Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Molecules ; 27(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35889305

RESUMEN

Moringa oleifera leaf polyphenols (Mopp) were encapsulated with phytosomes to enhance their efficacy on 4T1 cancer cell lines. The Mopp were extracted via microwave-assisted extraction. Moringa oleifera polyphenol-loaded phytosomes (MoP) were prepared with the nanoprecipitation method and characterized using the dynamic light scattering and dialysis membrane techniques. The in vitro cytotoxic and antiproliferative activity were investigated with the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazole) MTT assay. Acute toxicity was assessed using Swiss albino mice. An MoP particle size of 296 ± 0.29 nm, −40.1 ± 1.19 mV zeta potential, and polydispersity index of 0.106 ± 0.002 were obtained. The total phenolic content was 50.81 ± 0.02 mg GAE/g, while encapsulation efficiency was 90.32 ± 0.11%. The drug release profiles demonstrated biphasic and prolonged subsequent sustained release. In vitro assays indicated MoP had a low cytotoxicity effect of 98.84 ± 0.53 µg/mL, doxorubicin was 68.35 ± 3.508, and Mopp was 212.9 ± 1.30 µg/mL. Moreover, MoP exhibited the highest antiproliferative effect on 4T1 cancer cells with an inhibitory concentration of 7.73 ± 2.87 µg/mL and selectivity index > 3. The results indicated a significant difference (p ≤ 0.001) in MoP when compared to Mopp and doxorubicin. The in vivo investigation showed the safety of MoP at a dose below 2000 mg/kg. The present findings suggest that MoP may serve as an effective and promising formulation for breast cancer drug delivery and therapy.


Asunto(s)
Moringa oleifera , Neoplasias , Animales , Doxorrubicina/farmacología , Humanos , Células MCF-7 , Ratones , Extractos Vegetales/farmacología , Hojas de la Planta , Polifenoles/farmacología
2.
Anal Bioanal Chem ; 413(15): 3999-4012, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33893833

RESUMEN

Natural nanomaterials, which play a very important role in environmental processes, are so far poorly studied. Firstly, the separation of nanoparticles from the bulk sample is a challenge. Secondly, the absence of reference natural nanomaterials makes it impossible to compare the results obtained by different researchers and develop a unified methodology for the separation and characterization of natural nanomaterials. Therefore, the development of reference natural nanomaterials is an urgent need of the environmental analytical chemistry. In this work, mineral nanoparticles (kaolinite, montmorillonite, muscovite, and quartz) have been studied as potential reference natural nanomaterials. A set of analytical methods including coiled-tube field-flow fractionation, scanning electron microscopy, dynamic light scattering, laser diffraction, inductively coupled plasma atomic emission, and mass spectrometry are applied to the separation and characterization of nanoparticles. It has been shown by laser diffraction that 93-98% of separated mineral nanoparticles are in the size range from about 40 to 300 nm, while 2-7% have size up to 830 nm. The size range of particles is confirmed by electron microscopy. Major (Al, Na, K, Ca, Fe), trace (Ti, Co, Cu, Zn, Tl, Pb, Bi, etc.), and rare earth elements have been determined in the suspensions of kaolinite, montmorillonite, and muscovite nanoparticles. Based on Al content, the concentration of mineral nanoparticles in suspensions is estimated. Agglomeration stability (consistency of size distribution) of nanoparticles at pH 6-8 is assessed. It has been shown that muscovite nanoparticles are stable at pH 7-8, whereas montmorillonite nanoparticles are stable only at pH 8 for at least 4 weeks. A noticeable agglomeration of kaolinite nanoparticles is observed at pH 6-8. Due to the low concentration of quartz nanoparticles, their characterization and stability assessment are hindered. The challenges of the development of reference natural nanomaterials are discussed.

3.
Toxins (Basel) ; 16(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251256

RESUMEN

With the rapid advancement of nanotechnology and its widespread applications, increasing amounts of manufactured and natural nanoparticles (NPs) have been tested for their potential utilization in treating harmful cyanobacterial blooms (HCBs). NPs can be used as a photocatalyst, algaecide, adsorbent, flocculant, or coagulant. The primary mechanisms explored for NPs to mitigate HCBs include photocatalysis, metal ion-induced cytotoxicity, physical disruption of the cell membrane, light-shielding, flocculation/coagulation/sedimentation of cyanobacterial cells, and the removal of phosphorus (P) and cyanotoxins from bloom water by adsorption. As an emerging and promising chemical/physical approach for HCB mitigation, versatile NP-based technologies offer great advantages, such as being environmentally benign, cost-effective, highly efficient, recyclable, and adaptable. The challenges we face include cost reduction, scalability, and impacts on non-target species co-inhabiting in the same environment. Further efforts are required to scale up to real-world operations through developing more efficient, recoverable, reusable, and deployable NP-based lattices or materials that are adaptable to bloom events in different water bodies of different sizes, such as reservoirs, lakes, rivers, and marine environments.


Asunto(s)
Cianobacterias , Nanopartículas , Adsorción , Bioensayo , Agua
4.
Int J Biol Macromol ; 228: 374-384, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36581028

RESUMEN

Public health and environmental security are seriously at risk due to the growing contamination of pathogenic microorganisms. Therefore, effective antimicrobials are urgently needed. In our study, the antimicrobial effects of three types of nanoparticles were investigated with phage. The biosynthesis of nanoparticles was confirmed based on the color change and shapes, which tended to be mono-dispersed with a spherical shape with a size range of 20-35 nm for Ag-CS-NPs; 15-30 nm for Phage-CS-NPs (Ph-CS-NPs); and 5-35 nm for Propolis-CS-NPs (Pro-CS-NPs). Nanoparticles displayed peaks between 380-420 nm, 335-380 nm, and below 335 nm for Ag-CS-NPs, Pro-CS-NPs, and Ph-CS NPs, respectively. Throughout the three synthesized nanoparticles, AgCs NPs represented a higher antibacterial effect in combination with phages. It showed MIC against S. sciuri, S. Typhimurium, and P. aeruginosa between 31.2 and 62.2 µg/mL and MBC at 500, 62.5, and 31.2 µg/mL, respectively, while in combination with phages showed MIC at 62.2, 31.2, and 15.6 µg/mL, respectively and MBC at 125, 62.2, and 15.6 µg/mL, respectively. Furthermore, a significant killing efficiency was observed with 16.5-30.1 µg/mL of Ag-CS NPs combined with phages. In conclusion, Ag-CS-NPs with phages present potential bactericidal and inhibitory effects against Gram-positive and Gram-negative bacteria, as well as against the production of biofilms.


Asunto(s)
Quitosano , Nanopartículas del Metal , Nanopartículas , Antibacterianos/farmacología , Quitosano/farmacología , Bacterias Grampositivas , Bacterias Gramnegativas , Bacterias , Pruebas de Sensibilidad Microbiana
5.
Biosens Bioelectron ; 219: 114807, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327557

RESUMEN

Apart from the obvious benefit of "trash-to-treasure", the acquisition of natural nanomaterials from cheap and renewable waste has been intensively researched because of various bioactivities and physical-chemical features. Herein, for the first time, we employed natural cuttlefish ink nanoparticles (CINPs) as a multifunctional label and designed colorimetric-photothermal dual-mode lateral flow immunoassays (CINPs-mediated CPLFIA) for sensitive detection of clenbuterol (CL). The accessibility and renewability of CINPs overcome barriers that artificial nanomaterials face, such as complex manufacturing and relatively high costs. Additionally, inspired by the mussel adhesion, the bio-affinity of CINPs, such as antibody coupling and preservation, was investigated and showed to be considerably superior to Au NPs, leading to significantly increased immunosensor sensitivity. Meanwhile, CINPs exhibit excellent photothermal conversion efficiency for dual-signal production, avoiding the effect of environmental elements (particularly light) for colorimetric mode. Besides, the biosensor was integrated with a smartphone and a thermal imager for portable sensing. After optimization, the detection limit of CINPs-mediated CPLFIA was 0.179 ng mL-1 (colorimetric mode) and 0.076 ng mL-1 (photothermal mode), which were significantly lower than traditional gold nanoparticles-based LFIA (0.786 ng mL-1). This research attempted to explain the rise in sensitivity. From food waste to food supervision, this research explores the hidden value of natural resources.

6.
Front Bioeng Biotechnol ; 10: 952523, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159672

RESUMEN

With the advancement in the field of nanotechnology, different approaches for the synthesis of nanomaterials have been formulated, among which the bioinspired or biomimetic nanoplatforms have been utilized for different biomedical applications. In this context, bioinspired or biomimetic nanoparticles (NPs) have been synthesized in which the inspiration for synthesis is taken from nature or its components. Innovations in bioengineering tools and bio-conjugation chemistry have enabled scientists to develop novel types of such nanoplatforms. They have several advantages over normal synthesis protocols. In this review, we 1) summarized nanomaterial types and their advancements in bioinspired nanotechnology therapies; 2) discussed the major types, novel preparation methods, and synthesis progress of NPs in current biomedical fields; 3) gave a brief account of the need for synthesizing NPs via a bioinspired route rather than their common route; 4) highlighted the updated information on the biomimetic synthesis of different types of NPs; and 5) provided future perspectives in the synthesis of novel NPs for their potential applications in biomedical sciences.

7.
Nanomaterials (Basel) ; 12(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35159921

RESUMEN

Nanoparticles (NPs) have remarkable properties for delivering therapeutic drugs to the body's targeted cells. NPs have shown to be significantly more efficient as drug delivery carriers than micron-sized particles, which are quickly eliminated by the immune system. Biopolymer-based polymeric nanoparticles (PNPs) are colloidal systems composed of either natural or synthetic polymers and can be synthesized by the direct polymerization of monomers (e.g., emulsion polymerization, surfactant-free emulsion polymerization, mini-emulsion polymerization, micro-emulsion polymerization, and microbial polymerization) or by the dispersion of preformed polymers (e.g., nanoprecipitation, emulsification solvent evaporation, emulsification solvent diffusion, and salting-out). The desired characteristics of NPs and their target applications are determining factors in the choice of method used for their production. This review article aims to shed light on the different methods employed for the production of PNPs and to discuss the effect of experimental parameters on the physicochemical properties of PNPs. Thus, this review highlights specific properties of PNPs that can be tailored to be employed as drug carriers, especially in hospitals for point-of-care diagnostics for targeted therapies.

8.
Int J Nanomedicine ; 16: 6297-6311, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552326

RESUMEN

PURPOSE: This study aimed to evaluate the pharmaceutical and pharmacokinetic effects of the natural nanoparticles (Nnps) isolated from Coptidis Rhizoma extract on berberine hydrochloride (BBR) and systematically explore the related mechanisms. METHODS: Firstly, Nnps were isolated from Coptidis Rhizoma extract and then an Nnps-BBR complex was prepared. After qualitative and quantitative analysis in terms of size, Zeta potential, morphology, and composition of the Nnps and the Nnps-BBR complex, the effects of the Nnps on the crystallization of BBR were characterized. The effects of the Nnps on the solubility and dissolution of BBR were then evaluated. In addition, the effects of the Nnps on BBR in terms of cellular uptake, transmembrane transport, metabolic stability, and pharmacokinetics in mice were studied. RESULTS: The Nnps had an average size of 166.6 ± 1.3 nm and Zeta potential of -12.5 ± 0.2 mV. The Nnps were formed by denaturation of co-existing plant proteins with molecular weight < 30 kDa. The Nnps adsorbed or dispersed BBR, thereby promoting BBR transformation from crystal to amorphous form and improving its solubility and dissolution. The Nnps carried and promoted BBR uptake by human colonic adenocarcinoma (Caco-2) cells via caveolae-mediated endocytosis, reducing P-gp-mediated efflux of BBR in mice gut sacs and Madin-Darby canine kidney cells stably expressing the transporter P-gp (MDCK-MDR1) cells. Moreover, the Nnps improved BBR metabolic stability in mouse intestinal S9, promoting BBR intestinal absorption in mice, as shown by increased peak BBR concentration (Cmax, 1182.3 vs 310.2 ng/mL) and exposure level (AUC0-12 h, 2842.8 vs 1447.0 ng·h/mL) in mouse portal vein. In addition, the Nnps increased BBR exposure level in mouse livers (95,443.2 vs 43,586.2 ng·h/g liver). CONCLUSION: The proteinaceous nanoparticles isolated from Coptidis Rhizoma extract can form a natural nano-drug delivery system with BBR, thereby significantly improving the pharmacokinetics of oral BBR.


Asunto(s)
Berberina , Medicamentos Herbarios Chinos , Animales , Células CACO-2 , Coptis chinensis , Perros , Humanos , Absorción Intestinal , Ratones
9.
ACS Nano ; 15(6): 9717-9731, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34124884

RESUMEN

Contaminant-bearing fine biochar particles (FBPs) may exert significantly different toxicity profiles from their contaminant-free counterparts. While the role of FBPs in promoting contaminant uptake has been recognized, it is unclear whether the binding of contaminants can modify the biochemical reactivity and toxicological profiles of FBPs. Here, we show that binding of benzo[a]pyrene (B(a)P, a model polycyclic aromatic hydrocarbon) at environmentally relevant exposure concentrations markedly alters the cytotoxicity of FBPs to macrophages, an important line of innate immune defense against airborne particulate matters (PMs). Specifically, B(a)P-bearing FBPs elicit more severe disruption of the phospholipid membrane, endocytosis, oxidative stress, autophagy, and compromised innate immune defense, as evidenced by blunted proinflammatory effects, compared with B(a)P-free FBPs. Notably, the altered cytotoxicity cannot be attributed to the dissolution of B(a)P from the B(a)P-bearing FBPs, but appears to be related to B(a)P adsorption-induced changes of FBPs bioreactivity toward macrophages. Our findings highlight the significance of environmental chemical transformation in altering the bioreactivity and toxicity of PMs and call for further studies on other types of carbonaceous nanoparticles and additional exposure scenarios.


Asunto(s)
Benzo(a)pireno , Material Particulado , Autofagia , Benzo(a)pireno/toxicidad , Carbón Orgánico , Macrófagos , Material Particulado/toxicidad
10.
Environ Sci Pollut Res Int ; 28(24): 31850-31860, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33619622

RESUMEN

Dimensional and elemental characterization of environmental nanoparticles is a challenging task that requires the use of a set of complementary analytical methods. Asymmetric flow field-flow fractionation coupled with UV-Vis, multi-angle laser light scattering and ICP-MS detection was applied to study the nanoparticle fraction of a volcanic ash sample, in a Milli-Q water suspension at pH 6.8. It has been shown that the separated by sedimentation nanoparticle fraction of the Klyuchevskoy volcano ash suspension contains 3 polydisperse populations for which size ranges (expressed in gyration radius, rG), hydrodynamic behaviours (evaluated via shape index) and elemental compositions are different. These 3 populations did not dissolve over the 72-h study but aggregated and settled out differently. Thus, the population of particles with gyration radii <140 nm (P1), which contained 6% Al2O3 and represented approximately 20% by mass of the nanoparticle fraction, remained in suspension without observable aggregation. The populations P2 and P3, which represented 67% and 13% by mass in the initial suspension, covered the rG range 25-250 nm and contained 17% and 15% Al2O3, respectively. Over time, populations P2 and P3 aggregated and their concentration in suspension at 72 h decreased by approximately 40% compared with the initial suspension. The decrease of these nanoparticle populations occurred either from the beginning of the temporal monitoring (P2) or after 30 h (P3). Aggregation generated a new population (P4) in suspension with rG up to 300 nm and mostly consisting of P2. This population represented only up to 6 to 7% of the nanoparticle fraction and decreased beyond 50 h. As a result, the trace elements present in the nanoparticle fraction and monitored (Cu and La) were also no longer found in the suspension. The results obtained can offer additional insights into the fate of volcanic ash nanoparticles in the environment.


Asunto(s)
Fraccionamiento de Campo-Flujo , Nanopartículas del Metal , Nanopartículas , Nanopartículas del Metal/análisis , Nanopartículas/análisis , Tamaño de la Partícula , Erupciones Volcánicas , Agua
11.
Pharmaceutics ; 14(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35056915

RESUMEN

Cancer represents one of the leading causes of morbidity and mortality worldwide, imposing an urgent need to develop more efficient treatment alternatives. In this respect, much attention has been drawn from conventional cancer treatments to more modern approaches, such as the use of nanotechnology. Extensive research has been done for designing innovative nanoparticles able to specifically target tumor cells and ensure the controlled release of anticancer agents. To avoid the potential toxicity of synthetic materials, natural nanoparticles started to attract increasing scientific interest. In this context, this paper aims to review the most important natural nanoparticles used as active ingredients (e.g., polyphenols, polysaccharides, proteins, and sterol-like compounds) or as carriers (e.g., proteins, polysaccharides, viral nanoparticles, and exosomes) of various anticancer moieties, focusing on their recent applications in treating diverse malignancies.

12.
Chemosphere ; 243: 125413, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31765900

RESUMEN

Naturally silver nanoparticles (AgNPs) have been widely observed in ore deposits, coal, natural water and soil environment. Identifying the source of these naturally AgNPs could be helpful for the elucidation of the geochemical cycle of Ag+ and AgNPs. This paper presents the formation of AgNPs by reducing Ag+ in the presence of soil organic matter (SOM) under various environmentally relevant conditions. The formation of AgNPs associated with various SOM (peat humic acid (PHA), peat fulvic acid (PFA), and commercial humic acids (HA-1 and HA-2)) was determined and compared. The physicochemical properties of the tested SOM were studied by electron paramagnetic resonance (EPR) and attenuated total reflection-infrared (ATR-FTIR) techniques. The formation of AgNPs depended on reductive reactions mediated by SOM. Other influential parameters that influenced the formation of AgNPs included concentrations of Ag+ and SOM and the reaction temperature on AgNPs. The produced AgNPs were characterized by transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The mean hydrodynamic diameters of AgNPs associated with PHA and PFA were in range from 2.5 to 15 nm, which were smaller than that produced from HA-1 and HA-2 in the range from 20 to 120 nm. Two different Ag states, i.e., Ag2O and Ag0 species, were observed by XPS technique. The results indicated that the formation of AgNPs depends largely on the types and the properties of natural organic matter. These findings have important implications for the fate of AgNPs under the soil environment.


Asunto(s)
Nanopartículas del Metal/química , Plata/química , Suelo/química , Benzopiranos/química , Sustancias Húmicas , Microscopía Electrónica de Transmisión , Temperatura
13.
Nanomaterials (Basel) ; 10(6)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486215

RESUMEN

Over the last decade, exosomes from diverse biological sources have been proposed as new natural platforms in drug delivery. Translation of these nanometric tools to clinical practice requires deep knowledge of their pharmacokinetic properties and biodistribution. The pharmacokinetic properties of exosomes are sometimes evaluated using biochemical and histological techniques that are considerably invasive. As an alternative, we present radiochemical labeling of milk-derived exosomes based on reduced 99mTc (IV) without modifying biological and physicochemical properties. This approach enables longitudinal tracking of natural exosomes by non-invasive single photon emission computed tomography (SPECT) imaging and the evaluation of their pharmacokinetic properties according to the route of administration.

14.
Materials (Basel) ; 13(15)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32727156

RESUMEN

Immature dendritic cells (IDc), 'dexosomes', are promising natural nanomaterials for cancer diagnose and therapy. Dexosomes were isolated purely from small-scale-up production by using t25-cell-culture flasks. Total RNA was measured as 1.43 ± 0.33 ng/106 cell. Despite the fact that they possessed a surface that is highly abundant in protein, this did not become a significant effect on the DOX loading amount. Ultrasonication was used for doxorubicin (DOX) loading into the IDc dexosomes. In accordance with the literature, three candidate DOX formulations were designed as IC50 values; dExoIII, 1.8 µg/mL, dExoII, 1.2 µg/mL, and dExoI, 0.6 µg/mL, respectively. Formulations were evaluated by MTT test against highly metastatic A549 (CCL-185; ATTC) cell line. Confocal images of unloaded (naïve) were obtained by CellMaskTM membrane staining before DOX loading. Although, dexosome membranes were highly durable subsequent to ultrasonication, it was observed that dexosomes could not be stable above 70 °C during the SEM-image analyses. dExoIII displayed sustained release profile. It was found that dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) results were in good agreement with each other. Zeta potentials of loaded dexosomes have approximately between -15 to -20 mV; and, their sizes are 150 nm even after ultrasonication. IDcJAWSII dexosomes can be able to be utilized as the "BioNanoMaterial" after DOX loading via ultrasonication technique.

15.
Biomed Pharmacother ; 116: 108852, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30999152

RESUMEN

Cancer continues to be the leading cause of death worldwide. Hepatocellular carcinoma (HCC), a prominent form of liver cancer, is the second leading cause of cancer-related deaths, thanks to the lack of efficient diagnostic tools and consequently late diagnosis and to the scarce of available suitable treatments. Thus, novel approaches to treat HCC are in demand. The fast-growing field of nanotechnology offers infinite possibilities to design materials in the nanoscale with unique properties due to their high surface area and small size. Nanotechnology enabled scientists to design drug delivery systems that serve multiple purposes including treatment, diagnostics and imaging. This review provides an update on the overall concept and potential of cancer nanotechnology; highlights the advances made particularly toward therapeutic nanomaterials targeting HCC. Obstacles hindering further development of nanomaterials -mediated cancer therapy will also be discussed.


Asunto(s)
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Nanoestructuras/química , Animales , Antioxidantes/farmacología , Sistemas de Liberación de Medicamentos , Humanos , Nanoestructuras/toxicidad , Publicaciones
16.
Sci Total Environ ; 653: 1042-1051, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30759545

RESUMEN

Global production of engineered nanoparticles (ENPs) continues to increase due to the demand of enabling properties in consumer products and industrial applications. Release of individual or aggregates of ENPs have been shown to interact with one another subsequently resulting in adverse biological effects. This review focuses on silver nanoparticles (AgNPs), which are currently used in numerous applications, including but not limited to antibacterial action. Consequently, the release of AgNPs into the aquatic environment, the dissociation into ions, the binding to organic matter, reactions with other metal-based materials, and disruption of normal biological and ecological processes at the cellular level are all potential negative effects of AgNPs usage. The potential sources of AgNPs includes leaching of intact particles from consumer products, disposal of waste from industrial processes, intentional release into contaminated waters, and the natural formation of AgNPs in surface and ground water. Formation of natural AgNPs is greatly influenced by different chemical parameters including: pH, oxygen levels, and the presence of organic matter, which results in AgNPs that are stable for several months. Both engineered and natural AgNPs can interact with metal and metal oxide particles/nanoparticles. However, information on the chemical and toxicological interactions between AgNPs and other nanoparticles is limited. We have presented current knowledge on the interactions of AgNPs with gold nanoparticles (AuNPs) and titanium dioxide nanoparticles (TiO2 NPs). The interaction between AgNPs and AuNPs result in stable bimetallic Ag-Au alloy NPs. Whereas the interaction of AgNPs with TiO2 NPs under dark and light conditions results in the release of Ag+ ions, which may be subsequently converted back into AgNPs and adsorb on TiO2 NPs. The potential chemical mechanisms and toxic effects of AgNPs with AuNPs and TiO2 NPs are discussed within this review and show that further investigation is warranted.

17.
Environ Sci Pollut Res Int ; 26(6): 5251-5266, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29429112

RESUMEN

This study investigates the spatiotemporal variability of major and trace elements, dissolved organic carbon (DOC), total dissolved solids (TDS), and suspended particulate matter (SPM) in surface waters of several hydrosystems of the Loire River watershed in France. In particular, this study aims to delineate the impact of the abovementioned water physicochemical parameters on natural iron and manganese physical speciation (homoaggregation/heteroaggregation) among fine colloidal and dissolved (< 10 nm), colloidal (10-450 nm) and particulate (> 450 nm) phases in Loire River watershed. Results show that the chemistry of the Loire River watershed is controlled by two end members: magmatic and metamorphic petrographic context on the upper part of the watershed; and sedimentary rocks for the middle and low part of the Loire. The percentage of particulate Fe and Mn increased downstream concurrent with the increase in SPM and major cations concentration, whereas the percentage of colloidal Fe and Mn decreased downstream. Transmission electron microscopy analyses of the colloidal and particulate fractions (from the non-filtered water sample) revealed that heteroaggregation of Fe and Mn rich natural nanoparticles and natural organic matter to the particulate phase is the dominant mechanism. The heteroaggregation controls the partitioning of Fe and Mn in the different fractions, potentially due to the increase in the ionic strength, and divalent cations concentration downstream, and SPM concentration. These findings imply that SPM concentration plays an important role in controlling the fate and behavior of Fe and Mn in various sized fractions. Graphical abstract Physical speciation by heteroaggregation of (Fe-Mn) compounds: high [SPM] → [Fe-Mn] particulate faction; low {SPM] → [Fe-Mn] colloid-dissolved fraction.


Asunto(s)
Metales/análisis , Material Particulado/análisis , Contaminantes Químicos del Agua/análisis , Coloides/química , Monitoreo del Ambiente , Francia , Hierro/análisis , Hierro/química , Manganeso/análisis , Metales/química , Material Particulado/química , Ríos , Contaminantes Químicos del Agua/química
18.
Sci Total Environ ; 466-467: 577-85, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23959215

RESUMEN

Hematite nanoparticles (NPs) were studied as a sorbent for hydrophobic organic contaminants (OCs) under natural ambient conditions through specially designed contrasting solution chemistry of electrolyte. Ionizable pentachlorophenol (PCP) and non-ionizable phenanthrene (PHE) were selected as representative OCs. The sorption capacities of PCP and PHE were pH-dependent, and a larger amount of PCP was sorbed at pH values below its pKa (4.75). However, the PHE sorption capacity was higher at relatively high or low pHs (e.g. below 4.0 and above 10.0), possibly due to the larger available surface area of the hematite NPs, caused by the higher values of net charges and charge density. Changes in pH might thus affect the sorption of OCs by hematite NPs, through modification of the surface characteristics of the sorbent and the electronic properties of the sorbate molecules. The influence of different ionic strengths indicated that the amounts of PCP and PHE sorbed by hematite NPs decreased as a concentration function of different types of ions (e.g. Na(+), K(+), Mg(2+) and Ca(2+)), with the underlying mechanism possibly being due to four interactions i.e. hydrogen-bonding, competitive sorption by ions in the ambient solution, screening effects and aggregation effects. The results confirmed that the surface chemistry of hematite NPs, the chemical properties of PCP and PHE, and solution chemistry (e.g. pH and ionic strength) of the electrolyte all played an important role in PCP and PHE sorption by hematite NPs. By comparison of both sorption capacity and ecologic advantages, our results suggested that natural hematite NPs would be more competitive and efficient for PCP and PHE sorption than engineered NPs. This finding increases our knowledge regarding the environmental function of natural NPs (such as hematite NPs) for OC remediation through manipulating their interfacial behavior.

19.
J Chromatogr A ; 1372C: 204-211, 2014 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-25465017

RESUMEN

Flow-Field-Flow Fractionation (Flow-FFF), coupled with online detection systems, is one of the most promising tools available for the analysis and characterization of engineered nanoparticles (ENPs) in complex matrices. In order to demonstrate the applicability of Flow-FFF for the detection, quantification, and characterization of engineered gold nanoparticles (AuNPs), model dispersions were prepared containing AuNPs with diameters of 30 or 100nm, natural nanoparticles (NNPs) extracted from a soil sample, and different concentrations of natural organic matter (NOM), which were then used to investigate interactions between the AuNPs and the NNPs. It could be shown that light scattering detection can be used to evaluate the fractionation performance of the pure NNPs, but not the fractionation performance of the mixed samples that also contained AuNPs because of specific interactions between the AuNPs and the laser light. A combination of detectors (i.e. light absorbance and inductively coupled plasma mass spectrometry (ICP-MS)) was found to be useful for differentiating between heteroaggregation and homoaggregation of the nanoparticles (NPs). The addition of NOM to samples containing 30nm AuNPs stabilized the AuNPs without affecting the NP size distribution. However, fractograms for samples with no added NOM showed a change in the size distribution, suggesting interactions between the AuNPs and NNPs. This interpretation was supported by unchanged light absorption wavelengths for the AuNPs. In contrast, results for samples containing 100nm AuNPs were inconclusive with respect to recovery and size distributions because of problems with the separation system that probably related to the size and high density of these nanoparticles, highlighting the need for extensive method optimization strategies, even for nanoparticles of the same material but different sizes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA