Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35904071

RESUMEN

The perception of noxious environmental stimuli by nociceptive sensory neurons is an essential mechanism for the prevention of tissue damage. Etv4 is a transcriptional factor expressed in most nociceptors in dorsal root ganglia (DRG) during the embryonic development. However, its physiological role remains unclear. Here, we show that Etv4 ablation results in defects in the development of the peripheral peptidergic projections in vivo, and in deficits in axonal elongation and growth cone morphology in cultured sensory neurons in response to NGF. From a mechanistic point of view, our findings reveal that NGF regulates Etv4-dependent gene expression of molecules involved in extracellular matrix (ECM) remodeling. Etv4-null mice were less sensitive to noxious heat stimuli and chemical pain, and this behavioral phenotype correlates with a significant reduction in the expression of the pain-transducing ion channel TRPV1 in mutant mice. Together, our data demonstrate that Etv4 is required for the correct innervation and function of peptidergic sensory neurons, regulating a transcriptional program that involves molecules associated with axonal growth and pain transduction.


Asunto(s)
Factor de Crecimiento Nervioso , Nocicepción , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Ganglios Espinales/metabolismo , Ratones , Factor de Crecimiento Nervioso/genética , Nocicepción/fisiología , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismo
2.
J Oral Pathol Med ; 52(8): 777-785, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37549030

RESUMEN

BACKGROUND: PEA3 transcription factor has been identified as a downstream target of the MAPK and PI3K pathways, and PEA3 overexpression has been observed in a variety of tumor types. We aimed to evaluate PEA3 expression in odontogenic cysts and tumors and compare the expression among odontogenic lesions. In addition, the correlations between PEA3 expression and clinicopathological characteristics of conventional ameloblastoma and unicystic ameloblastoma were investigated. METHODS: This study was performed on 165 samples of odontogenic cysts and tumors including 20 dentigerous cysts, 20 odontogenic keratocysts, 16 adenomatoid odontogenic tumors, 5 ameloblastic fibromas, 45 unicystic ameloblastomas, and 59 conventional ameloblastomas. The sections were immunohistochemically stained with mouse monoclonal anti-PEA3 antibody and PEA3 expression was evaluated as the immunoreactive score. RESULTS: PEA3 expression was absent in all dentigerous cysts (DCs) and odontogenic keratocysts, while all adenomatoid odontogenic tumors showed either no (75%) or low (25%) expression of PEA3. Most of the ameloblastic fibromas (60%) displayed no PEA3 expression. A high expression of PEA3 was observed in a substantial number of unicystic ameloblastomas (48.9%) and conventional ameloblastomas (49.2%) in our study. PEA3 expression in DCs, odontogenic keratocysts and adenomatoid odontogenic tumors were significantly different from that in conventional ameloblastomas and that in unicystic ameloblastomas (p < 0.05). The expression of PEA3 was significantly different in the age groups of unicystic ameloblastomas and histological subtypes of conventional ameloblastomas (p < 0.05). CONCLUSION: PEA3 overexpression is predominant in unicystic ameloblastomas and conventional ameloblastomas compared to other odontogenic lesions, indicating a pivotal role of PEA3 as a downstream effector of MAPK pathway in these two odontogenic lesions.


Asunto(s)
Ameloblastoma , Quiste Dentígero , Fibroma , Neoplasias Maxilomandibulares , Quistes Odontogénicos , Tumores Odontogénicos , Ameloblastoma/metabolismo , Quiste Dentígero/patología , Neoplasias Maxilomandibulares/patología , Quistes Odontogénicos/patología , Tumores Odontogénicos/patología , Fosfatidilinositol 3-Quinasas , Humanos
3.
Proc Natl Acad Sci U S A ; 117(44): 27346-27353, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33077600

RESUMEN

A key functional event in eukaryotic gene activation is the formation of dynamic protein-protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator-not often considered as contributing to binding-play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity.


Asunto(s)
Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Secuencia de Aminoácidos/genética , Humanos , Complejo Mediador/genética , Complejo Mediador/metabolismo , Modelos Moleculares , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Activación Transcripcional/fisiología
4.
Genes Dev ; 29(15): 1587-92, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26215568

RESUMEN

Tumor heterogeneity can create a unique symbiotic tumor microenvironment. Earlier, we showed that clonal evolution in mouse small cell lung cancer (SCLC) can result in subclones that, upon cografting, endow the neuroendocrine tumor cells with metastatic potential. We now show that paracrine signaling between SCLC subclones is a critical requirement in the early steps of the metastatic process, such as local invasion and intravasation. We further show evidence that paracrine signaling via fibroblast growth factor 2 (Fgf2) and Mapk between these diverged tumor subclones causes enhanced expression of the Pea3 (polyomavirus enhancer activator 3) transcription factor, resulting in metastatic dissemination of the neuroendocrine tumor subclones. Our data reveal for the first time paracrine signaling between tumor cell subclones in SCLC that results in metastatic spread of SCLC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia/fisiopatología , Comunicación Paracrina/fisiología , Carcinoma Pulmonar de Células Pequeñas/fisiopatología , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Medios de Cultivo Condicionados , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/genética
5.
Mol Med ; 27(1): 69, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34229599

RESUMEN

BACKGROUND: Several studies have reported that hypoxia plays a pathological role in severe asthma and tissue fibrosis. Our previous study showed that hypoxia induces A disintegrin and metalloproteinase 17 (ADAM17) expression in human lung fibroblasts. Moreover, preadipocyte factor 1 (Pref-1) is cleaved by ADAM17, which participates in adipocyte differentiation. Furthermore, Pref-1 overexpression is involved in tissue fibrosis including liver and heart. Extracellular signal-regulated kinase (ERK) could active downstram gene expression through polyoma enhancer activator 3 (PEA3) phosphorylation. Studies have demonstrated that PEA3 and activator protein 1 (AP-1) play crucial roles in lung fibrosis, and the Pref-1 promoter region contains PEA3 and AP-1 binding sites as predicted. However, the roles of ERK, PEA3, and AP-1 in hypoxia-stimulated Pref-1 expression in human lung fibroblasts remain unknown. METHODS: The protein expression in ovalbumin (OVA)-induced asthmatic mice was performed by immunohistochemistry and immunofluorescence. The protein expression or the mRNA level in human lung fibroblasts (WI-38) was detected by western blot or quantitative PCR. Small interfering (si) RNA was used to knockdown gene expression. The collaboration with PEA3 and c-Jun were determined by coimmunoprecipitation. Translocation of PEA3 from the cytosol to the nucleus was observed by immunocytochemistry. The binding ability of PEA3 and AP-1 to Pref-1 promoter was assessed by chromatin immunoprecipitation. RESULTS: Pref-1 and hypoxia-inducible factor 1α (HIF-1α) were expressed in the lung sections of OVA-treated mice. Colocalization of PEA3 and Fibronectin was detected in lung sections from OVA-treated mice. Futhermore, Hypoxia induced Pref-1 protein upregulation and mRNA expression in human lung fibroblasts (WI-38 cells). In 60 confluent WI-38 cells, hypoxia up-regulated HIF-1α and Pref-1 protein expression. Moreover, PEA3 small interfering (si) RNA decreased the expression of hypoxia-induced Pref-1 in WI-38 cells. Hypoxia induced PEA3 phosphorylation, translocation of PEA3 from the cytosol to the nucleus, PEA3 recruitment and AP-1 binding to the Pref-1 promoter region, and PEA3-luciferase activity. Additionally, hypoxia induced c-Jun-PEA3 complex formation. U0126 (an ERK inhibitor), curcumin (an AP-1 inhibitor) or c-Jun siRNA downregulated hypoxia-induced Pref-1 expression. CONCLUSIONS: These results implied that ERK, PEA3, and AP-1 participate in hypoxia-induced Pref-1 expression in human lung fibroblasts.


Asunto(s)
Proteínas de Unión al Calcio/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Hipoxia/genética , Hipoxia/metabolismo , Pulmón/citología , Pulmón/metabolismo , Proteínas de la Membrana/genética , Transducción de Señal , Animales , Biomarcadores , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factores de Transcripción/metabolismo
6.
Cancer Cell Int ; 20: 42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32042269

RESUMEN

BACKGROUND: Although major driver gene mutations have been identified, the complex molecular heterogeneity of colorectal cancer (CRC) remains unclear. Capicua (CIC) functions as a tumor suppressor in various types of cancers; however, its role in CRC progression has not been examined. METHODS: Databases for gene expression profile in CRC patient samples were used to evaluate the association of the levels of CIC and Polyoma enhancer activator 3 (PEA3) group genes (ETS translocation variant 1 (ETV1), ETV4, and ETV5), the best-characterized CIC targets in terms of CIC functions, with clinicopathological features of CRC. CIC and ETV4 protein levels were also examined in CRC patient tissue samples. Gain- and loss-of function experiments in cell lines and mouse xenograft models were performed to investigate regulatory functions of CIC and ETV4 in CRC cell growth and invasion. qRT-PCR and western blot analyses were performed to verify the CIC regulation of ETV4 expression in CRC cells. Rescue experiments were conducted using siRNA against ETV4 and CIC-deficient CRC cell lines. RESULTS: CIC expression was decreased in the tissue samples of CRC patients. Cell invasion, migration, and proliferation were enhanced in CIC-deficient CRC cells and suppressed in CIC-overexpressing cells. Among PEA3 group genes, ETV4 levels were most dramatically upregulated and inversely correlated with the CIC levels in CRC patient samples. Furthermore, derepression of ETV4 was more prominent in CIC-deficient CRC cells, when compared with that observed for ETV1 and ETV5. The enhanced cell proliferative and invasive capabilities in CIC-deficient CRC cells were completely recovered by knockdown of ETV4. CONCLUSION: Collectively, the CIC-ETV4 axis is not only a key module that controls CRC progression but also a novel therapeutic and/or diagnostic target for CRC.

7.
Biochem Cell Biol ; 97(4): 488-496, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30532986

RESUMEN

Steroid receptor coactivator 1 (SRC-1) is a transcriptional coactivator for steroid receptors and other transcription factors. SRC-1 has been shown to play an important role in the progression of breast cancer and prostate cancer. However, its role in glioma progression remains unknown. Here, in this study, we report that SRC-1 is upregulated in the vessels of human glioma and exerts important regulatory functions. Specifically, SRC-1 expression significantly enhanced basic fibroblast growth factor (bFGF)-mediated angiogenesis in vivo. Downregulating of SRC-1 expression suppressed endothelial cell migration and tube formation in vitro and upregulated the expression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metallopeptidase (MMP)-9 in glioma cells. These SRC-1-mediated effects were dependent on the activation of polyomavirus enhancer activator 3 (PEA3) transcriptional activity. VEGF and VEGF inducer GS4012 induced the direct binding of SRC-1 and PEA3 in glioma cells, and PEA3 could directly bind with VEGF and MMP-9 promoter under GS4012 treatment in glioma cell. The expression of pro-angiogenic factors induced by SRC-1 was abrogated by sh-PEA3 knockdown. Taken together, these novel outcomes indicated that SRC-1 modulated endothelial cell (EC) function and facilitated a pro-angiogenic microenvironment through PEA3 signaling. Moreover, a combination of targeting SRC-1 and PEA3 signaling in glioma could be a promising strategy for suppressing tumor angiogenesis.


Asunto(s)
Glioma/metabolismo , Neovascularización Patológica/metabolismo , Coactivador 1 de Receptor Nuclear/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL
8.
Dev Growth Differ ; 58(5): 437-45, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27273073

RESUMEN

In this paper, we review how midbrain and hindbrain are specified. Otx2 and Gbx2 are expressed from the early phase of development, and their expression abuts at the midbrain hindbrain boundary (MHB), where Fgf8 expression is induced, and functions as an organizing molecule for the midbrain and hindbrain. Fgf8 induces En1 and Pax2 expression at the region where Otx2 is expressed to specify midbrain. Fgf8 activates Ras-ERK pathway to specify hindbrain. Downstream of ERK, Pea3 specifies isthmus (rhombomere 0, r0), and Irx2 may specify r1, where the cerebellum is formed.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Mesencéfalo/embriología , Rombencéfalo/embriología , Animales , Factor 8 de Crecimiento de Fibroblastos/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo
9.
Dev Growth Differ ; 57(9): 657-66, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26691276

RESUMEN

It has been shown that strong Fgf8 signal activates Ras-ERK signaling pathway to determine metencephalon, which consists of rhombomere 1 (r1), where the cerebellum differentiates, and isthmus (r0). The present study was undertaken to check if Ets type transcription factor Pea3 functions downstream of Ras-ERK signaling to determine metencephalon. Pea3 misexpression resulted in repression of Otx2 expression in the mesencephalon, induction of Gbx2 and Fgf8 expression in the mesencephalon, and differentiation of the trochlear neurons in the posterior mesencephalon. Fate change of the tectum to the cerebellum did not occur. Repression of Pea3 function by misexpressing the chimeric molecule of Engrailed repressor domain EH1 and Pea3 (eh1-Pea3) resulted in induction of Otx2 expression in the metencephalon, repression of Gbx2 and Fgf8 expression in the metencephalon, and differentiation of the oculomotor neurons in the isthmus. It was concluded that Pea3 plays a pivotal role in determination of the isthmus (r0) property downstream of Fgf8-Ras-ERK signaling.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas , Factores de Transcripción/metabolismo , Proteínas ras/metabolismo , Animales , Pollos , Regulación hacia Abajo , Regulación hacia Arriba
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167319, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909848

RESUMEN

The regulation of protein degradation through the ubiquitin-proteasome system is essential for normal brain development, axon growth, synaptic growth and plasticity. The E3 ubiquitin ligase RFWD2 plays a key role in the onset and development of neurological diseases, including the pathogenesis of Alzheimer's disease (AD), but the mechanisms controlling the homeostasis of neuronal synaptic proteins are still poorly understood. Here, we showed that the expression level of RFWD2 gradually decreased with the age of the rats and was negatively correlated with the development of cerebral cortical neurons and dendrites in vivo. RFWD2 was shown to localize to presynaptic terminals and some postsynaptic sides of both excitatory synapses and inhibitory synapses via colocalization with neuronal synaptic proteins (SYN, PSD95, Vglut1 and GAD67). Overexpression of RFWD2 promoted dendrite development and dendritic spine formation and markedly decreased the expression of synaptophysin and PSD95 by reducing the expression of ETV1, ETV4, ETV5 and c-JUN in vitro. Furthermore, the whole-cell membrane slice clamp results showed that RFWD2 overexpression resulted in greater membrane capacitance in neuronal cells, inadequate cell repolarization, and a longer time course for neurons to emit action potentials with decreased excitability. RFWD2 regulates dendritic development and plasticity, dendritic spine formation and synaptic function in rat cerebral cortex neurons by activating the ERK/PEA3/c-Jun pathway via a posttranslational regulatory mechanism and can be used as an efficient treatment target for neurological diseases.

11.
Arch Med Res ; 53(5): 469-482, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35817647

RESUMEN

BACKGROUND AND AIM: Previous studies have shown that the hepatitis C virus (HCV) core protein plays an important role in the metastasis of hepatocellular carcinoma (HCC) cells. This study aimed to identify the potential mechanism of HCV core protein in HCC. METHODS: A transcription factor microarray analysis was performed to identify the factors regulated by the HCV core protein. A comprehensive bioinformatics analysis approach was utilized to predict the functions, regulatory signaling pathways and downstream target genes of the differentially regulated transcription factors. Dual-luciferase assays, qPCR, Western blotting, ERK pathway inhibition experiments and siRNA knockdown experiments were performed to verify the effects of the HCV core protein on PEA3, SRF and c-Fos, as well asthe underlying mechanism. The migration/invasion assay and scratch assay served to confirm the metastasis-promoting mechanism of the HCV core protein. RESULTS: The results demonstrated that altered expression of PEA3, SRF and c-Fos mediated by the HCV core protein were associated with the MAPK/ERK pathway. c-Fos was a downstream target protein of PEA3 and SRF. Knockdown of PEA3-SRF/c-Fos expression and ERK pathway components suppressed the migration and invasion activity of hepatocytes by affecting MMP2 and MMP9 expression. CONCLUSION: We provided preliminary evidence that the role of the HCV core protein in promoting metastasis is at least partially dependent on the activation of the MAPK/ERK/PEA3-SRF/c-Fos/MMP2/MMP9 axis. These findings reveal a novel mechanism by which the HCV core protein promotes HCC metastasis and may provide new therapeutic targets for patients with metastatic HCC.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/patología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz , Factores de Transcripción , Proteínas del Núcleo Viral/metabolismo , Proteínas del Núcleo Viral/farmacología
12.
J Pers Med ; 11(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671331

RESUMEN

The ETS domain family of transcription factors is involved in a number of biological processes, and is commonly misregulated in various forms of cancer. Using microarray datasets from patients with different grades of glioma, we have analyzed the expression profiles of various ETS genes, and have identified ETV1, ELK3, ETV4, ELF4, and ETV6 as novel biomarkers for the identification of different glioma grades. We have further analyzed the gene regulatory networks of ETS transcription factors and compared them to previous microarray studies, where Elk-1-VP16 or PEA3-VP16 were overexpressed in neuroblastoma cell lines, and we identify unique and common regulatory networks for these ETS proteins.

13.
Neurosci Lett ; 738: 135348, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891673

RESUMEN

Pea3 proteins belong to a subfamily of the E-twentysix (ETS) domain superfamily of transcription factors, which play various roles during development. Polyoma Enhancer-Activator 3 (Pea3) proteins Pea3, ERM and Er81 are particularly involved in tissues with branching morphogenesis, including kidney, lung, mammary gland and nervous system development. A recent transcriptomic study on novel targets of Pea3 transcription factor revealed various axon guidance and nervous system development related targets, supporting a role of Pea3 proteins in motor neuron connectivity, as well as novel targets in signaling pathways involved in synaptic plasticity. This study focuses on the expression of Pea3 family members in hippocampal neurons, and regulation of putative Pea3 targets in Pea3-overexpressing cell lines and following induction of long-term potentiation or seizure in vivo. We show that Pea3 proteins are expressed in hippocampus in both neuronal and non-neuronal cells, and that Pea3 represses Elk-1 but activates Prkca and Nrcam expression in hippocampal cell lines. We also show that mRNA and protein levels of Pea3 family members are differentially regulated in the dentate gyrus and CA1 region upon MECS stimulation, but not upon LTP induction.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Neuronas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Transactivadores/genética , Factores de Transcripción/genética , Transcriptoma
14.
Am J Cancer Res ; 10(10): 3083-3105, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163259

RESUMEN

The PEA3 subfamily is a subgroup of the E26 transformation-specific (ETS) family. Its members, ETV1, ETV4, and ETV5, have been found to be overexpressed in multiple cancers. The deregulation of ETV1, ETV4, and ETV5 induces cell growth, invasion, and migration in various tumor cells, leading to tumor progression, metastasis, and drug resistance. Therefore, exploring drugs or therapeutic targets that target the PEA3 subfamily may contribute to the clinical treatment of tumor patients. In this review, we introduce the structures and functions of the PEA3 subfamily members, systematically review their main roles in various tumor cells, analyze their prognostic and diagnostic value, and, finally, introduce several molecular targets and therapeutic drugs targeting ETV1, ETV4, and ETV5. We conclude that targeting a series of upstream regulators and downstream target genes of the PEA3 subfamily may be an effective strategy for the treatment of ETV1/ETV4/ETV5-overexpressing tumors.

15.
Front Pharmacol ; 11: 620811, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33658938

RESUMEN

Discovery of markers predictive for 5-Fluorouracil (5-FU)-based adjuvant chemotherapy (adjCTX) response in patients with locally advanced stage II and III colon cancer (CC) is necessary for precise identification of potential therapy responders. PEA3 subfamily of ETS transcription factors (ETV1, ETV4, and ETV5) are upregulated in multiple cancers including colon cancers. However, the underlying epigenetic mechanism regulating their overexpression as well as their role in predicting therapy response in colon cancer are largely unexplored. In this study, using gene expression and methylation data from The Cancer Genome Atlas (TCGA) project, we showed that promoter DNA methylation negatively correlates with ETV4 expression (ρ = -0.17, p = 5.6 × 10-3) and positively correlates with ETV5 expression (ρ = 0.22, p = 1.43 × 10-4) in colon cancer tissue. Further, our analysis in 1,482 colon cancer patients from five different cohorts revealed that higher ETV5 expression associates with shorter relapse-free survival (RFS) of adjCTX treated colon cancer patients (Hazard ratio = 2.09-5.43, p = 0.004-0.01). The present study suggests ETV5 expression as a strong predictive biomarker for 5-FU-based adjCTX response in stage II/III CC patients.

16.
Elife ; 92020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32043969

RESUMEN

The signal regulated transcription factors (SRTFs) control the ultimate transcriptional output of signaling pathways. Here, we examined a family of FGF-induced SRTFs - Etv1, Etv 4, and Etv 5 - in murine lens development. Contrary to FGF receptor mutants that displayed loss of ERK signaling and defective cell differentiation, Etv deficiency augmented ERK phosphorylation without disrupting the normal lens fiber gene expression. Instead, the transitional zone for lens differentiation was shifted anteriorly as a result of reduced Jag1-Notch signaling. We also showed that Etv proteins suppresses mTOR activity by promoting Tsc2 expression, which is necessary for the nuclei clearance in mature lens. These results revealed the functional divergence between Etv and FGF in lens development, demonstrating that these SRTFs can operate outside the confine of their upstream signaling.


Many cells contain proteins known as signal-induced transcription factors, which are poised to receive messages from the environment and then react by activating genes required for the cell to respond appropriately. It is commonly thought that these transcription factors faithfully follow the instructions they receive from the external signal: for instance, if the message was to encourage the cell to grow, the transcription factors would switch on growth-related genes. As the eyes of mice and other mammals develop, a signal known as FGF is required for certain cells to specialize into lens fiber cells: these long, thin, transparent cells form the bulk of the lens, the structure that allows focused vision. Previous studies suggest that FGF activates three transcription factors known as Etv1, Etv4 and Etv5, but their precise roles in the development of the lens has remained unclear. Here, Garg, Hannan, Wang et al. confirm that FGF signaling does indeed activate all three proteins. However, mutant mice that lacked Etv1, Etv4 and Etv5 still created lens fiber cells, suggesting that the transcription factors are largely unnecessary for lens fiber cells formation. Instead, the Etv proteins participated in a cascade of molecular events involving a protein called Notch; as a result, if the transcription factors were absent, the lens fiber cells formed prematurely. In addition, deactivating Etv1, Etv4 and Etv5 also promoted the activity of a protein which interfered with the removal of internal cell compartments, a process required for lens fiber cells to mature properly. These findings reveal that the roles of Etv1, Etv4 and Etv5 deviate from and even oppose FGF signaling in the lenses of mice. Transcription factors control the ultimate fate of a cell, and there is therefore increased interest in targeting them for therapy. The work by Garg, Hannan, Wang et al. reveals an unexpected complexity in how these proteins respond to upstream signals, highlighting the importance of further dissecting these relationships.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/fisiología , Cristalino/crecimiento & desarrollo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción/fisiología , Animales , Cristalinas/metabolismo , Células Epiteliales/fisiología , Proteína Jagged-1/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Proteínas Proto-Oncogénicas c-maf/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
17.
Am J Transl Res ; 9(5): 2153-2162, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28559968

RESUMEN

Toxin-induced nephrotoxicity is one of the major causes leading to the acute kidney injury (AKI). Among these nephrotoxic toxins, gentamicin can induce AKI with elusive mechanisms. Emerging evidence demonstrated that PEA3 (polyomavirus enhancer activator 3) contributed to the nephrogenesis, while its role in AKI remains unknown. Thus, this study was to investigate the role of PEA3 in gentamicin nephrotoxicity, as well as the underlying mechanisms. In rats, gentamicin treatment (200 mg/kg twice per day) for two days induced remarkable kidney injury with a peak damage on day 5 evaluated by the tubular injury score, proteinuria, and tubular injury markers of NGAL and KIM-1. In parallel with the tubular injury, PEA3 protein and mRNA expressions were significantly upregulated by gentamicin and peaked on day 5. To define the role of PEA3 in gentamicin nephrotoxicity, proximal tubule cells were transfected with PEA3 plasmid with or without gentamicin treatment (1 mg/ml). Notably, overexpression of PEA3 attenuated gentamicin-induced cell injury shown by the ameliorated cell apoptosis and NGAL and KIM-1 upregulation. Meantime, gentamicin caused severe mitochondrial dysfunction, which was largely normalized by PEA3 overexpression. In contrast, silencing PEA3 by a siRNA strategy further deteriorated gentamicin-induced cell apoptosis and mitochondrial dysfunction. In sum, PEA3 protected against gentamicin nephrotoxicity possibly via a mitochondrial mechanism.

18.
Oncotarget ; 7(24): 36865-36884, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27167206

RESUMEN

BACKGROUND AND AIMS: JWA, a microtubule-associated protein (MAP) involved in apoptosis, has been identified as a suppressor of metastasis, and it affects cell migration in melanoma and its downregulation in tumor is an idependent negative prognostic factor in resectable gastric cancer. HER2 overexpression has been observed in gastric cancer (GC) cells and implicated in the metastatic phenotype. However, the biological role of JWA in migration and its clinical value in HER2-positive GC remain elusive. RESULTS: JWA suppresses EGF-induced cell migration and actin cytoskeletal rearrangement by abrogating HER2 expression and downstream PI3K/AKT signaling in HER2-overexpressing GC cell lines. The modulation of HER2 by JWA is dependent on ERK activation and consequent PEA3 upregulation and activation. Reduced JWA expression is associated with high HER2 expression and with poor survival in patients with AGC, whereas HER2 expression alone is not associated with survival. However, concomitant low JWA and high HER2 expression is associated with unfavorable outcomes. Additionally, when patients were stratified by JWA expression, those with higher HER2 expression in the low JWA expression subgroup exhibited worse survival. METHODS: The impact of JWA on the EGF-induced migration of HER2-positive GC cells was studied using transwell assays and G-LISA assays. Western blotting, real-time PCR, electrophoretic mobility shift assays and luciferase assays were utilized to investigate the mechanisms by which JWA affects HER2. The association of JWA with HER2 and its clinical value were further analyzed by IHC in 128 pairs of advanced gastric cancer (AGC) and adjacent normal tissue samples. CONCLUSIONS: This study characterizes a novel mechanism for regulating cell motility in HER2-overexpressing GC cells involving JWA-mediated MEK/ERK/PEA3 signaling activation and HER2 downregulation. Furthermore, JWA may be a useful prognostic indicator for advanced GC and may help stratify HER2-positive patient subgroups to better identify unfavorable outcomes.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Gástricas/patología , Adulto , Anciano , Biomarcadores de Tumor/análisis , Movimiento Celular/fisiología , Citoesqueleto/patología , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Proteínas de Transporte de Membrana , Persona de Mediana Edad , Pronóstico , Receptor ErbB-2/biosíntesis , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad
19.
Cytokine Growth Factor Rev ; 26(4): 415-23, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26088937

RESUMEN

Breast cancer is one of the most prevalent malignancies worldwide. It consists of a group of tumor cells that have the ability to grow uncontrollably, overcome replicative senescence (tumor progression) and metastasize within the body. Metastases are processes that consist of an array of complex gene dysregulation events. Although these processes are still not fully understood, the dysregulation of a number of key proteins must take place if the tumor cells are to disseminate and metastasize. It is now widely accepted that future effective and innovative treatments of cancer metastasis will have to encompass all the major components of malignant transformation. For this reason, much research is now being carried out into the mechanisms that govern the malignant transformation processes. Recent research has identified key genes involved in the development of metastases, as well as their mechanisms of action. A detailed understanding of the encoded proteins and their interrelationship generates the possibility of developing novel therapeutic approaches. This review will focus on a select group of proteins, often deregulated in breast cancer metastasis, which have shown therapeutic promise, notably, EMT, E-cadherin, Osteopontin, PEA3, Transforming Growth Factor Beta (TGF-ß) and Ran.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Neoplasias/metabolismo , Animales , Femenino , Humanos , Metástasis de la Neoplasia
20.
Mol Oncol ; 9(9): 1852-67, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26238631

RESUMEN

Various solid tumors including lung or gastric carcinomas display aberrant activation of the Met receptor which correlates with aggressive phenotypes and poor prognosis. Although downstream signaling of Met is well described, its integration at the transcriptional level is poorly understood. We demonstrate here that in cancer cells harboring met gene amplification, inhibition of Met activity with tyrosine kinase inhibitors or specific siRNA drastically decreased expression of ETV1, ETV4 and ETV5, three transcription factors constituting the PEA3 subgroup of the ETS family, while expression of the other members of the family were less or not affected. Similar link between Met activity and PEA3 factors expression was found in lung cancer cells displaying resistance to EGFR targeted therapy involving met gene amplification. Using silencing experiments, we demonstrate that the PEA3 factors are required for efficient migration and invasion mediated by Met, while other biological responses such as proliferation or unanchored growth remain unaffected. PEA3 overexpression or silencing revealed that they participated in the regulation of the MMP2 target gene involved in extracellular matrix remodeling. Our results demonstrated that PEA3-subgroup transcription factors are key players of the Met signaling integration involved in regulation of migration and invasiveness.


Asunto(s)
Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Movimiento Celular , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Neoplasias/genética , Neoplasias/patología , Proteínas Proto-Oncogénicas c-met/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA