Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.375
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(4): 945-961.e18, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320550

RESUMEN

DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.


Asunto(s)
Reparación del ADN , Poli(ADP-Ribosa) Polimerasa-1 , ADN/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Humanos
2.
Cell ; 185(11): 1943-1959.e21, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35545089

RESUMEN

Parthanatos-associated apoptosis-inducing factor (AIF) nuclease (PAAN), also known as macrophage migration inhibitor factor (MIF), is a member of the PD-D/E(X)K nucleases that acts as a final executioner in parthanatos. PAAN's role in Parkinson's disease (PD) and whether it is amenable to chemical inhibition is not known. Here, we show that neurodegeneration induced by pathologic α-synuclein (α-syn) occurs via PAAN/MIF nuclease activity. Genetic depletion of PAAN/MIF and a mutant lacking nuclease activity prevent the loss of dopaminergic neurons and behavioral deficits in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Compound screening led to the identification of PAANIB-1, a brain-penetrant PAAN/MIF nuclease inhibitor that prevents neurodegeneration induced by α-syn PFF, AAV-α-syn overexpression, or MPTP intoxication in vivo. Our findings could have broad relevance in human pathologies where parthanatos plays a role in the development of cell death inhibitors targeting the druggable PAAN/MIF nuclease.


Asunto(s)
Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Enfermedad de Parkinson , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Endonucleasas/metabolismo , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
3.
Cell ; 183(4): 1086-1102.e23, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186521

RESUMEN

Strategies for installing authentic ADP-ribosylation (ADPr) at desired positions are fundamental for creating the tools needed to explore this elusive post-translational modification (PTM) in essential cellular processes. Here, we describe a phospho-guided chemoenzymatic approach based on the Ser-ADPr writer complex for rapid, scalable preparation of a panel of pure, precisely modified peptides. Integrating this methodology with phage display technology, we have developed site-specific as well as broad-specificity antibodies to mono-ADPr. These recombinant antibodies have been selected and characterized using multiple ADP-ribosylated peptides and tested by immunoblotting and immunofluorescence for their ability to detect physiological ADPr events. Mono-ADPr proteomics and poly-to-mono comparisons at the modification site level have revealed the prevalence of mono-ADPr upon DNA damage and illustrated its dependence on PARG and ARH3. These and future tools created on our versatile chemical biology-recombinant antibody platform have broad potential to elucidate ADPr signaling pathways in health and disease.


Asunto(s)
ADP-Ribosilación , Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ADP-Ribosilación/efectos de los fármacos , Secuencia de Aminoácidos , Anticuerpos/metabolismo , Bencimidazoles/farmacología , Línea Celular Tumoral , Técnicas de Visualización de Superficie Celular , Daño del ADN , Glicósido Hidrolasas/metabolismo , Histonas/metabolismo , Humanos , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/química , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Tirosina/metabolismo
4.
Cell ; 172(3): 439-453.e14, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29290468

RESUMEN

Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1-/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN , Homeostasis del Telómero , Animales , Línea Celular , Células Cultivadas , ADN Helicasas/metabolismo , Glicósido Hidrolasas/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , RecQ Helicasas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
5.
Mol Cell ; 84(3): 429-446.e17, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215753

RESUMEN

Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.


Asunto(s)
Nucleosomas , Poli ADP Ribosilación , Nucleosomas/genética , Poli ADP Ribosilación/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Microscopía por Crioelectrón , Condensados Biomoleculares , Reparación del ADN , Histonas/genética , Histonas/metabolismo , ADN/genética , ADN/metabolismo , Daño del ADN , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
6.
Mol Cell ; 83(20): 3669-3678.e7, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37816354

RESUMEN

UV irradiation induces "bulky" DNA photodimers such as (6-4)-photoproducts and cyclobutane pyrimidine dimers that are removed by nucleotide excision repair, a complex process defective in the sunlight-sensitive and cancer-prone disease xeroderma pigmentosum. Some bacteria and lower eukaryotes can also repair photodimers by enzymatically simpler mechanisms, but such pathways have not been reported in normal human cells. Here, we have identified such a mechanism. We show that normal human cells can employ a DNA base excision repair process involving NTH1, APE1, PARP1, XRCC1, and FEN1 to rapidly remove a subset of photodimers at early times following UVC irradiation. Loss of these proteins slows the early rate of repair of photodimers in normal cells, ablates their residual repair in xeroderma pigmentosum cells, and increases UVC sensitivity ∼2-fold. These data reveal that human cells can excise photodimers using a long-patch base excision repair process that functions additively but independently of nucleotide excision repair.


Asunto(s)
Xerodermia Pigmentosa , Humanos , Xerodermia Pigmentosa/genética , Reparación del ADN/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Daño del ADN/genética , ADN/genética , Rayos Ultravioleta , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
7.
Mol Cell ; 83(10): 1743-1760.e11, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37116497

RESUMEN

PARP1, an established anti-cancer target that regulates many cellular pathways, including DNA repair signaling, has been intensely studied for decades as a poly(ADP-ribosyl)transferase. Although recent studies have revealed the prevalence of mono-ADP-ribosylation upon DNA damage, it was unknown whether this signal plays an active role in the cell or is just a byproduct of poly-ADP-ribosylation. By engineering SpyTag-based modular antibodies for sensitive and flexible detection of mono-ADP-ribosylation, including fluorescence-based sensors for live-cell imaging, we demonstrate that serine mono-ADP-ribosylation constitutes a second wave of PARP1 signaling shaped by the cellular HPF1/PARP1 ratio. Multilevel chromatin proteomics reveals histone mono-ADP-ribosylation readers, including RNF114, a ubiquitin ligase recruited to DNA lesions through a zinc-finger domain, modulating the DNA damage response and telomere maintenance. Our work provides a technological framework for illuminating ADP-ribosylation in a wide range of applications and biological contexts and establishes mono-ADP-ribosylation by HPF1/PARP1 as an important information carrier for cell signaling.


Asunto(s)
ADP-Ribosilación , Histonas , Histonas/genética , Histonas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Cromatina , Daño del ADN , Anticuerpos/genética , Transducción de Señal
8.
Mol Cell ; 82(16): 2939-2951.e5, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35793673

RESUMEN

PARP1 rapidly detects DNA strand break damage and allosterically signals break detection to the PARP1 catalytic domain to activate poly(ADP-ribose) production from NAD+. PARP1 activation is characterized by dynamic changes in the structure of a regulatory helical domain (HD); yet, there are limited insights into the specific contributions that the HD makes to PARP1 allostery. Here, we have determined crystal structures of PARP1 in isolated active states that display specific HD conformations. These captured snapshots and biochemical analysis illustrate HD contributions to PARP1 multi-domain and high-affinity interaction with DNA damage, provide novel insights into the mechanics of PARP1 allostery, and indicate how HD active conformations correspond to alterations in the catalytic region that reveal the active site to NAD+. Our work deepens the understanding of PARP1 catalytic activation, the dynamics of the binding site of PARP inhibitor compounds, and the mechanisms regulating PARP1 retention on DNA damage.


Asunto(s)
Daño del ADN , NAD , Dominio Catalítico , Reparación del ADN , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
9.
Mol Cell ; 82(4): 785-802.e10, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35104452

RESUMEN

p53, master transcriptional regulator of the genotoxic stress response, controls cell-cycle arrest and apoptosis following DNA damage. Here, we identify a p53-induced lncRNA suicidal PARP-1 cleavage enhancer (SPARCLE) adjacent to miR-34b/c required for p53-mediated apoptosis. SPARCLE is a ∼770-nt, nuclear lncRNA induced 1 day after DNA damage. Despite low expression (<16 copies/cell), SPARCLE deletion increases DNA repair and reduces DNA-damage-induced apoptosis as much as p53 deficiency, while its overexpression restores apoptosis in p53-deficient cells. SPARCLE does not alter gene expression. SPARCLE binds to PARP-1 with nanomolar affinity and causes apoptosis by acting as a caspase-3 cofactor for PARP-1 cleavage, which separates PARP-1's N-terminal (NT) DNA-binding domain from its catalytic domains. NT-PARP-1 inhibits DNA repair. Expressing NT-PARP-1 in SPARCLE-deficient cells increases unrepaired DNA damage and restores apoptosis after DNA damage. Thus, SPARCLE enhances p53-induced apoptosis by promoting PARP-1 cleavage, which interferes with DNA-damage repair.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Neoplasias Colorrectales/enzimología , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HEK293 , Células Hep G2 , Humanos , Masculino , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , ARN Largo no Codificante/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
10.
Genes Dev ; 36(9-10): 601-617, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35654456

RESUMEN

The differentiation of embryonic stem cells (ESCs) into a lineage-committed state is a dynamic process involving changes in cellular metabolism, epigenetic modifications, post-translational modifications, gene expression, and RNA processing. Here we integrated data from metabolomic, proteomic, and transcriptomic assays to characterize how alterations in NAD+ metabolism during the differentiation of mouse ESCs lead to alteration of the PARP1-mediated ADP-ribosylated (ADPRylated) proteome and mRNA isoform specialization. Our metabolomic analyses indicate that mESCs use distinct NAD+ biosynthetic pathways in different cell states: the de novo pathway in the pluripotent state, and the salvage and Preiss-Handler pathways as differentiation progresses. We observed a dramatic induction of PARP1 catalytic activity driven by enhanced nuclear NAD+ biosynthesis during the early stages of mESC differentiation (e.g., within 12 h of LIF removal). PARP1-modified proteins in mESCs are enriched for biological processes related to stem cell maintenance, transcriptional regulation, and RNA processing. The PARP1 substrates include core spliceosome components, such as U2AF35 and U2AF65, whose splicing functions are modulated by PARP1-mediated site-specific ADP-ribosylation. Finally, we observed that splicing is dysregulated genome-wide in Parp1 knockout mESCs. Together, these results demonstrate a role for the NAD+-PARP1 axis in the maintenance of mESC state, specifically in the splicing program during differentiation.


Asunto(s)
NAD , Poli(ADP-Ribosa) Polimerasas , ADP-Ribosilación , Animales , Células Madre Embrionarias/metabolismo , Ratones , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteómica
11.
Mol Cell ; 81(24): 4994-5006.e5, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34919819

RESUMEN

PARP1 is a key player in the response to DNA damage and is the target of clinical inhibitors for the treatment of cancers. Binding of PARP1 to damaged DNA leads to activation wherein PARP1 uses NAD+ to add chains of poly(ADP-ribose) onto itself and other nuclear proteins. PARP1 also binds abundantly to intact DNA and chromatin, where it remains enzymatically inactive. We show that intact DNA makes contacts with the PARP1 BRCT domain, which was not previously recognized as a DNA-binding domain. This binding mode does not result in the concomitant reorganization and activation of the catalytic domain. We visualize the BRCT domain bound to nucleosomal DNA by cryogenic electron microscopy and identify a key motif conserved from ancestral BRCT domains for binding phosphates on DNA and phospho-peptides. Finally, we demonstrate that the DNA-binding properties of the BRCT domain contribute to the "monkey-bar mechanism" that mediates DNA transfer of PARP1.


Asunto(s)
Daño del ADN , ADN/metabolismo , Nucleosomas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Células Cultivadas , ADN/genética , ADN/ultraestructura , Fibroblastos/enzimología , Humanos , Ratones , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Nucleosomas/genética , Nucleosomas/ultraestructura , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/ultraestructura , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
12.
Mol Cell ; 81(24): 4979-4993.e7, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34798058

RESUMEN

The characteristics of the sleep drivers and the mechanisms through which sleep relieves the cellular homeostatic pressure are unclear. In flies, zebrafish, mice, and humans, DNA damage levels increase during wakefulness and decrease during sleep. Here, we show that 6 h of consolidated sleep is sufficient to reduce DNA damage in the zebrafish dorsal pallium. Induction of DNA damage by neuronal activity and mutagens triggered sleep and DNA repair. The activity of the DNA damage response (DDR) proteins Rad52 and Ku80 increased during sleep, and chromosome dynamics enhanced Rad52 activity. The activity of the DDR initiator poly(ADP-ribose) polymerase 1 (Parp1) increased following sleep deprivation. In both larva zebrafish and adult mice, Parp1 promoted sleep. Inhibition of Parp1 activity reduced sleep-dependent chromosome dynamics and repair. These results demonstrate that DNA damage is a homeostatic driver for sleep, and Parp1 pathways can sense this cellular pressure and facilitate sleep and repair activity.


Asunto(s)
Conducta Animal , Encéfalo , Daño del ADN , Reparación del ADN , Neuronas , Poli(ADP-Ribosa) Polimerasa-1 , Sueño , Proteínas de Pez Cebra , Animales , Femenino , Masculino , Animales Modificados Genéticamente , Encéfalo/enzimología , Encéfalo/patología , Encéfalo/fisiopatología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Ratones Endogámicos C57BL , Neuronas/enzimología , Neuronas/patología , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
Mol Cell ; 81(14): 3018-3030.e5, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34102106

RESUMEN

Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase ß and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase ß and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.


Asunto(s)
Reparación del ADN/genética , ADN/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Línea Celular , Roturas del ADN de Cadena Simple , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , ADN Ligasa (ATP)/metabolismo , ADN Polimerasa beta/metabolismo , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica/efectos de los fármacos
14.
Mol Cell ; 81(19): 4091-4103.e9, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34348091

RESUMEN

We describe PROPER-seq (protein-protein interaction sequencing) to map protein-protein interactions (PPIs) en masse. PROPER-seq first converts transcriptomes of input cells into RNA-barcoded protein libraries, in which all interacting protein pairs are captured through nucleotide barcode ligation, recorded as chimeric DNA sequences, and decoded at once by sequencing and mapping. We applied PROPER-seq to human embryonic kidney cells, T lymphocytes, and endothelial cells and identified 210,518 human PPIs (collected in the PROPER v.1.0 database). Among these, 1,365 and 2,480 PPIs are supported by published co-immunoprecipitation (coIP) and affinity purification-mass spectrometry (AP-MS) data, 17,638 PPIs are predicted by the prePPI algorithm without previous experimental validation, and 100 PPIs overlap human synthetic lethal gene pairs. In addition, four previously uncharacterized interaction partners with poly(ADP-ribose) polymerase 1 (PARP1) (a critical protein in DNA repair) known as XPO1, MATR3, IPO5, and LEO1 are validated in vivo. PROPER-seq presents a time-effective technology to map PPIs at the transcriptome scale, and PROPER v.1.0 provides a rich resource for studying PPIs.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteínas/genética , Proteínas/metabolismo , RNA-Seq , Transcriptoma , Bases de Datos Genéticas , Femenino , Genes Letales , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Células Jurkat , Carioferinas/genética , Carioferinas/metabolismo , Riñón/metabolismo , Masculino , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Programas Informáticos , Linfocitos T/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo , Proteína Exportina 1
15.
Mol Cell ; 81(4): 784-800.e8, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33412112

RESUMEN

DNA replication forks use multiple mechanisms to deal with replication stress, but how the choice of mechanisms is made is still poorly understood. Here, we show that CARM1 associates with replication forks and reduces fork speed independently of its methyltransferase activity. The speeding of replication forks in CARM1-deficient cells requires RECQ1, which resolves reversed forks, and RAD18, which promotes translesion synthesis. Loss of CARM1 reduces fork reversal and increases single-stranded DNA (ssDNA) gaps but allows cells to tolerate higher replication stress. Mechanistically, CARM1 interacts with PARP1 and promotes PARylation at replication forks. In vitro, CARM1 stimulates PARP1 activity by enhancing its DNA binding and acts jointly with HPF1 to activate PARP1. Thus, by stimulating PARP1, CARM1 slows replication forks and promotes the use of fork reversal in the stress response, revealing that CARM1 and PARP1 function as a regulatory module at forks to control fork speed and the choice of stress response mechanisms.


Asunto(s)
Roturas del ADN de Cadena Simple , Replicación del ADN , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteína-Arginina N-Metiltransferasas/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
16.
Mol Cell ; 81(2): 340-354.e5, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33450210

RESUMEN

In addition to its role as an electron transporter, mitochondrial nicotinamide adenine dinucleotide (NAD+) is an important co-factor for enzymatic reactions, including ADP-ribosylation. Although mitochondria harbor the most intra-cellular NAD+, mitochondrial ADP-ribosylation remains poorly understood. Here we provide evidence for mitochondrial ADP-ribosylation, which was identified using various methodologies including immunofluorescence, western blot, and mass spectrometry. We show that mitochondrial ADP-ribosylation reversibly increases in response to respiratory chain inhibition. Conversely, H2O2-induced oxidative stress reciprocally induces nuclear and reduces mitochondrial ADP-ribosylation. Elevated mitochondrial ADP-ribosylation, in turn, dampens H2O2-triggered nuclear ADP-ribosylation and increases MMS-induced ARTD1 chromatin retention. Interestingly, co-treatment of cells with the mitochondrial uncoupler FCCP decreases PARP inhibitor efficacy. Together, our results suggest that mitochondrial ADP-ribosylation is a dynamic cellular process that impacts nuclear ADP-ribosylation and provide evidence for a NAD+-mediated mitochondrial-nuclear crosstalk.


Asunto(s)
ADP-Ribosilación , Núcleo Celular/enzimología , Mitocondrias/enzimología , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ADP-Ribosilación/efectos de los fármacos , Animales , Antimicina A/análogos & derivados , Antimicina A/farmacología , Línea Celular , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Cromatina/química , Cromatina/metabolismo , Transporte de Electrón/efectos de los fármacos , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Metacrilatos/farmacología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Oligomicinas/farmacología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Poli(ADP-Ribosa) Polimerasa-1/genética , Rotenona/farmacología , Tiazoles/farmacología
17.
Mol Cell ; 81(22): 4692-4708.e9, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34555355

RESUMEN

Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, preclinical and clinical research with PARPi has revealed multiple resistance mechanisms, highlighting the need for identification of novel functional biomarkers and combination treatment strategies. Functional genetic screens performed in cells and organoids that acquired resistance to PARPi by loss of 53BP1 identified loss of LIG3 as an enhancer of PARPi toxicity in BRCA1-deficient cells. Enhancement of PARPi toxicity by LIG3 depletion is dependent on BRCA1 deficiency but independent of the loss of 53BP1 pathway. Mechanistically, we show that LIG3 loss promotes formation of MRE11-mediated post-replicative ssDNA gaps in BRCA1-deficient and BRCA1/53BP1 double-deficient cells exposed to PARPi, leading to an accumulation of chromosomal abnormalities. LIG3 depletion also enhances efficacy of PARPi against BRCA1-deficient mammary tumors in mice, suggesting LIG3 as a potential therapeutic target.


Asunto(s)
Proteína BRCA1/genética , ADN Ligasa (ATP)/genética , ADN de Cadena Simple , Proteína Homóloga de MRE11/genética , Neoplasias Ováricas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Animales , Biopsia , Sistemas CRISPR-Cas , Línea Celular , Núcleo Celular/metabolismo , Proliferación Celular , Aberraciones Cromosómicas , Daño del ADN , ADN Ligasa (ATP)/metabolismo , Femenino , Humanos , Lentivirus/genética , Neoplasias Mamarias Animales , Ratones , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Interferente Pequeño/metabolismo , Transgenes
18.
Mol Cell ; 79(6): 934-949.e14, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32822587

RESUMEN

Although ADP-ribosylation of histones by PARP-1 has been linked to genotoxic stress responses, its role in physiological processes and gene expression has remained elusive. We found that NAD+-dependent ADP-ribosylation of histone H2B-Glu35 by small nucleolar RNA (snoRNA)-activated PARP-1 inhibits AMP kinase-mediated phosphorylation of adjacent H2B-Ser36, which is required for the proadipogenic gene expression program. The activity of PARP-1 on H2B requires NMNAT-1, a nuclear NAD+ synthase, which directs PARP-1 catalytic activity to Glu and Asp residues. ADP-ribosylation of Glu35 and the subsequent reduction of H2B-Ser36 phosphorylation inhibits the differentiation of adipocyte precursors in cultured cells. Parp1 knockout in preadipocytes in a mouse lineage-tracing genetic model increases adipogenesis, leading to obesity. Collectively, our results demonstrate a functional interplay between H2B-Glu35 ADP-ribosylation and H2B-Ser36 phosphorylation that controls adipogenesis.


Asunto(s)
ADP-Ribosilación/genética , Adipogénesis/genética , Histonas/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Adenosina Difosfato Ribosa/genética , Adipocitos/metabolismo , Adipocitos/patología , Animales , Línea Celular , Daño del ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Fosforilación/genética , ARN Nucleolar Pequeño/genética
19.
Genes Dev ; 34(1-2): 7-23, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31896689

RESUMEN

53BP1 is an enigmatic DNA damage response factor that gained prominence because it determines the efficacy of PARP1 inhibitory drugs (PARPi) in BRCA1-deficient cancers. Recent studies have elevated 53BP1 from its modest status of (yet another) DNA damage factor to master regulator of double-strand break (DSB) repair pathway choice. Our review of the literature suggests an alternative view. We propose that 53BP1 has evolved to avoid mutagenic repair outcomes and does so by controlling the processing of DNA ends and the dynamics of DSBs. The consequences of 53BP1 deficiency, such as diminished PARPi efficacy in BRCA1-deficient cells and altered repair of damaged telomeres, can be explained from this viewpoint. We further propose that some of the fidelity functions of 53BP1 coevolved with class switch recombination (CSR) in the immune system. We speculate that, rather than being deterministic in DSB repair pathway choice, 53BP1 functions as a DSB escort that guards against illegitimate and potentially tumorigenic recombination.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Evolución Molecular , Humanos , Cambio de Clase de Inmunoglobulina/genética , Telómero/genética , Proteína 1 de Unión al Supresor Tumoral P53/deficiencia , Proteína 1 de Unión al Supresor Tumoral P53/genética
20.
EMBO J ; 42(18): e113190, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37492888

RESUMEN

DNA single-strand breaks (SSBs) disrupt DNA replication and induce chromosome breakage. However, whether SSBs induce chromosome breakage when present behind replication forks or ahead of replication forks is unclear. To address this question, we exploited an exquisite sensitivity of SSB repair-defective human cells lacking PARP activity or XRCC1 to the thymidine analogue 5-chloro-2'-deoxyuridine (CldU). We show that incubation with CldU in these cells results in chromosome breakage, sister chromatid exchange, and cytotoxicity by a mechanism that depends on the S phase activity of uracil DNA glycosylase (UNG). Importantly, we show that CldU incorporation in one cell cycle is cytotoxic only during the following cell cycle, when it is present in template DNA. In agreement with this, while UNG induces SSBs both in nascent strands behind replication forks and in template strands ahead of replication forks, only the latter trigger fork collapse and chromosome breakage. Finally, we show that BRCA-defective cells are hypersensitive to CldU, either alone and/or in combination with PARP inhibitor, suggesting that CldU may have clinical utility.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Rotura Cromosómica , Reparación del ADN , Replicación del ADN , ADN , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA