Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Physiol Biochem ; 44(6): 2158-2173, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29241186

RESUMEN

BACKGROUND/AIMS: MicroRNA-21 is an oncogenic miR (oncomiR) frequently elevated in gastric cancer (GC). Overexpression of miR-21 decreases the sensitivity of GC cells to 5-fluorouridine (5-Fu) and trastuzumab, a humanized monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2). Receptor-mediated endocytosis plays a crucial role in the delivery of biotherapeutics including anti-miRNA oligonucleotides (AMOs). This study is a continuation of earlier findings involving poly(ε-caprolactone) (PCL)-poly (ethylene glycol) (PEG) nanoparticles (PEG-PCL NPs), which were coated with trastuzumab to target GC with HER2 receptor over-expression using anti-miRNA-21 (AMO-21) and 5-Fu. METHODS: HER-PEG-PCL NPs were prepared by one-step carbodiimide coupling using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAc) and Sulfo-NHS in aqueous phase. Covalent coupling of amino groups at the surface of PEG-PCL with the carboxyl groups of trastuzumab was analyzed by X-ray photoelectron spectroscopy (XPS). AMO-21/5-Fu NPs were formulated by a double-emulsion solvent evaporation technique. The cell line specificity, cellular uptake and AMO-21 delivery were investigated through the rhodamine-B-labeled 6-carboxyfluorescein (FAM)-AMO-21-PEG-PCL NPs coated with or without the antibody in both Her2-positive (NUGC4) and negative GC cells (SGC7901) visualized by fluorescence microscopy. The cytotoxicity of the HER-PEG-PCL NPs encapsulating AMO-21 was evaluated by MTT and apoptosis. Real-time reverse-transcription polymerase chain reaction (RT-PCR) was used to examine miR-21 and phosphatase and tensin homolog (PTEN) and Sprouty2 expression in GC cell lines. The antitumor effects of AMO-21/5-Fu NPs were compared with other groups in xenograft gastric cancer mice. RESULTS: The antibody conjugates significantly enhanced the cellular uptake of NPs. The AMO-21/5-Fu NPs effectively suppressed the target miRNA expression in GC cells, which further up-regulated PTEN and Sprouty2. As a result, the sensitivity of HER2-expressing gastric cancer to trastuzumab and 5-Fu were enhanced both in vitro and in vivo. The approach enhanced the targeting by trastuzumab as well as antibody-dependent cellular cytotoxicity (ADCC) of immune effector cells Conclusions: Taken together, the results provide insight into the biological and clinical potential of targeted AMO-21 and 5-Fu co-delivery using modified trastuzumab for GC treatment.


Asunto(s)
Antagomirs/genética , Antagomirs/uso terapéutico , Antineoplásicos/uso terapéutico , MicroARNs/genética , Neoplasias Gástricas/terapia , Trastuzumab/uso terapéutico , Uridina/análogos & derivados , Animales , Antagomirs/administración & dosificación , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Poliésteres/química , Receptor ErbB-2/análisis , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Trastuzumab/administración & dosificación , Uridina/administración & dosificación , Uridina/uso terapéutico
2.
RNA Biol ; 12(3): 343-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826666

RESUMEN

microRNA is necessary for osteoclast differentiation, function and survival. It has been reported that miR-199/214 cluster plays important roles in vertebrate skeletal development and miR-214 inhibits osteoblast function by targeting ATF4. Here, we show that miR-214 is up-regulated during osteoclastogenesis from bone marrow monocytes (BMMs) with macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induction, which indicates that miR-214 plays a critical role in osteoclast differentiation. Overexpression of miR-214 in BMMs promotes osteoclastogenesis, whereas inhibition of miR-214 attenuates it. We further find that miR-214 functions through PI3K/Akt pathway by targeting phosphatase and tensin homolog (Pten). In vivo, osteoclast specific miR-214 transgenic mice (OC-TG214) exhibit down-regulated Pten levels, increased osteoclast activity, and reduced bone mineral density. These results reveal a crucial role of miR-214 in the differentiation of osteoclasts, which will provide a potential therapeutic target for osteoporosis.


Asunto(s)
MicroARNs/genética , Osteoclastos/metabolismo , Osteoporosis/genética , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Secuencia de Bases , Densidad Ósea , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Bovinos , Diferenciación Celular , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Ratones Transgénicos , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Datos de Secuencia Molecular , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteoporosis/metabolismo , Osteoporosis/patología , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ligando RANK/farmacología , Transducción de Señal
3.
RNA Biol ; 11(9): 1113-21, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483047

RESUMEN

MicroRNA (miRNA) comprise a large family of non-protein coding transcripts which regulate gene expression in diverse biological pathways of both plants and animals. We recently used a systematic proteomic approach to generate a protein interactome map of the human miRNA pathway involved in miRNA biogenesis and processing. The interactome expands the number of candidate proteins in the miRNA pathway and connects the network to other cellular processes. Functional analyses identified TRIM65 and at least 3 other proteins as novel regulators of the miRNA pathway. Biochemical studies established that TRIM65 forms stable complexes with TNRC6 proteins and these molecules co-localize in P-body-like structures. Gain of function and RNAi analyses reveal that TRIM65 negatively regulates miRNA-driven suppression of mRNA translation by targeting TNRC6 proteins for ubiquitination and degradation. The potential molecular mechanisms which regulate TRIM65 catalytic activity are discussed.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Proteómica , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , MicroARNs/metabolismo , Proteínas de Motivos Tripartitos
4.
Comput Struct Biotechnol J ; 21: 2048-2057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968022

RESUMEN

Histone deacetylases (HDACs) deacetylate histones H3 and H4. An imbalance between histone acetylation and deacetylation can lead to various diseases. HDAC2 is present in the nucleus. It plays a critical role in modifying chromatin structures and regulates the expression of various genes by functioning as a transcriptional regulator. The roles of HDAC2 in tumorigenesis and anti-cancer drug resistance are discussed in this review. Several reports suggested that HDAC2 is a prognostic marker of various cancers. The roles of microRNAs (miRNAs) that directly regulate the expression of HDAC2 in tumorigenesis are also discussed in this review. This review also presents HDAC2 as a valuable target for developing anti-cancer drugs.

5.
Int J Pharm X ; 4: 100126, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36147518

RESUMEN

Chemoresistance and hence the consequent treatment failure is considerably challenging in clinical cancer therapeutics. The understanding of the genetic variations in chemoresistance acquisition encouraged the use of gene modulatory approaches to restore anti-cancer drug efficacy. Many smart nanoparticles are designed and optimized to mediate combinational therapy between nucleic acid and anti-cancer drugs. This review aims to define a rational design of such co-loaded nanocarriers with the aim of chemoresistance reversal at various cellular levels to improve the therapeutic outcome of anticancer treatment. Going through the principles of therapeutics loading, physicochemical characteristics tuning, and different nanocarrier modifications, also looking at combination effectiveness on chemosensitivity restoration. Up to now, these emerging nanocarriers are in development status but are expected to introduce outstanding outcomes.

6.
Front Oncol ; 11: 743824, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868940

RESUMEN

The sodium pump α3 subunit is associated with colorectal liver metastasis. However, the underlying mechanism involved in this effect is not yet known. In this study, we found that the expression levels of the sodium pump α3 subunit were positively associated with metastasis in colorectal cancer (CRC). Knockdown of the α3 subunit or inhibition of the sodium pump could significantly inhibit the migration of colorectal cancer cells, whereas overexpression of the α3 subunit promoted colorectal cancer cell migration. Mechanistically, the α3 subunit decreased p53 expression, which subsequently downregulated PTEN/IGFBP3 and activated mTOR, leading to the promotion of colorectal cancer cell metastasis. Reciprocally, knockdown of the α3 subunit or inhibition of the sodium pump dramatically blocked this effect in vitro and in vivo via the downregulation of mTOR activity. Furthermore, a positive correlation between α3 subunit expression and mTOR activity was observed in an aggressive CRC subtype. Conclusions: Elevated expression of the sodium pump α3 subunit promotes CRC liver metastasis via the PTEN/IGFBP3-mediated mTOR pathway, suggesting that sodium pump α3 could represent a critical prognostic marker and/or therapeutic target for this disease.

7.
Front Neuroanat ; 15: 629244, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093139

RESUMEN

Manipulation of the phosphatase and tensin homolog (PTEN) pathway has been suggested as a therapeutic approach to treat or prevent vision loss due to retinal disease. In this study, we investigated the effects of deleting one copy of Pten in a well-characterized class of retinal ganglion cells called α-ganglion cells in the mouse retina. In Pten +/- retinas, α-ganglion cells did not exhibit major changes in their dendritic structure, although most cells developed a few, unusual loop-forming dendrites. By contrast, α-ganglion cells exhibited a significant decrease in heterologous and homologous gap junction mediated cell coupling with other retinal ganglion and amacrine cells. Additionally, the majority of OFF α-ganglion cells (12/18 cells) formed novel coupling to displaced amacrine cells. The number of connexin36 puncta, the predominant connexin that mediates gap junction communication at electrical synapses, was decreased by at least 50% on OFF α-ganglion cells. Reduced and incorrect gap junction connectivity of α-ganglion cells will affect their functional properties and alter visual image processing in the retina. The anomalous connectivity of retinal ganglion cells would potentially limit future therapeutic approaches involving manipulation of the Pten pathway for treating ganglion cell degeneration in diseases like glaucoma, traumatic brain injury, Parkinson's, and Alzheimer's diseases.

8.
JHEP Rep ; 3(6): 100359, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34704005

RESUMEN

BACKGROUND & AIMS: Phosphatidylinositides-3 kinases (PI3Ks) are promising drug targets for cancer therapy, but blockage of PI3K-AKT signalling causes hyperglycaemia, hyperinsulinaemia, and liver damage in patients, and hepatocellular carcinoma (HCC) in mice. There are 4 PI3Ks: PI3Kα, PI3Kß, PI3Kδ, and PI3Kγ. The role of PI3Kγ in HCC is unknown. METHODS: We performed histopathological, metabolic, and molecular phenotyping of mice with genetic ablation of PI3Kγ using models where HCC was initiated by the carcinogen diethylnitrosamine (DEN) and promoted by dietary or genetic obesity (ob/ob). The role of PI3Kγ in leucocytes was investigated in mice lacking PI3Kγ in haematopoietic and endothelial cells. RESULTS: Loss of PI3Kγ had no effects on the development of DEN-induced HCC in lean mice. However, in mice injected with DEN and placed on an obesogenic diet, PI3Kγ ablation reduced tumour growth, which was associated with reduced insulinaemia, steatosis, and expression of inflammatory cytokines. ob/ob mice lacking PI3Kγ, and mice with diet-induced obesity lacking PI3Kγ in leucocytes and endothelial cells did not display improved insulin sensitivity, steatosis, metabolic inflammation, or reduced tumour growth. However, these mice showed a reduced number of tumours, reduced liver infiltration by neutrophils, and reduced hepatocyte proliferation acutely induced by DEN. CONCLUSIONS: Loss of PI3Kγ reduces tumour development in obesity-promoted HCC through multiple cell types and mechanisms that include improved insulinaemia, steatosis, and metabolic inflammation as well as the regulation of acute neutrophil infiltration and compensatory hepatocyte proliferation. PI3Kγ-selective inhibition may represent a novel therapeutic approach to reduce HCC initiation and slow HCC progression. LAY SUMMARY: Class-1 phosphatidylinositides-3 kinases (PI3Ks) are critical targets in cancer therapy, but complete inhibition of all isoforms causes liver damage, hyperglycaemia, and insulinaemia. Here we show that selective ablation of the PI3Kγ isoform dampens tumour initiation and growth in a mouse model of carcinogen-initiated and obesity-promoted hepatocellular carcinoma (HCC). The effect of PI3Kγ ablation on reduced tumour growth was explained by reduced tumour cell proliferation, which was associated with reduced insulin levels, liver lipids, and reduced expression of tumour-promoting cytokines. PI3Kγ ablation in leucocytes of obese mice had no effects on tumour size. However, it reduced tumour number in association with reduced carcinogen-induced neutrophil infiltration and hepatocyte proliferation in livers of obese mice. Inhibition of PI3Kγ may thus reduce HCC initiation and growth in obese subjects by a mechanism involving reduced metabolic stress and insulinaemia and reduced carcinogen-induced neutrophil infiltration to the fatty liver.

9.
J Adv Res ; 27: 127-135, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33318872

RESUMEN

BACKGROUND: Over the last several decades, hydrogen sulfide (H2S) has been found to exert multiple physiological functions in mammal systems. The endogenous production of H2S is primarily mediated by cystathione ß-synthase (CBS), cystathione γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). These enzymes are widely expressed in the liver tissues and regulate hepatic functions by acting on various molecular targets. AIM OF REVIEW: In the present review, we will highlight the recent advancements in the cellular events triggered by H2S under liver diseases. The therapeutic effects of H2S donors on hepatic diseases will also be discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW: As a critical regulator of liver functions, H2S is critically involved in the etiology of various liver disorders, such as nonalcoholic steatohepatitis (NASH), hepatic fibrosis, hepatic ischemia/reperfusion (IR) injury, and liver cancer. Targeting H2S-producing enzymes may be a promising strategy for managing hepatic disorders.

10.
Acta Pharm Sin B ; 11(10): 3150-3164, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34729306

RESUMEN

The three-dimensional (3D) conformation of chromatin is integral to the precise regulation of gene expression. The 3D genome and genomic variations in non-alcoholic fatty liver disease (NAFLD) are largely unknown, despite their key roles in cellular function and physiological processes. High-throughput chromosome conformation capture (Hi-C), Nanopore sequencing, and RNA-sequencing (RNA-seq) assays were performed on the liver of normal and NAFLD mice. A high-resolution 3D chromatin interaction map was generated to examine different 3D genome hierarchies including A/B compartments, topologically associated domains (TADs), and chromatin loops by Hi-C, and whole genome sequencing identifying structural variations (SVs) and copy number variations (CNVs) by Nanopore sequencing. We identified variations in thousands of regions across the genome with respect to 3D chromatin organization and genomic rearrangements, between normal and NAFLD mice, and revealed gene dysregulation frequently accompanied by these variations. Candidate target genes were identified in NAFLD, impacted by genetic rearrangements and spatial organization disruption. Our data provide a high-resolution 3D genome interaction resource for NAFLD investigations, revealed the relationship among genetic rearrangements, spatial organization disruption, and gene regulation, and identified candidate genes associated with these variations implicated in the pathogenesis of NAFLD. The newly findings offer insights into novel mechanisms of NAFLD pathogenesis and can provide a new conceptual framework for NAFLD therapy.

11.
Gene Rep ; 22: 101012, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33398248

RESUMEN

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

12.
Acta Pharm Sin B ; 11(9): 2749-2767, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589395

RESUMEN

Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.

13.
Front Oncol ; 10: 598238, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33489896

RESUMEN

OBJECTIVES: The noncoding RNAs (ncRNAs) play important roles in gastric cancer. Most studies have focused on the functions and influence of ncRNAs, but seldom on their maturation. DEAD box genes are a family of RNA-binding proteins that may influence the development of ncRNAs, which attracted our attention. By combining a small sample for high-throughput gene microarray screening with large samples of The Cancer Genome Atlas (TCGA) data and our cohort, we aimed to find some gastric cancer-related genes. We evaluated the clinical significance and prognostic value of candidate gene DDX18, which is overexpressed in gastric cancer tissues. To provide a theoretical basis for the development of new therapeutic targets for the treatment of gastric cancer, we investigated its effect on the malignant biological behavior of gastric cancer in vitro and in vivo, and also discuss its mechanism of action. METHODS: (i) The differential profiling of mRNA expression in five pairs of gastric cancer and adjacent normal tissues was studied by Arraystar Human mRNA Microarray. By combining this with TCGA data and our cohort, we finally filtered out DDX18, which was upregulated in gastric cancer tissues, for further investigation. (ii) The protein expression of DDX18 was detected by immunohistochemistry staining. Then the relationship between the DDX18 expression level and the clinicopathological data and prognosis was analyzed. (iii) A CCK-8 assay and colony formation assay were used to evaluate the effect of DDX18 on cell growth and proliferation in vitro. A transwell assay was also performed to examine the migration and invasion of gastric cancer cells. Cell apoptosis was analyzed by using a fluorescein isothiocyanate-annexin V/propidium iodide double-staining assay. To identify the role of DDX18 in the tumorigenic ability of gastric cancer cells in vivo, we also established a subcutaneous gastric cancer xenograft model. Coimmunoprecipitation, small RNAseq, and western blotting were performed to explore the mechanism of action of DDX18 in gastric cancer. A patient-derived xenograft (PDX) model was used to confirm the effect of DDX18 in gastric cancer tissues. RESULT: (i) DDX18 was upregulated in gastric cancer tumor tissues from a TCGA database and our cohort. The expression of DDX18 was also closely related to tumor volume, Borrmann classification, degree of tumor differentiation, cancer embolus, lymph node metastasis, and TNM stage. (ii) DDX18 could promote cell proliferation, migration, and invasion and inhibit cell apoptosis in vivo and in vitro. (iii) DDX18 could promote the maturation of microRNA-21 through direct interaction with Drosha, decreasing PTEN, which could upregulate the AKT signaling pathway. (iv) The PDX model showed that DDX18 could promote the proliferation of gastric cancer tissues by means of the PTEN-AKT signaling pathway. CONCLUSIONS: (i) DDX18 can be treated as a molecular marker to assess the prognosis of patients with gastric cancer. (ii) DDX18 could be a potential therapeutic target in gastric cancer.

14.
Front Nutr ; 7: 81, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582754

RESUMEN

The modern obesity epidemic with associated disorders of metabolism and cancer has been attributed to the presence of "thrifty genes". In the distant past, these genes helped the organism to improve energy efficiency and store excess energy safely as fat to survive periods of famine, but in the present day obesogenic environment, have turned detrimental. I propose PTEN as the likely gene as it has functions that span metabolism, cancer and reproduction, all of which are deranged in obesity and insulin resistance. The activity of PTEN can be calibrated in utero by availability of nutrients by the methylation arm of the epigenetic pathway. Deficiency of protein and choline has been shown to upregulate DNA methyltransferases (DNMT), especially 1 and 3a; these can then methylate promoter region of PTEN and suppress its expression. Thus, the gene is tuned like a metabolic rheostat proportional to the availability of specific nutrients, and the resultant "dose" of the protein, which sits astride and negatively regulates the insulin-PI3K/AKT/mTOR pathway, decides energy usage and proliferation. This "fixes" the metabolic capacity of the organism periconceptionally to a specific postnatal level of nutrition, but when faced with a discordant environment, leads to obesity related diseases.

15.
Front Nutr ; 7: 573536, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282899

RESUMEN

[This corrects the article DOI: 10.3389/fnut.2020.00081.].

16.
Toxicol Rep ; 7: 1531-1541, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33251120

RESUMEN

Liposomal drug-delivery systems (LDDs) provide a promising opportunity to precisely target organs, improve drug bioavailability and reduce systemic toxicity. On the other hand, PI3K/Akt signaling pathways control various intracellular functions including apoptosis, invasion and cell growth. Hyper activation of PI3K and Akt is detected in some types of cancer that posses defect in PTEN. Tracking the crosstalk between PI3K/Akt, PTEN and STAT 5A signaling pathways, in cancer could result in identifying new therapeutic agents. The current study, identified an over view on PI3K/Akt, PTEN and STAT-5A networks, in addition to their biological roles in hepatocellular carcinoma (HCC). In the current study galactomannan was extracted from Caesalpinia gilliesii seeds then loaded in liposomes. Liposomes were prepared employing phosphatidyl choline and different concentrations of cholesterol. HCC was then induced in Wistar albino rats followed by liposomal galactomannan (700 ± 100 nm) treatment. Liver enzymes as well as antioxidants were assessed and PI3K/Akt, PTEN and STAT-5A gene expression were investigated. The prepared vesicles revealed entrapment efficiencies ranging from 23.55 to 69.17%, and negative zeta potential values. The optimum formulation revealed spherical morphology as well as diffusion controlled in vitro release pattern. Liposomal galactomannan elucidated a significant reduction in liver enzymes and MDA as well as PI3K/Akt, PTEN and STAT 5A gene expression. A significant elevation in GST and GSH were deduced. In conclusion, Liposomal galactomannan revealed a promising candidate for HCC therapy.

17.
Acta Pharm Sin B ; 10(1): 159-170, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31993313

RESUMEN

MicroRNAs (miRNAs or miRs) are small noncoding RNAs derived from genome to control target gene expression. Recently we have developed a novel platform permitting high-yield production of bioengineered miRNA agents (BERA). This study is to produce and utilize novel fully-humanized BERA/miR-328-3p molecule (hBERA/miR-328) to delineate the role of miR-328-3p in controlling nutrient uptake essential for cell metabolism. We first demonstrated successful high-level expression of hBERA/miR-328 in bacteria and purification to high degree of homogeneity (>98%). Biologic miR-328-3p prodrug was selectively processed to miR-328-3p to suppress the growth of highly-proliferative human osteosarcoma (OS) cells. Besides glucose transporter protein type 1, gene symbol solute carrier family 2 member 1 (GLUT1/SLC2A1), we identified and verified large neutral amino acid transporter 1, gene symbol solute carrier family 7 member 5 (LAT1/SLC7A5) as a direct target for miR-328-3p. While reduction of LAT1 protein levels by miR-328-3p did not alter homeostasis of amino acids within OS cells, suppression of GLUT1 led to a significantly lower glucose uptake and decline in intracellular levels of glucose and glycolytic metabolite lactate. Moreover, combination treatment with hBERA/miR-328 and cisplatin or doxorubicin exerted a strong synergism in the inhibition of OS cell proliferation. These findings support the utility of novel bioengineered RNA molecules and establish an important role of miR-328-3p in the control of nutrient transport and homeostasis behind cancer metabolism.

18.
Acta Pharm Sin B ; 10(8): 1347-1359, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32963936

RESUMEN

Gene therapy is rapidly emerging as a powerful therapeutic strategy for a wide range of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Some early clinical trials have failed to achieve satisfactory therapeutic effects. Efforts to enhance effectiveness are now concentrating on three major fields: identification of new vectors, novel therapeutic targets, and reliable of delivery routes for transgenes. These approaches are being assessed closely in preclinical and clinical trials, which may ultimately provide powerful treatments for patients. Here, we discuss advances and challenges of gene therapy for neurodegenerative disorders, highlighting promising technologies, targets, and future prospects.

19.
Front Cell Neurosci ; 13: 583, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038175

RESUMEN

Sprouty2 (Spry2) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) are both well-established regulators of receptor tyrosine kinase (RTK) signaling, and knockdown of Spry2 or PTEN enhances axon regeneration of dorsal root ganglia (DRG) neurons. The major role of Spry2 is the inhibition of the rat sarcoma RAS/extracellular signal-regulated kinase (ERK) pathway, whereas PTEN acts mainly as an inhibitor of the phosphoinositide 3-kinase (PI3K)/Akt pathway. In non-neuronal cells, Spry2 increases the expression and activity of PTEN, and PTEN enhances the amount of Spry2 by the inhibition of the microRNA-21 (miR-21) that downregulates Spry2. Applying dissociated DRG neuron cultures from wild-type (WT) or Spry2 deficient mice, we demonstrate that PTEN protein was reduced after 72 h during rapid axonal outgrowth on the laminin substrate. Furthermore, PTEN protein was decreased in DRG cultures obtained from homozygous Spry2-/- knockout mice. Vice versa, Spry2 protein was reduced by PTEN siRNA in WT and heterozygous Spry2+/- neurons. Knockdown of PTEN in DRG cultures obtained from homozygous Spry2-/- knockout mice promoted axon elongation without increasing axonal branching. Activation of Akt, but not ERK, was stronger in response to PTEN knockdown in homozygous Spry2-/- DRG neurons than in WT neurons. Together, our study confirms the important role of the signaling modulators Spry2 and PTEN in axon growth of adult DRG neurons. Both function as endogenous inhibitors of neuronal growth factor signaling and their simultaneous knockdown promotes axon elongation more efficiently than the single knockdown of each inhibitor. Furthermore, Spry2 and PTEN are reciprocally downregulated in adult DRG neuron cultures. Axon growth is influenced by multiple factors and our results demonstrate that the endogenous inhibitors of axon growth, Spry2 and PTEN, are co-regulated in adult DRG neuron cultures. Together, our data demonstrate that combined approaches may be more useful to improve nerve regeneration than targeting one single inhibitor of axon growth.

20.
J Struct Biol X ; 1: 100001, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-34958187

RESUMEN

P-Rex family Rho guanine-nucleotide exchange factors are important regulators of cell motility through their activation of a subset of small GTPases. Both P-Rex1 and P-Rex2 have also been implicated in the progression of certain cancers, including breast cancer and melanoma. Although these molecules display a high level of homology, differences exist in tissue distribution, physiological function, and regulation at the molecular level. Here, we sought to compare the P-Rex2 pleckstrin homology (PH) domain structure and ability to interact with PIP3 with those of P-Rex1. The 1.9 Šcrystal structure of the P-Rex2 PH domain reveals conformational differences in the loop regions, yet biochemical studies indicate that the interaction of the P-Rex2 PH domain with PIP3 is very similar to that of P-Rex1. Binding of the PH domain to PIP3 is critical for P-Rex2 activity but not membrane localization, as previously demonstrated for P-Rex1. These studies serve as a starting point in the identification of P-Rex structural features that are divergent between isoforms and could be exploited for the design of P-Rex selective compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA