natural killer (NK) cell-mediated cytotoxicity, thereby providing new therapeutic methods for endometriosis.
Asunto(s)
Apoptosis , Técnicas de Cocultivo , Endometriosis , Interleucina-2 , Células Asesinas Naturales , Humanos , Endometriosis/patología , Endometriosis/inmunología , Femenino , Interleucina-2/farmacología , Interleucina-2/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Apoptosis/efectos de los fármacos , Adulto , Endometrio/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Progresión de la Enfermedad , Supervivencia Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células CultivadasRESUMEN
Chimeric antigen receptor-natural killer (CAR-NK) cells have emerged as another prominent player in the realm of tumor immunotherapy following CAR-T cells. The unique features of CAR-NK cells make it possible to compensate for deficiencies in CAR-T therapy, such as the complexity of the manufacturing process, clinical adverse events, and solid tumor challenges. To date, CAR-NK products from different allogeneic sources have exhibited remarkable anti-tumor effects on preclinical studies and have gradually been applied in clinical practice. However, each source has advantages and disadvantages. Selecting a suitable source may help maximize CAR-NK cell efficacy and increase the feasibility of clinical transformation. Therefore, this review discusses the development and challenges of CAR-NK cells from different sources to provide a reference for future exploration.
RESUMEN
Over 100 innovative in vitro transcribed (IVT)-mRNAs are presently undergoing clinical trials, with a projected substantial impact on the pharmaceutical market in the near future. Τhe idea behind this is that after the successful cellular internalization of IVT-mRNAs, they are subsequently translated into proteins with therapeutic or prophylactic relevance. Simultaneously, cancer immunotherapy employs diverse strategies to mobilize the immune system in the battle against cancer. Therefore, in this review, the fundamental principles of IVT-mRNA to its recruitment in cancer immunotherapy, are discussed and analyzed. More specifically, this review paper focuses on the development of mRNA vaccines, the exploitation of neoantigens, as well as Chimeric Antigen Receptor (CAR) T-Cells, showcasing their clinical applications and the ongoing trials for the development of next-generation immunotherapeutics. Furthermore, this study investigates the synergistic potential of combining the CAR immunotherapy and the IVT-mRNAs by introducing our research group novel, patented delivery method that utilizes the Protein Transduction Domain (PTD) technology to transduce the IVT-mRNAs encoding the CAR of interest into the Natural Killer (NK)-92 cells, highlighting the potential for enhancing the CAR NK cell potency, efficiency, and bioenergetics. While IVT-mRNA technology brings exciting progress to cancer immunotherapy, several challenges and limitations must be acknowledged, such as safety, toxicity, and delivery issues. This comprehensive exploration of IVT-mRNA technology, in line with its applications in cancer therapeutics, offers valuable insights into the opportunities and challenges in the evolving landscape of cancer immunotherapy, setting the stage for future advancements in the field.
RESUMEN
Chimeric antigen receptor (CAR)-engineered immune effector cells constitute a promising approach for adoptive cancer immunotherapy. Nevertheless, on-target/off-tumor toxicity and immune escape due to antigen loss represent considerable challenges. These may be overcome by adaptor CARs that are selectively triggered by bispecific molecules that crosslink the CAR with a tumor-associated surface antigen. Here, we generated NK cells carrying a first- or second-generation universal CAR (UniCAR) and redirected them to tumor cells with so-called target modules (TMs) which harbor an ErbB2 (HER2)-specific antibody domain for target cell binding and the E5B9 peptide recognized by the UniCAR. To investigate differential effects of the protein design on activity, we developed homodimeric TMs with one, two or three E5B9 peptides per monomer, and binding domains either directly linked or separated by an IgG4 Fc domain. The adaptor molecules were expressed as secreted proteins in Expi293F cells, purified from culture supernatants and their bispecific binding to UniCAR and ErbB2 was confirmed by flow cytometry. In cell killing experiments, all tested TMs redirected NK cell cytotoxicity selectively to ErbB2-positive tumor cells. Nevertheless, we found considerable differences in the extent of specific cell killing depending on TM design and CAR composition, with adaptor proteins carrying two or three E5B9 epitopes being more effective when combined with NK cells expressing the first-generation UniCAR, while the second-generation UniCAR was more active in the presence of TMs with one E5B9 sequence. These results may have important implications for the further development of optimized UniCAR and target module combinations for cancer immunotherapy.
Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Células Asesinas Naturales , Neoplasias/terapia , Inmunoterapia Adoptiva/métodos , Antígenos de Neoplasias , Línea Celular Tumoral , Receptor ErbB-2RESUMEN
Chimeric antigen receptors (CARs) have improved cancer immunotherapy in recent years. Immune cells, such as Natural killer cells (NK-cells) or T cells, are used as effector cells in CAR-therapy. NK92-cells, a cell line with known cytotoxic activity, are of particular interest in CAR-therapy since culturing conditions are simple and anti-tumor efficacy combined with a manageable safety profile was proven in clinical trials. The major pathways of immune effector cells, including NK92-cells, to mediate cytotoxicity, are the perforin/granzyme and the death-receptor pathway. Detailed knowledge of CAR-effector cells' cytotoxic mechanisms is essential to unravel resistance mechanisms, which potentially arise by resistance against apoptosis-inducing signaling. Since mutations in apoptosis pathways are frequent in lymphoma, the impact on CAR-mediated cytotoxicity is of clinical interest. In this study, knockout models of CD19-CAR-NK92 cells were designed, to investigate cytotoxic pathways in vitro. Knockout of perforin 1 (Prf1) and subsequent abrogation of the perforin/granzyme pathway dramatically reduced the cytotoxicity of CD19-CAR-NK92 cells. In contrast, knockout of FasL and inhibition of TRAIL (tumor necrosis factor-related apoptosis-inducing ligands) did not impair cytotoxicity in most conditions. In conclusion, these results indicate the perforin/granzyme pathway as the major pathway to mediate cytotoxicity in CD19-CAR-NK92 cells.
Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Perforina , Receptores Quiméricos de Antígenos/genética , Granzimas/metabolismo , Antígenos CD19 , Factor de Necrosis Tumoral alfa , Citotoxicidad InmunológicaRESUMEN
Pyroptosis, an inflammatory programmed cell death, has been suggested as a novel molecular mechanism for the treatment of hepatocellular carcinoma (HCC) with chemotherapeutic agents. Recent studies showed that natural killer (NK) cells could inhibit apoptosis and regulate the progression of pyroptosis in tumor cells. Schisandrin B (Sch B), a lignan isolated from Schisandrae chinensis (Turcz.) Baill. (Schisandraceae) Fructus, has various pharmacological activities including anti-cancer effects. The purpose of this study was to investigate the effect of NK cells on Sch B's regulation of pyroptosis in HCC cells and the molecular mechanisms implicated. The results showed that Sch B alone could decrease cell viability and induce apoptosis in HepG2 cells. However, Sch B induced apoptosis in HepG2 cells was transformed into pyroptosis in the presence of NK cells. The mechanisms underlying NK cell's effect on pyroptosis in Sch B-treated HepG2 cells was related to its activation of caspase 3-Gasdermin E (GSDME). Further studies revealed that NK cell induced caspase 3 activation was derived from its activation of perforin-granzyme B pathway. This study explored the effect of Sch B and NK cells on pyroptosis in HepG2 cells and revealed that perforin-granzyme B-caspase 3-GSDME pathway is involved in the process of pyroptosis. These results proposed an immunomodulatory mechanism of Sch B on HepG2 cells pyroptosis and suggested Sch B as a promising immunotherapy combination partner for the treatment of HCC.
Asunto(s)
Carcinoma Hepatocelular , Lignanos , Neoplasias Hepáticas , Humanos , Piroptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Células Hep G2 , Caspasa 3/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Lignanos/farmacología , Células Asesinas Naturales/metabolismoRESUMEN
The NK-92 cell line, established in 1992, mirrors all the characteristics of highly active blood natural killer (NK) cells but with much broader and greater cytotoxicity. The cell line was established from the blood cells of a patient with lymphoma and has been made widely available for research since it was deposited into the American Type Culture Collection in 1998. The worldwide distribution of NK-92 cells has led to a plethora of scientific discoveries that have greatly increased the understanding of NK-cell biology. NK-92 cells also have been developed for clinical use, overcoming the challenges of obtaining and expanding NK cells from donor or patient blood. More than 100 patients with cancer have now been treated all over the world with unmodified or genetically engineered NK-92 cells. Modified cells include high-affinity Fc-receptor expressing NK-92 cells (haNKR) and various chimeric antigen receptor targeted haNK cells (t-haNKTM). Infusions of either unmodified or modified NK-92 cells have been reported to be safe and efficacious, leading in some cases to disease remission even in patients who had failed multiple previous lines of therapy. It is the purpose of this review to distill the plethora of scientific data on NK-92 cells and its genetic variants, highlighting relevant experimental findings that have contributed to a better understanding of NK cell biology and summarize the therapeutic potential of these cells for treatment of cancer and infections.
Asunto(s)
Linfoma , Receptores Quiméricos de Antígenos , Humanos , Línea Celular Tumoral , Células Asesinas Naturales , Inmunoterapia , Receptores Quiméricos de Antígenos/metabolismo , Inmunoterapia AdoptivaRESUMEN
Cancer treatment with natural killer (NK) cell immunotherapy is promising. NK cells can recognize and kill cancer cells without sensitization, making them a potential cancer treatment alternative. To improve clinical efficacy and safety, more research is needed. Enhancing NK cell function improves therapeutic efficacy. Due to its potent apoptosis induction, Cordycepin, a bioactive compound from Cordyceps spp., inhibits cancer cell growth. Cordycepin has immunoregulatory properties, making it a promising candidate for combination therapy with NK cell-based immunotherapy. Cordycepin may enhance NK cell function and have clinical applications, but more research is needed. In this study, cordycepin treatment of NK-92 MI cells increased THP-1 and U-251 cell cytotoxicity. Cordycepin also significantly increased the mRNA expression of cytokine-encoding genes, including tumour necrosis factor (TNF), interferon gamma (IFNG), and interleukin 2 (IL2). NK-92 MI cells notably secreted more IFNG and granzyme B. Cordycepin also decreased CD27 and increased CD11b, CD16, and NKG2D in NK-92 MI cells, which improved its anti-cancer ability. In conclusion, cordycepin could enhance NK cell cytotoxicity against cancerous cells for the first time, supporting its use as an alternative immunoactivity agent against cancer cells. Further studies are needed to investigate its efficacy and safety in clinical settings.
Asunto(s)
Interferón gamma , Células Asesinas Naturales , Humanos , Desoxiadenosinas/farmacología , Desoxiadenosinas/uso terapéutico , Factor de Necrosis Tumoral alfaRESUMEN
INTRODUCTION: Chimeric antigen receptor (CAR)-NK cells are considered safer than CAR-T cells due to their short lifetime and production of lower toxicity cytokines. By virtue of unlimited proliferative ability in vitro, NK-92 cells could be utilized as the source for CAR-engineered NK cells. CD22 is highly expressed in B cell lymphoma. The goal of our study was to determine whether CD22 could become an alternative target for CAR-NK-92 therapy against B cell lymphoma. MATERIAL AND METHODS: We first generated m971-BBZ NK-92 that expressed a CAR for binding CD22 in vitro. The expression of CAR was assessed by flow cytometric analysis as well as immunoblotting. The cytotoxicity of the m971-BBZ NK-92 cells towards target lymphoma cells was determined by the luciferase-based cytolysis assay. The production of cytokines in CAR NK-92 cells in response to target cells was evaluated by ELISA assay. Lastly, the cytolytic effect was evaluated by the cytolysis assay mentioned above following irradiation. The level of inhibitory receptor of CAR-expressing cells was assessed by flow cytometry. RESULTS: CD22-specific CAR was expressed on m971-BBZ NK-92 cells successfully. m971-BBZ NK-92 cells efficiently lysed CD22-expressing lymphoma cells and produced large amounts of cytokines after coculture with target cells. Meanwhile, irradiation did not apparently influence the cytotoxicity of m971-BBZ NK-92 cells. Inhibitory receptor detection exhibited a lower level of PD-1 in m971-BBZ NK-92 cells than FMC-63 BBZ T cells after repeated antigen stimulation. CONCLUSIONS: Our data show that adoptive transfer of m971-BBZ NK-92 could serve as a promising strategy for immunotherapy of B cell lymphoma.
RESUMEN
Many therapeutic monoclonal antibodies require binding to Fc γ receptors (FcγRs) for full effect and increasing the binding affinity increases efficacy. Preeminent among the five activating human FcγRs is FcγRIIIa/CD16a expressed by natural killer (NK) cells. CD16a is heavily processed, and recent reports indicate that the composition of the five CD16a asparagine(N)-linked carbohydrates (glycans) impacts affinity. These observations indicate that specific manipulation of CD16a N-glycan composition in CD16a-expressing effector cells including NK cells may improve treatment efficacy. However, it is unclear if modifying the expression of select genes that encode processing enzymes in CD16a-expressing effector cells is sufficient to affect N-glycan composition. We identified substantial processing differences using a glycoproteomics approach by comparing CD16a isolated from two NK cell lines, NK92 and YTS, with CD16a expressed by HEK293F cells and previous reports of CD16a from primary NK cells. Gene expression profiling by RNA-Seq and qRT-PCR revealed expression levels for glycan-modifying genes that correlated with CD16a glycan composition. These results identified a high degree of variability between the processing of the same human protein by different human cell types. N-glycan processing correlated with the expression of glycan-modifying genes and thus explained the substantial differences in CD16a processing by NK cells of different origins.
Asunto(s)
Células Asesinas Naturales/metabolismo , Polisacáridos/genética , Receptores de IgG/metabolismo , Transcriptoma , Línea Celular , Glicopéptidos/análisis , Glicopéptidos/metabolismo , Células HEK293 , Humanos , Células Asesinas Naturales/química , Modelos Moleculares , Receptores de IgG/químicaRESUMEN
BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy has proven to be a valuable new treatment option for patients with B-cell malignancies. However, by applying selective pressure, outgrowth of antigen-negative tumor cells can occur, eventually resulting in relapse. Subsequent rescue by administration of CAR-T cells with different antigen-specificity indicates that those tumor cells are still sensitive to CAR-T treatment and points towards a multi-target strategy. Due to their natural tumor sensitivity and highly cytotoxic nature, natural killer (NK) cells are a compelling alternative to T cells, especially considering the availability of an off-the-shelf unlimited supply in the form of the clinically validated NK-92 cell line. METHODS: Given our goal to develop a flexible system whereby the CAR expression repertoire of the effector cells can be rapidly adapted to the changing antigen expression profile of the target cells, electrotransfection with CD19-/BCMA-CAR mRNA was chosen as CAR loading method in this study. We evaluated the functionality of mRNA-engineered dual-CAR NK-92 against tumor B-cell lines and primary patient samples. In order to test the clinical applicability of the proposed cell therapy product, the effect of irradiation on the proliferative rate and functionality of dual-CAR NK-92 cells was investigated. RESULTS: Co-electroporation of CD19 and BMCA CAR mRNA was highly efficient, resulting in 88.1% dual-CAR NK-92 cells. In terms of CD107a degranulation, and secretion of interferon (IFN)-γ and granzyme B, dual-CAR NK-92 significantly outperformed single-CAR NK-92. More importantly, the killing capacity of dual-CAR NK-92 exceeded 60% of single and dual antigen-expressing cell lines, as well as primary tumor cells, in a 4h co-culture assay at low effector to target ratios, matching that of single-CAR counterparts. Furthermore, our results confirm that dual-CAR NK-92 irradiated with 10 Gy cease to proliferate and are gradually cleared while maintaining their killing capacity. CONCLUSIONS: Here, using the clinically validated NK-92 cell line as a therapeutic cell source, we established a readily accessible and flexible platform for the generation of highly functional dual-targeted CAR-NK cells.
Asunto(s)
Antígeno de Maduración de Linfocitos B , Receptores Quiméricos de Antígenos , Antígeno de Maduración de Linfocitos B/metabolismo , Citotoxicidad Inmunológica , Humanos , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismoRESUMEN
BACKGROUND: The NK cell line NK-92 and its genetically modified variants are receiving attention as immunotherapies to treat a range of malignancies. However, since NK-92 cells are themselves tumors, they require irradiation prior to transfer and are potentially susceptible to attack by patients' immune systems. Here, we investigated NK-92 cell-mediated serial killing for the effects of gamma-irradiation and ligation of the death receptor Fas (CD95), and NK-92 cell susceptibility to attack by activated primary blood NK cells. METHODS: To evaluate serial killing, we used 51Cr-release assays with low NK-92 effector cell to target Raji, Daudi or K562 tumor cell (E:T) ratios to determine killing frequencies at 2-, 4-, 6-, and 8-h. RESULTS: NK-92 cells were able to kill up to 14 Raji cells per NK-92 cell in 8 h. NK-92 cells retained high cytotoxic activity immediately after irradiation with 10 Gy but the cells surviving irradiation lost > 50% activity 1 day after irradiation. Despite high expression of CD95, NK-92 cells maintained their viability following overnight Fas/CD95-ligation but lost some cytotoxic activity. However, 1 day after irradiation, NK-92 cells were more susceptible to Fas ligation, resulting in decreased cytotoxic activity of the cells surviving irradiation. Irradiated NK-92 cells were also susceptible to killing by both unstimulated and IL-2 activated primary NK cells (LAK). In contrast, non-irradiated NK-92 cells were more resistant to attack by NK and LAK cells. CONCLUSIONS: Irradiation is deleterious to both the survival and cytotoxicity mediated by NK-92 cells and renders the NK-92 cells susceptible to Fas-initiated death and death initiated by primary blood NK cells. Therefore, replacement of irradiation as an antiproliferative pretreatment and genetic deletion of Fas and/or NK activation ligands from adoptively transferred cell lines are indicated as new approaches to increase therapeutic efficacy.
Asunto(s)
Citotoxicidad Inmunológica , Células Asesinas Activadas por Linfocinas , Humanos , Células Asesinas NaturalesRESUMEN
Acute promyelocytic leukemia (APL) is liable to induce disseminated intravascular coagulation and has a high early mortality. Although the combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) has significantly improved the complete remission rate, there are still some patients developed drug resistance. Growing evidence suggests that natural killer (NK) cell-mediated immunotherapy as a new treatment can help slow the progression of hematological malignancies. Previous studies also indicated that some tumors exhibited excellent responsiveness to NK cells in vitro. However, many clinical trial results showed that the anti-tumor effect of NK cells infusion alone was not ideal, which may be related to the inactivation of infiltrating NK cells caused by strong immunosuppression in tumor microenvironment, but the specific mechanism remains to be further explored. In the present study, we demonstrated that low doses of tetra-arsenic tetra-sulfide (As4S4) not only enhanced the in vitro killing of NK-92MI against ATRA-resistant APL cells, but also strengthened the growth inhibition of xenografted tumors in APL mouse model. Mechanistically, As4S4 altered the expression of natural killer group 2 member D ligands (NKG2DLs) and cytokines in APL cells, and PD-1 in NK-92MI cells. In addition, database retrieval results further revealed the relationship between the differentially regulated molecules of As4S4 and immune infiltration and its impact on prognosis. In conclusion, our findings confirmed the potential of As4S4 as an adjuvant for NK-92MI in the treatment of ATRA-resistant APL.
Asunto(s)
Arsénico , Arsenicales , Leucemia Promielocítica Aguda , Animales , Ratones , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Arsénico/uso terapéutico , Arsenicales/farmacología , Arsenicales/uso terapéutico , Tretinoina/farmacología , Tretinoina/uso terapéutico , Sulfuros/farmacología , Sulfuros/uso terapéutico , Inmunoterapia , Óxidos/farmacología , Óxidos/uso terapéutico , Microambiente TumoralRESUMEN
Success of adoptive cell therapy mainly depends on the ability of immune cells to persist and function optimally in the immunosuppressive tumor microenvironment. Although present at the cancer site, immune cells become exhausted and/or inhibited, due to the presence of inhibitory receptors such as PD-L1 on malignant cells. Novel genetic strategies to manipulate the PD1/PD-L1 axis comprise (i) PD-1 reversion where the receptor intracellular domain is replaced with an activating unit, (ii) the use of anti-PD-L1 CAR or (iii) the disruption of the PD-1 gene. We here present an alternative strategy to equip therapeutic cells with a truncated PD-1 (tPD-1) to abrogate PD-1/PD-L1 inhibition. We show that engagement of tPD-1 with PD-L1-positive tumor unleashes NK-92 activity in vitro. Furthermore, this binding was sufficiently strong to induce killing of targets otherwise not recognized by NK-92, thus increasing the range of targets. In vivo treatment with NK-92 tPD-1 cells led to reduced tumor growth and improved survival. Importantly, tPD-1 did not interfere with tumor recognition in PD-L1 negative conditions. Thus, tPD-1 represents a straightforward method for improving antitumor immunity and revealing new targets through PD-L1 positivity.