Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(11): 2438-2455.e22, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37178687

RESUMEN

The generation of distinct messenger RNA isoforms through alternative RNA processing modulates the expression and function of genes, often in a cell-type-specific manner. Here, we assess the regulatory relationships between transcription initiation, alternative splicing, and 3' end site selection. Applying long-read sequencing to accurately represent even the longest transcripts from end to end, we quantify mRNA isoforms in Drosophila tissues, including the transcriptionally complex nervous system. We find that in Drosophila heads, as well as in human cerebral organoids, 3' end site choice is globally influenced by the site of transcription initiation (TSS). "Dominant promoters," characterized by specific epigenetic signatures including p300/CBP binding, impose a transcriptional constraint to define splice and polyadenylation variants. In vivo deletion or overexpression of dominant promoters as well as p300/CBP loss disrupted the 3' end expression landscape. Our study demonstrates the crucial impact of TSS choice on the regulation of transcript diversity and tissue identity.


Asunto(s)
Empalme Alternativo , Isoformas de ARN , Sitio de Iniciación de la Transcripción , Humanos , Poliadenilación , Regiones Promotoras Genéticas , Isoformas de ARN/metabolismo , ARN Mensajero/metabolismo
2.
Mol Cell ; 84(10): 1855-1869.e5, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593804

RESUMEN

RNA transcribed from enhancers, i.e., eRNA, has been suggested to directly activate transcription by recruiting transcription factors and co-activators. Although there have been specific examples of eRNA functioning in this way, it is not clear how general this may be. We find that the AT-hook of SWI/SNF preferentially binds RNA and, as part of the esBAF complex, associates with eRNA transcribed from intronic and intergenic regions. Our data suggest that SWI/SNF is globally recruited in cis by eRNA to cell-type-specific enhancers, representative of two distinct stages that mimic early mammalian development, and not at enhancers that are shared between the two stages. In this manner, SWI/SNF facilitates recruitment and/or activation of MLL3/4, p300/CBP, and Mediator to stage-specific enhancers and super-enhancers that regulate the transcription of metabolic and cell lineage priming-related genes. These findings highlight a connection between ATP-dependent chromatin remodeling and eRNA in cell identity and typical- and super-enhancer activation.


Asunto(s)
Linaje de la Célula , ADN Helicasas , Elementos de Facilitación Genéticos , Proteínas Nucleares , Factores de Transcripción , Animales , Humanos , Linaje de la Célula/genética , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
Mol Cell ; 81(10): 2166-2182.e6, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33765415

RESUMEN

The metazoan-specific acetyltransferase p300/CBP is involved in activating signal-induced, enhancer-mediated transcription of cell-type-specific genes. However, the global kinetics and mechanisms of p300/CBP activity-dependent transcription activation remain poorly understood. We performed genome-wide, time-resolved analyses to show that enhancers and super-enhancers are dynamically activated through p300/CBP-catalyzed acetylation, deactivated by the opposing deacetylase activity, and kinetic acetylation directly contributes to maintaining cell identity at very rapid (minutes) timescales. The acetyltransferase activity is dispensable for the recruitment of p300/CBP and transcription factors but essential for promoting the recruitment of TFIID and RNAPII at virtually all enhancers and enhancer-regulated genes. This identifies pre-initiation complex assembly as a dynamically controlled step in the transcription cycle and reveals p300/CBP-catalyzed acetylation as the signal that specifically promotes transcription initiation at enhancer-regulated genes. We propose that p300/CBP activity uses a "recruit-and-release" mechanism to simultaneously promote RNAPII recruitment and pause release and thereby enables kinetic activation of enhancer-mediated transcription.


Asunto(s)
Elementos de Facilitación Genéticos , ARN Polimerasa II/metabolismo , Iniciación de la Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Biocatálisis , Cromatina/metabolismo , Regulación hacia Abajo/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Ratones , Modelos Biológicos , Proteínas Nucleares/metabolismo , Unión Proteica , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo
4.
Mol Cell ; 81(10): 2183-2200.e13, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34019788

RESUMEN

To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.


Asunto(s)
Biocatálisis , Histonas/metabolismo , Oncogenes , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Línea Celular , Cromatina/metabolismo , Proteínas Co-Represoras/metabolismo , Secuencia Conservada , Evolución Molecular , Redes Reguladoras de Genes , Genoma , Histona Desacetilasas/metabolismo , Humanos , Cinética , Metilación , Modelos Biológicos , ARN Polimerasa II/metabolismo
5.
Genes Dev ; 33(13-14): 828-843, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31171701

RESUMEN

Adenovirus transformed cells have a dedifferentiated phenotype. Eliminating E1A in transformed human embryonic kidney cells derepressed ∼2600 genes, generating a gene expression profile closely resembling mesenchymal stem cells (MSCs). This was associated with a dramatic change in cell morphology from one with scant cytoplasm and a globular nucleus to one with increased cytoplasm, extensive actin stress fibers, and actomyosin-dependent flattening against the substratum. E1A-induced hypoacetylation at histone H3 Lys27 and Lys18 (H3K27/18) was reversed. Most of the increase in H3K27/18ac was in enhancers near TEAD transcription factors bound by Hippo signaling-regulated coactivators YAP and TAZ. E1A causes YAP/TAZ cytoplasmic sequestration. After eliminating E1A, YAP/TAZ were transported into nuclei, where they associated with poised enhancers with DNA-bound TEAD4 and H3K4me1. This activation of YAP/TAZ required RHO family GTPase signaling and caused histone acetylation by p300/CBP, chromatin remodeling, and cohesin loading to establish MSC-associated enhancers and then superenhancers. Consistent results were also observed in primary rat embryo kidney cells, human fibroblasts, and human respiratory tract epithelial cells. These results together with earlier studies suggest that YAP/TAZ function in a developmental checkpoint controlled by signaling from the actin cytoskeleton that prevents differentiation of a progenitor cell until it is in the correct cellular and tissue environment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas E1A de Adenovirus/metabolismo , Diferenciación Celular/genética , Silenciador del Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoproteínas/genética , Citoesqueleto de Actina/metabolismo , Adenoviridae , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratas , Transducción de Señal , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
6.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37314181

RESUMEN

As one of the major acetyltransferases in mammalian cells, p300 (also known as EP300) and its highly related protein CBP (also known as CREBBP), collectively termed p300/CBP, is characterized as a key regulator in gene transcription by modulating the acetylation of histones. In recent decades, proteomic analyses have revealed that p300 is also involved in the regulation of various cellular processes by acetylating many non-histone proteins. Among the identified substrates, some are key players involved in different autophagy steps, which together establish p300 as a master regulator of autophagy. Accumulating evidence has shown that p300 activity is controlled by many distinct cellular pathways to regulate autophagy in response to cellular or environmental stimuli. In addition, several small molecules have been shown to regulate autophagy by targeting p300, suggesting that manipulation of p300 activity is sufficient for controlling autophagy. Importantly, dysfunction of p300-regulated autophagy has been implicated in a number of human disorders, such as cancer, aging and neurodegeneration, highlighting p300 as a promising target for the drug development of autophagy-related human disorders. Here, we focus on the roles of p300-mediated protein acetylation in the regulation of autophagy and discuss implications for autophagy-related human disorders.


Asunto(s)
Autofagia , Proteína de Unión a CREB , Proteína p300 Asociada a E1A , Proteómica , Humanos , Acetilación , Acetiltransferasas , Histonas , Proteína p300 Asociada a E1A/metabolismo , Proteína de Unión a CREB/metabolismo
7.
FASEB J ; 38(13): e23780, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38948938

RESUMEN

Aerobic training (AT), an effective form of cardiac rehabilitation, has been shown to be beneficial for cardiac repair and remodeling after myocardial infarction (MI). The p300/CBP-associated factor (PCAF) is one of the most important lysine acetyltransferases and is involved in various biological processes. However, the role of PCAF in AT and AT-mediated cardiac remodeling post-MI has not been determined. Here, we found that the PCAF protein level was significantly increased after MI, while AT blocked the increase in PCAF. AT markedly improved cardiac remodeling in mice after MI by reducing endoplasmic reticulum stress (ERS). In vivo, similar to AT, pharmacological inhibition of PCAF by Embelin improved cardiac recovery and attenuated ERS in MI mice. Furthermore, we observed that both IGF-1, a simulated exercise environment, and Embelin protected from H2O2-induced cardiomyocyte injury, while PCAF overexpression by viruses or the sirtuin inhibitor nicotinamide eliminated the protective effect of IGF-1 in H9C2 cells. Thus, our data indicate that maintaining low PCAF levels plays an essential role in AT-mediated cardiac protection, and PCAF inhibition represents a promising therapeutic target for attenuating cardiac remodeling after MI.


Asunto(s)
Infarto del Miocardio , Condicionamiento Físico Animal , Remodelación Ventricular , Factores de Transcripción p300-CBP , Animales , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratones , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/fisiología , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos
8.
Genes Dev ; 31(15): 1535-1548, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28887413

RESUMEN

Although many features of active transcriptional enhancers have been defined by genomic assays, we lack a clear understanding of the order of events leading to enhancer formation and activation as well as the dynamics of coregulator interactions within the enhancer complex. Here, we used selective loss- or gain-of-function mutants of estrogen receptor α (ERα) to define two distinct phases of ligand-dependent enhancer formation. In the first phase (0-20 min), p300 is recruited to ERα by Mediator as well as p300's acetylhistone-binding bromodomain to promote initial enhancer formation, which is not competent for sustained activation. In the second phase (20-45 min), p300 is recruited to ERα by steroid receptor coregulators (SRCs) for enhancer maturation and maintenance. Successful transition between these two phases ("coregulator switching") is required for proper enhancer function. Failure to recruit p300 during either phase leads to abortive enhancer formation and a lack of target gene expression. Our results reveal an ordered and cooperative assembly of ERα enhancers requiring functional interplay among p300, Mediator, and SRCs, which has implications for hormone-dependent gene regulation in breast cancers. More broadly, our results demonstrate the unexpectedly dynamic nature of coregulator interactions within enhancer complexes, which are likely to be a defining feature of all enhancers.


Asunto(s)
Neoplasias de la Mama/genética , Proteína p300 Asociada a E1A/metabolismo , Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno/genética , Estrógenos/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Cromatina/metabolismo , Proteína p300 Asociada a E1A/genética , Estradiol/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Células MCF-7 , Complejo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Coactivador 2 del Receptor Nuclear/genética , Coactivador 3 de Receptor Nuclear/genética , Estadísticas no Paramétricas , Transcripción Genética
9.
Am J Respir Cell Mol Biol ; 70(2): 110-118, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37874694

RESUMEN

Obstructive sleep apnea (OSA), a widespread breathing disorder, leads to intermittent hypoxia (IH). Patients with OSA and IH-treated rodents exhibit heightened sympathetic nerve activity and hypertension. Previous studies reported transcriptional activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) by HIF-1 (hypoxia-inducible factor-1) contribute to autonomic dysfunction in IH-treated rodents. Lysine acetylation, regulated by KATs (lysine acetyltransferases) and KDACs (lysine deacetylases), activates gene transcription and plays an important role in several physiological and pathological processes. This study tested the hypothesis that acetylation of HIF-1α by p300/CBP (CREB-binding protein) (KAT) activates Nox transcription, leading to sympathetic activation and hypertension. Experiments were performed on pheochromocytoma-12 cells and rats treated with IH. IH increased KAT activity, p300/CBP protein, HIF-1α lysine acetylation, HIF-1 transcription, and HIF-1 binding to the Nox4 gene promoter in pheochromocytoma-12 cells, and these responses were blocked by CTK7A, a selective p300/CBP inhibitor. Plasma norepinephrine (index of sympathetic activation) and blood pressures were elevated in IH-treated rats. These responses were associated with elevated p300/CBP protein, HIF-1α stabilization, transcriptional activation of Nox2 and Nox4 genes, and reactive oxygen species, and all these responses were absent in CTK7A-treated IH rats. These findings suggest lysine acetylation of HIF-1α by p300/CBP is an important contributor to sympathetic excitation and hypertension by IH.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Hipertensión , Feocromocitoma , Apnea Obstructiva del Sueño , Animales , Ratas , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia , Lisina , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo , Apnea Obstructiva del Sueño/complicaciones
10.
Bioorg Chem ; 148: 107427, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38728911

RESUMEN

Histone acetyltransferase CREB-binding protein (CBP) and its homologous protein p300 are key transcriptional activators that can activate oncogene transcription, which present promising targets for cancer therapy. Here, we designed and synthesized a series of p300/CBP targeted low molecular weight PROTACs by assembling the covalent ligand of RNF126 E3 ubiquitin ligase and the bromodomain ligand of the p300/CBP. The optimal molecule A8 could effectively degrade p300 and CBP through the ubiquitin-proteasome system in time- and concentration-dependent manners, with half-maximal degradation (DC50) concentrations of 208.35/454.35 nM and 82.24/79.45 nM for p300/CBP in MV4-11 and Molm13 cell lines after 72 h of treatment. And the degradation of p300/CBP by A8 is dependent on the ubiquitin-proteasome pathway and its simultaneous interactions with the target proteins and RNF126. A8 exhibits good antiproliferative activity in a series of p300/CBP-dependent cancer cells. It could transcriptionally inhibit the expression of c-Myc, induce cell cycle arrest in the G0/G1 phase and apoptosis in MV4-11 cells. This study thus provided us a new chemotype for the development of drug-like PROTACs targeting p300/CBP, which is expected to be applied in cancer therapy.


Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ubiquitina-Proteína Ligasas , Factores de Transcripción p300-CBP , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Apoptosis/efectos de los fármacos , Línea Celular Tumoral
11.
J Transl Med ; 21(1): 201, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932397

RESUMEN

BACKGROUND: The prognosis of pancreatic cancer patients remains relatively poor. Although some patients would receive surgical resection, distant metastasis frequently occurs within one year. Epithelial-mesenchymal transition (EMT), as a pathological mechanism in cancer progression, contributed to the local and distant metastasis of pancreatic cancer. METHODS: Tissue microarray analysis and immunohistochemistry assays were used to compare the expression of EGR1 in pancreatic cancer and normal pancreatic tissues. Transwell chambers were used to evaluated the migration and invasion ability of cancer cells. Immunofluorescence was utilized to assess the expression of E-cadherin. ChIP-qPCR assay was applied to verify the combination of EGR1 and SNAI2 promoter sequences. Dual-luciferase reporter assay was used to detect the gene promoter activation. Co-IP assay was conducted to verify the interaction of EGR1 and p300/CBP. RESULTS: EGR1 was highly expressed in pancreatic cancer rather than normal pancreatic tissues and correlated with poor prognosis and cancer metastasis. EGR1 was proved to enhance the migration and invasion ability of pancreatic cells. Besides, EGR1 was positively correlated with EMT process in pancreatic cancer, via a SNAI2-dependent pathway. P300/CBP was found to play an auxiliary role in the transcriptional activation of the SNAI2 gene by EGR1. Finally, in vivo experiments also proved that EGR1 promoted liver metastasis of pancreatic cancer. CONCLUSION: Our findings implied the EMT-promoting effect of EGR1 in pancreatic cancer and revealed the intrinsic mechanism. Blocking the expression of EGR1 may be a new anticancer strategy for pancreatic cancer.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Pancreáticas , Humanos , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/farmacología , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Neoplasias Pancreáticas
12.
Microb Pathog ; 180: 106135, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37172660

RESUMEN

High-concentrate diet can cause metabolic diseases, such as subacute ruminal acidosis (SARA), and secondary mastitis. To investigate the effect of SARA induced by high-concentrate diet on the lysine lactylation (Kla) and inflammatory responses in the mammary gland of dairy cows and the mechanism between them, we selected twelve mid-lactation Holstein cows with similar body conditions for modelling. They were randomly divided into two groups, fed a low-concentrate diet (LC) and a high-concentrate diet (HC) for 21 days. Our results showed that high-concentrate diet feeding significantly reduced ruminal pH, and the pH was below 5.6 for more than 3 h per day, indicating successful induction of the SARA model. Lactic acid concentrations in mammary gland and plasma were higher in the HC group than that in the LC group. HC diet feeding significantly up-regulated the expression levels of the Pan Kla, H3K18la, p300/CBP and monocarboxylate transporter 1 (MCT1) in the mammary gland. In addition, the mRNA expression levels of inflammatory factors were significantly regulated, including IL-1ß, IL-1α, IL-6, IL-8, SAA3, and TNF-α, while the anti-inflammatory factor IL-10 was down-regulated. The mammary gland of HC group was structurally disorganized with incomplete glandular vesicles, with a large number of detached mammary epithelial cells and inflammatory cells infiltration. The up-regulation of TLR4, TNF-α, p-p65, and p-IκBα indicated that the TLR4/NF-κB signaling pathway was activated. In conclusion, this study found that HC diet feeding can induce SARA and increase the concentration of lactic acid in mammary gland and plasma. Then, lactic acid could be transported into cells by MCT1 and up-regulate the expression level of histone lactylation mediated by p300/CBP, and subsequently promote the activation of TLR4/NF-κB signaling pathway, ultimately causing inflammatory responses in the mammary gland.


Asunto(s)
Enfermedades de los Bovinos , FN-kappa B , Femenino , Animales , Bovinos , FN-kappa B/metabolismo , Regulación hacia Arriba , Histonas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Lactancia , Dieta/veterinaria , Dieta/métodos , Concentración de Iones de Hidrógeno , Leche/metabolismo , Enfermedades de los Bovinos/metabolismo
13.
Bioorg Chem ; 138: 106597, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37245245

RESUMEN

The protein p300 is a positive regulator of cancer progression and is related to many human pathological conditions. To find effective p300/CBP HAT inhibitors, we screened an internal compound library and identified berberine as a lead compound. Next, we designed, synthesized, and screened a series of novel berberine analogs, and discovered that analog 5d was a potent and highly selective p300/CBP HAT inhibitor with IC50 values of 0.070 µM and 1.755 µM for p300 and CBP, respectively. Western blotting further proved that 5d specifically decreased H3K18Ac and interfere with the function of histone acetyltransferase. Although 5d had only a moderate inhibitory effect on the MDA-MB-231 cell line, 5d suppressed the growth of 4T1 tumor growth in mice with a tumor weight inhibition ratio (TWI) of 39.7%. Further, liposomes-encapsulated 5d increased its inhibition of tumor growth to 57.8 % TWI. In addition, 5d has no obvious toxicity to the main organ of mice and the pharmacokinetic study confirmed that 5d has good absorption properties in vivo.


Asunto(s)
Berberina , Neoplasias , Humanos , Factores de Transcripción p300-CBP/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Histona Acetiltransferasas/metabolismo , Acetilación
14.
J Cell Sci ; 133(22)2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33097607

RESUMEN

In our previous report, we demonstrated that one of the catalytic subunits of the IκB kinase (IKK) complex, IKKα (encoded by CHUK), performs an NF-κB-independent cytoprotective role in human hepatoma cells under the treatment of the anti-tumor therapeutic reagent arsenite. IKKα triggers its own degradation, as a feedback loop, by activating p53-dependent autophagy, and therefore contributes substantially to hepatoma cell apoptosis induced by arsenite. Interestingly, IKKα is unable to interact with p53 directly but plays a critical role in mediating p53 phosphorylation (at Ser15) by promoting CHK1 activation and CHK1-p53 complex formation. In the current study, we found that p53 acetylation (at Lys373 and/or Lys382) was also critical for the induction of autophagy and the autophagic degradation of IKKα during the arsenite response. Furthermore, IKKα was involved in p53 acetylation through interaction with the acetyltransferases for p53, p300 (also known as EP300) and CBP (also known as CREBBP) (collectively p300/CBP), inducing CHK1-dependent p300/CBP activation and promoting p300-p53 or CBP-p53 complex formation. Therefore, taken together with the previous report, we conclude that both IKKα- and CHK1-dependent p53 phosphorylation and acetylation contribute to mediating selective autophagy feedback degradation of IKKα during the arsenite-induced proapoptotic responses.


Asunto(s)
Quinasa I-kappa B , Proteína p53 Supresora de Tumor , Acetilación , Autofagia , Retroalimentación , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
15.
EMBO Rep ; 21(1): e48333, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31709752

RESUMEN

Tanning response and melanocyte differentiation are mediated by the central transcription factor MITF. This involves the rapid and selective induction of melanocyte maturation genes, while concomitantly the expression of other effector genes is maintained. In this study, using cell-based and zebrafish model systems, we report on a pH-mediated feed-forward mechanism of epigenetic regulation that enables selective amplification of the melanocyte maturation program. We demonstrate that MITF activation directly elevates the expression of the enzyme carbonic anhydrase 14 (CA14). Nuclear localization of CA14 leads to an increase of the intracellular pH, resulting in the activation of the histone acetyl transferase p300/CBP. In turn, enhanced H3K27 histone acetylation at selected differentiation genes facilitates their amplified expression via MITF. CRISPR-mediated targeted missense mutation of CA14 in zebrafish results in the formation of immature acidic melanocytes with decreased pigmentation, establishing a central role for this mechanism during melanocyte differentiation in vivo. Thus, we describe an epigenetic control system via pH modulation that reinforces cell fate determination by altering chromatin dynamics.


Asunto(s)
Factor de Transcripción Asociado a Microftalmía , Pez Cebra , Acetilación , Animales , Diferenciación Celular , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Concentración de Iones de Hidrógeno , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Pigmentación , Pez Cebra/genética , Pez Cebra/metabolismo
16.
Bioorg Chem ; 124: 105803, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35439627

RESUMEN

p300/CBP bromodomain plays an important role in transcriptional regulation, and its overexpression is closely related to various diseases such as cancers. Two inhibitors of this target are currently in clinical trials but only CCS1477 (A1) have been published with the chemical structure. Herein, we modified the structure of CCS1477 based on the principle of bioisosterism and reasonable scaffold hopping, and discovered a series of new p300 bromodomain inhibitors with improved potency. More tumor cell lines sensitive to p300/CBP bromodomain inhibition were also identified. Among our new inhibitors, (R)-5-methylpyrrolidin-2-one derivitive B4 was the most potent one which showed comparable inhibitory activity against p300 (IC50 = 0.060 µM) as lead A1 (IC50 = 0.064 µM) at molecular level, and performed more potent proliferation inhibitory activities on various tumor cells than A1. Further we found that compound B4 had the high cell permeability and overcame the defect of the high efflux rate of A1, which could also explain the possible reason why B4 showed more potent inhibitory activities on sensitive tumor cells than lead A1. Western blotting analysis proved the target effects that B4 could suppress the expression of c-Myc and reduce H3K27 acetylation significantly. Liver microsomal metabolic stability assay and hERG channel inhibition evaluation illustrate compound B4 is metabolic stabilizable in human liver microsomes and has no hERG risk, which further demonstrate the good drug-likeness of B4. Therefore, compound B4 is a promising compound for further optimization and development.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Humanos , Dominios Proteicos
17.
Acta Pharmacol Sin ; 43(2): 457-469, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33850273

RESUMEN

Mantle cell lymphoma (MCL) is a lymphoproliferative disorder lacking reliable therapies. PI3K pathway contributes to the pathogenesis of MCL, serving as a potential target. However, idelalisib, an FDA-approved drug targeting PI3Kδ, has shown intrinsic resistance in MCL treatment. Here we report that a p300/CBP inhibitor, A-485, could overcome resistance to idelalisib in MCL cells in vitro and in vivo. A-485 was discovered in a combinational drug screening from an epigenetic compound library containing 45 small molecule modulators. We found that A-485, the highly selective catalytic inhibitor of p300 and CBP, was the most potent compound that enhanced the sensitivity of MCL cell line Z-138 to idelalisib. Combination of A-485 and idelalisib remarkably decreased the viability of three MCL cell lines tested. Co-treatment with A-485 and idelalisib in Maver-1 and Z-138 MCL cell xenograft mice for 3 weeks dramatically suppressed the tumor growth by reversing the unsustained inhibition in PI3K downstream signaling. We further demonstrated that p300/CBP inhibition decreased histone acetylation at RTKs gene promoters and reduced transcriptional upregulation of RTKs, thereby inhibiting the downstream persistent activation of MAPK/ERK signaling, which also contributed to the pathogenesis of MCL. Therefore, additional inhibition of p300/CBP blocked MAPK/ERK signaling, which rendered maintaining activation to PI3K-mTOR downstream signals p-S6 and p-4E-BP1, thus leading to suppression of cell growth and tumor progression and eliminating the intrinsic resistance to idelalisib ultimately. Our results provide a promising combination therapy for MCL and highlight the potential use of epigenetic inhibitors targeting p300/CBP to reverse drug resistance in tumor.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/efectos de los fármacos , Linfoma de Células del Manto/tratamiento farmacológico , Purinas/uso terapéutico , Quinazolinonas/uso terapéutico , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Sinergismo Farmacológico , Femenino , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Humanos , Ratones , Trasplante de Neoplasias
18.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142359

RESUMEN

Histone acetyltransferases (HATs) are involved in the epigenetic positive control of gene expression in eukaryotes. CREB-binding proteins (CBP)/p300, a subfamily of highly conserved HATs, have been shown to function as acetylases on both histones and non-histone proteins. In the model plant Arabidopsis thaliana among the five CBP/p300 HATs, HAC1, HAC5 and HAC12 have been shown to be involved in the ethylene signaling pathway. In addition, HAC1 and HAC5 interact and cooperate with the Mediator complex, as in humans. Therefore, it is potentially difficult to discriminate the effect on plant development of the enzymatic activity with respect to their Mediator-related function. Taking advantage of the homology of the human HAC catalytic domain with that of the Arabidopsis, we set-up a phenotypic assay based on the hypocotyl length of Arabidopsis dark-grown seedlings to evaluate the effects of a compound previously described as human p300/CBP inhibitor, and to screen previously described cinnamoyl derivatives as well as newly synthesized analogues. We selected the most effective compounds, and we demonstrated their efficacy at phenotypic and molecular level. The in vitro inhibition of the enzymatic activity proved the specificity of the inhibitor on the catalytic domain of HAC1, thus substantiating this strategy as a useful tool in plant epigenetic studies.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Acetilación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arseniato Reductasas/metabolismo , Proteína de Unión a CREB/metabolismo , Etilenos/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Complejo Mediador/metabolismo , Factores de Transcripción p300-CBP/metabolismo
19.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293441

RESUMEN

Increasing evidence has shown that vascular aging has a key role in the pathogenesis of vascular diseases. P300/CBP-associated factor (PCAF) is involved in many vascular pathological processes, but the role of PCAF in vascular aging is unknown. This study aims to explore the role and underlying mechanism of PCAF in vascular aging. The results demonstrated that the expression of PCAF was associated with age and aging, and remarkably increased expression of PCAF was present in human atherosclerotic coronary artery. Downregulation of PCAF could reduce angiotensin II (AngII)-induced senescence of rat aortic endothelial cells (ECs) in vitro. In addition, inhibition of PCAF with garcinol alleviated AngII-induced vascular senescence phenotype in mice. Downregulation of PCAF could alleviate AngII-induced oxidative stress injury in ECs and vascular tissue. Moreover, PCAF and nuclear factor erythroid-2-related factor 2 (Nrf2) could interact directly, and downregulation of PCAF alleviated vascular aging by promoting the activation of Nrf2 and enhancing the expression of its downstream anti-aging factors. The silencing of Nrf2 with small interfering RNA attenuated the protective effect of PCAF downregulation from vascular aging. These findings indicate that downregulation of PCAF alleviates oxidative stress by activating the Nrf2 signaling pathway and ultimately inhibits vascular aging. Thus, PCAF may be a promising target for aging-related cardiovascular disease.


Asunto(s)
Angiotensina II , Factor 2 Relacionado con NF-E2 , Animales , Humanos , Ratones , Ratas , Envejecimiento , Angiotensina II/metabolismo , Regulación hacia Abajo , Células Endoteliales/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factores de Transcripción p300-CBP/metabolismo , ARN Interferente Pequeño , Transducción de Señal
20.
J Cell Mol Med ; 25(16): 8006-8014, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34173718

RESUMEN

Ajuba is a multiple LIM domain-containing protein and functions as a transcriptional coregulator to modulate many gene expressions in various cellular processes. Here, we describe that the LIM domain of Ajuba interacts with Twist, and the Twist box is a pivotal motif for the interaction. Biologically, Ajuba enhances transcription of target gene N-cadherin as an obligate coactivator of Twist. The enhancement is achieved by binding to the E-box element within N-cadherin promoter as revealed by luciferase reporter and chromatin immunoprecipitation assays. Mechanistic investigation demonstrates that Ajuba recruits CBP and Twist to form a ternary complex at the Twist target promoter region and concomitantly enhances histone acetylation at these sites. These findings identify that Twist is a new interacting protein of Ajuba and Ajuba/Twist/CBP ternary complex may be a potential treatment strategy for Twist-related tumour metastasis.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Neoplasias Colorrectales/patología , Regulación de la Expresión Génica , Proteínas con Dominio LIM/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/metabolismo , Regiones Promotoras Genéticas , Sialoglicoproteínas/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA