Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 347-373, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941603

RESUMEN

Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.


Asunto(s)
COVID-19 , Células Dendríticas , Inmunidad Innata , Lupus Eritematoso Sistémico , SARS-CoV-2 , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , COVID-19/inmunología , Animales , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Lupus Eritematoso Sistémico/inmunología , Receptores Toll-Like/metabolismo , Diferenciación Celular , Linaje de la Célula
2.
Cell ; 186(25): 5536-5553.e22, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38029747

RESUMEN

Mycobacterium tuberculosis (Mtb) causes 1.6 million deaths annually. Active tuberculosis correlates with a neutrophil-driven type I interferon (IFN) signature, but the cellular mechanisms underlying tuberculosis pathogenesis remain poorly understood. We found that interstitial macrophages (IMs) and plasmacytoid dendritic cells (pDCs) are dominant producers of type I IFN during Mtb infection in mice and non-human primates, and pDCs localize near human Mtb granulomas. Depletion of pDCs reduces Mtb burdens, implicating pDCs in tuberculosis pathogenesis. During IFN-driven disease, we observe abundant DNA-containing neutrophil extracellular traps (NETs) described to activate pDCs. Cell-type-specific disruption of the type I IFN receptor suggests that IFNs act on IMs to inhibit Mtb control. Single-cell RNA sequencing (scRNA-seq) indicates that type I IFN-responsive cells are defective in their response to IFNγ, a cytokine critical for Mtb control. We propose that pDC-derived type I IFNs act on IMs to permit bacterial replication, driving further neutrophil recruitment and active tuberculosis disease.


Asunto(s)
Interferón Tipo I , Tuberculosis , Humanos , Ratones , Animales , Macrófagos/microbiología , Citocinas , Neutrófilos , Células Dendríticas
3.
Cell ; 181(5): 1080-1096.e19, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32380006

RESUMEN

Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.


Asunto(s)
Células Dendríticas/inmunología , Interferón Tipo I/inmunología , Microbiota/inmunología , Inmunidad Adaptativa/inmunología , Inmunidad Adaptativa/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/microbiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/fisiología , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/inmunología
4.
Immunity ; 55(3): 405-422.e11, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35180378

RESUMEN

Developmental origins of dendritic cells (DCs) including conventional DCs (cDCs, comprising cDC1 and cDC2 subsets) and plasmacytoid DCs (pDCs) remain unclear. We studied DC development in unmanipulated adult mice using inducible lineage tracing combined with clonal DNA "barcoding" and single-cell transcriptome and phenotype analysis (CITE-seq). Inducible tracing of Cx3cr1+ hematopoietic progenitors in the bone marrow showed that they simultaneously produce all DC subsets including pDCs, cDC1s, and cDC2s. Clonal tracing of hematopoietic stem cells (HSCs) and of Cx3cr1+ progenitors revealed clone sharing between cDC1s and pDCs, but not between the two cDC subsets or between pDCs and B cells. Accordingly, CITE-seq analyses of differentiating HSCs and Cx3cr1+ progenitors identified progressive stages of pDC development including Cx3cr1+ Ly-6D+ pro-pDCs that were distinct from lymphoid progenitors. These results reveal the shared origin of pDCs and cDCs and suggest a revised scheme of DC development whereby pDCs share clonal relationship with cDC1s.


Asunto(s)
Linfocitos B , Células Dendríticas , Animales , Recuento de Células , Corea , Células Madre Hematopoyéticas , Ratones
5.
Immunity ; 54(11): 2514-2530.e7, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34717796

RESUMEN

Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Regulación de la Expresión Génica , Sistemas de Transporte de Aminoácidos/metabolismo , Autoinmunidad , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Metabolismo Energético , Humanos , Inmunidad , Transducción de Señal
6.
Immunity ; 52(6): 1022-1038.e7, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32454024

RESUMEN

Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Comunicación Celular , ADN/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Interferón Tipo I/metabolismo , Animales , Anticuerpos Antinucleares/inmunología , Autoantígenos/inmunología , Autoinmunidad , Biomarcadores , Ligando de CD40/deficiencia , Comunicación Celular/genética , Comunicación Celular/inmunología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Endodesoxirribonucleasas/deficiencia , Técnica del Anticuerpo Fluorescente , Centro Germinal/inmunología , Centro Germinal/metabolismo , Centro Germinal/patología , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/metabolismo , Ratones , Ratones Noqueados , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/metabolismo
7.
Immunity ; 50(1): 37-50, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650380

RESUMEN

Plasmacytoid dendritic cells (pDCs) are a unique sentinel cell type that can detect pathogen-derived nucleic acids and respond with rapid and massive production of type I interferon. This review summarizes our current understanding of pDC biology, including transcriptional regulation, heterogeneity, role in antiviral immune responses, and involvement in immune pathology, particularly in autoimmune diseases, immunodeficiency, and cancer. We also highlight the remaining gaps in our knowledge and important questions for the field, such as the molecular basis of unique interferon-producing capacity of pDCs. A better understanding of cell type-specific positive and negative control of pDC function should pave the way for translational applications focused on this immune cell type.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Diferenciación Celular , Células Dendríticas/fisiología , Neoplasias/inmunología , Virosis/inmunología , Animales , Regulación de la Expresión Génica , Humanos , Inmunidad Celular , Interferón Tipo I/metabolismo
8.
Immunol Rev ; 323(1): 241-256, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38553621

RESUMEN

The discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases. In this review, we describe recent data characterizing the role of platelets and NA-binding chemokines in modulation of TLR signaling in pDCs, as well as implications for how the IFN-I products of pDCs contribute to the generation of inflammation and wound healing responses by monocyte/macrophages. Chemokine modulators of TLR-mediated B cell tolerance mechanisms and interactions between TLR signaling and metabolic pathways are also considered. The modulators of TLR signaling and their contribution to the pathogenesis of systemic autoimmune diseases suggest new opportunities for identification of novel therapeutic targets.


Asunto(s)
Enfermedades Autoinmunes , Autoinmunidad , Células Dendríticas , Inflamación , Interferón Tipo I , Transducción de Señal , Receptores Toll-Like , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Inflamación/inmunología , Receptores Toll-Like/metabolismo , Enfermedades Autoinmunes/inmunología , Interferón Tipo I/metabolismo , Plaquetas/inmunología , Plaquetas/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Tolerancia Inmunológica , Inmunomodulación , Quimiocinas/metabolismo
9.
Immunity ; 48(4): 730-744.e5, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29669251

RESUMEN

Although characterization of T cell exhaustion has unlocked powerful immunotherapies, the mechanisms sustaining adaptations of short-lived innate cells to chronic inflammatory settings remain unknown. During murine chronic viral infection, we found that concerted events in bone marrow and spleen mediated by type I interferon (IFN-I) and Toll-like receptor 7 (TLR7) maintained a pool of functionally exhausted plasmacytoid dendritic cells (pDCs). In the bone marrow, IFN-I compromised the number and the developmental capacity of pDC progenitors, which generated dysfunctional pDCs. Concurrently, exhausted pDCs in the periphery were maintained by self-renewal via IFN-I- and TLR7-induced proliferation of CD4- subsets. On the other hand, pDC functional loss was mediated by TLR7, leading to compromised IFN-I production and resistance to secondary infection. These findings unveil the mechanisms sustaining a self-perpetuating pool of functionally exhausted pDCs and provide a framework for deciphering long-term exhaustion of other short-lived innate cells during chronic inflammation.


Asunto(s)
Autorrenovación de las Células/inmunología , Células Dendríticas/inmunología , Interferón Tipo I/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Glicoproteínas de Membrana/inmunología , Receptor Toll-Like 7/inmunología , Células 3T3 , Animales , Proteínas Portadoras/biosíntesis , Línea Celular , Proliferación Celular , Proteínas de Unión al ADN/biosíntesis , Células Dendríticas/citología , Humanos , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/biosíntesis , Proteínas Represoras , Transducción de Señal/inmunología , Factor de Transcripción 4/biosíntesis , Factores de Transcripción/biosíntesis
10.
Proc Natl Acad Sci U S A ; 121(12): e2312404121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38478694

RESUMEN

Plasmacytoid dendritic cells (pDCs) produce type I interferons (IFNs) after sensing viral/bacterial RNA or DNA by toll-like receptor (TLR) 7 or TLR9, respectively. However, aberrant pDCs activation can cause adverse effects on the host and contributes to the pathogenesis of type I IFN-related autoimmune diseases. Here, we show that heparin interacts with the human pDCs-specific blood dendritic cell antigen 2 (BDCA-2) but not with related lectins such as DCIR or dectin-2. Importantly, BDCA-2-heparin interaction depends on heparin sulfation and receptor glycosylation and results in inhibition of TLR9-driven type I IFN production in primary human pDCs and the pDC-like cell line CAL-1. This inhibition is mediated by unfractionated and low-molecular-weight heparin, as well as endogenous heparin from plasma, suggesting that the local blood environment controls the production of IFN-α in pDCs. Additionally, we identified an activation-dependent soluble form of BDCA-2 (solBDCA-2) in human plasma that functions as heparin antagonist and thereby increases TLR9-driven IFN-α production in pDCs. Of importance, solBDCA-2 levels in the serum were increased in patients with scrub typhus (an acute infectious disease caused by Orientia tsutsugamushi) compared to healthy control subjects and correlated with anti-dsDNA antibodies titers. In contrast, solBDCA-2 levels in plasma from patients with bullous pemphigoid or psoriasis were reduced. In summary, this work identifies a regulatory network consisting of heparin, membrane-bound and solBDCA-2 modulating TLR9-driven IFN-α production in pDCs. This insight into pDCs function and regulation may have implications for the treatment of pDCs-related autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Interferón Tipo I , Humanos , Interferón Tipo I/metabolismo , Heparina/metabolismo , Receptor Toll-Like 9/metabolismo , Células Dendríticas , Enfermedades Autoinmunes/metabolismo
11.
Immunity ; 46(1): 65-77, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27986456

RESUMEN

The cell fate decision between interferon-producing plasmacytoid DC (pDC) and antigen-presenting classical DC (cDC) is controlled by the E protein transcription factor TCF4 (E2-2). We report that TCF4 comprises two transcriptional isoforms, both of which are required for optimal pDC development in vitro. The long Tcf4 isoform is expressed specifically in pDCs, and its deletion in mice impaired pDCs development and led to the expansion of non-canonical CD8+ cDCs. The expression of Tcf4 commenced in progenitors and was further upregulated in pDCs, correlating with stage-specific activity of multiple enhancer elements. A conserved enhancer downstream of Tcf4 was required for its upregulation during pDC differentiation, revealing a positive feedback loop. The expression of Tcf4 and the resulting pDC differentiation were selectively sensitive to the inhibition of enhancer-binding BET protein activity. Thus, lineage-specifying function of E proteins is facilitated by lineage-specific isoform expression and by BET-dependent feedback regulation through distal regulatory elements.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/inmunología , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Linaje de la Célula , Inmunoprecipitación de Cromatina , Células Dendríticas/citología , Citometría de Flujo , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/metabolismo , Factor de Transcripción 4 , Transcriptoma
12.
Immunity ; 47(6): 1037-1050.e6, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29221729

RESUMEN

Given the limited efficacy of clinical approaches that rely on ex vivo generated dendritic cells (DCs), it is imperative to design strategies that harness specialized DC subsets in situ. This requires delineating the expression of surface markers by DC subsets among individuals and tissues. Here, we performed a multiparametric phenotypic characterization and unbiased analysis of human DC subsets in blood, tonsil, spleen, and skin. We uncovered previously unreported phenotypic heterogeneity of human cDC2s among individuals, including variable expression of functional receptors such as CD172a. We found marked differences in DC subsets localized in blood and lymphoid tissues versus skin, and a striking absence of the newly discovered Axl+ DCs in the skin. Finally, we evaluated the capacity of anti-receptor monoclonal antibodies to deliver vaccine components to skin DC subsets. These results offer a promising path for developing DC subset-specific immunotherapies that cannot be provided by transcriptomic analysis alone.


Asunto(s)
Antígenos de Diferenciación/inmunología , Variación Biológica Individual , Células Dendríticas/inmunología , Fenotipo , Proteínas Proto-Oncogénicas/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Inmunológicos/inmunología , Piel/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacocinética , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Diferenciación/genética , Biomarcadores/análisis , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/biosíntesis , Citofotometría/métodos , Células Dendríticas/citología , Femenino , Expresión Génica , Humanos , Inmunofenotipificación , Inmunoterapia , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Especificidad de Órganos , Tonsila Palatina/citología , Tonsila Palatina/inmunología , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/deficiencia , Proteínas Tirosina Quinasas Receptoras/genética , Receptores Inmunológicos/genética , Piel/citología , Bazo/citología , Bazo/inmunología , Tirosina Quinasa del Receptor Axl
13.
Eur J Immunol ; 54(7): e2350955, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38587967

RESUMEN

Type I interferons (IFN-Is) are key in fighting viral infections, but also serve major roles beyond antiviral immunity. Crucial is the tight regulation of IFN-I responses, while excessive levels are harmful to the cells. In essence, immune responses are generated by single cells making their own decisions, which are based on the signals they perceive. Additionally, immune cells must anticipate the future state of their environment, thereby weighing the costs and benefits of each possible outcome, in the presence of other potentially competitive decision makers (i.e., IFN-I producing cells). A rather new cellular communication mechanism called quorum sensing describes the effect of cell density on cellular secretory behaviors, which fits well with matching the right amount of IFN-Is produced to fight an infection. More competitive decision makers must contribute relatively less and vice versa. Intrigued by this concept, we assessed the effects of immune quorum sensing in pDCs, specialized immune cells known for their ability to mass produce IFN-Is. Using conventional microwell assays and droplet-based microfluidics assays, we were able the characterize the effect of quorum sensing in human primary immune cells in vitro. These insights open new avenues to manipulate IFN-I response dynamics in pathological conditions affected by aberrant IFN-I signaling.


Asunto(s)
Células Dendríticas , Interferón Tipo I , Percepción de Quorum , Humanos , Células Dendríticas/inmunología , Percepción de Quorum/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Comunicación Celular/inmunología , Células Cultivadas
14.
Immunity ; 45(5): 1093-1107, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27793594

RESUMEN

Type I interferon (IFN) is critical for controlling pathogen infection; however, its regulatory mechanisms in plasmacytoid cells (pDCs) still remain unclear. Here, we have shown that nucleic acid sensors cGAS-, STING-, MDA5-, MAVS-, or transcription factor IRF3-deficient mice produced high amounts of type I IFN-α and IFN-ß (IFN-α/ß) in the serum and were resistant to lethal plasmodium yoelii YM infection. Robust IFN-α/ß production was abolished when gene encoding nucleic acid sensor TLR7, signaling adaptor MyD88, or transcription factor IRF7 was ablated or pDCs were depleted. Further, we identified SOCS1 as a key negative regulator to inhibit MyD88-dependent type I IFN signaling in pDCs. Finally, we have demonstrated that pDCs, cDCs, and macrophages were required for generating IFN-α/ß-induced subsequent protective immunity. Thus, our findings have identified a critical regulatory mechanism of type I IFN signaling in pDCs and stage-specific function of immune cells in generating potent immunity against lethal YM infection.


Asunto(s)
Inmunidad Adaptativa/inmunología , Células Dendríticas/inmunología , Interferón Tipo I/inmunología , Malaria/inmunología , Transducción de Señal/inmunología , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Técnicas de Silenciamiento del Gen , Ratones , Ratones Noqueados , Plasmodium yoelii , Reacción en Cadena de la Polimerasa
15.
J Allergy Clin Immunol ; 153(4): 1083-1094, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38110059

RESUMEN

BACKGROUND: Impaired interferon response and allergic sensitization may contribute to virus-induced wheeze and asthma development in young children. Plasmacytoid dendritic cells (pDCs) play a key role in antiviral immunity as critical producers of type I interferons. pDCs also express the high-affinity IgE receptor through which type I interferon production may be negatively regulated. Whether antiviral function of pDCs is associated with recurrent episodes of wheeze in young children is not well understood. OBJECTIVE: We sought to evaluate the phenotype and function of circulating pDCs in children with a longitudinally defined wheezing phenotype. METHODS: We performed multiparameter flow cytometry on PBMCs from 38 children presenting to the emergency department with an acute episode of respiratory wheeze and 19 controls. RNA sequencing on isolated pDCs from the same individuals was also performed. For each subject, their longitudinal exacerbation phenotype was determined using the Western Australia public hospital database. RESULTS: We observed a significant depletion of circulating pDCs in young children with a persistent phenotype of wheeze. The same individuals also displayed upregulation of the FcεRI on their pDCs. Based on transcriptomic analysis, pDCs from these individuals did not mount a robust systemic antiviral response as observed in children who displayed a nonrecurrent wheezing phenotype. CONCLUSIONS: Our data suggest that circulating pDC phenotype and function are altered in young children with a persistent longitudinal exacerbation phenotype. Expression of high-affinity IgE receptor is increased and their function as major interferon producers is impaired during acute exacerbations of wheeze.


Asunto(s)
Asma , Interferón Tipo I , Niño , Humanos , Preescolar , Receptores de IgE , Ruidos Respiratorios , Interferón Tipo I/metabolismo , Células Dendríticas
16.
Biochem Biophys Res Commun ; 733: 150703, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39307111

RESUMEN

Plasmacytoid dendritic cells (pDCs) are a distinct subset of DCs involved in immune regulation and antiviral immune responses. Recent studies have elucidated the metabolic profile of pDCs and reported that perturbations in amino acid metabolism can modulate their immune functions. Glycolipid metabolism is suggested to be highly active in pDCs; however, its significance remains unclear. In this study, bulk RNA-sequencing analysis confirmed the known pDC-marker expressions, including interleukin (IL)-3R (CD123), BDCA-2 (CD303), BDCA-4 (CD304), and toll-like receptor 9, compared with that of myeloid DCs (mDCs). Among the differentially expressed genes, UDP-glucose-ceramide glucosyltransferase (UGCG) expression was significantly upregulated in pDCs than in mDCs. Moreover, pDC-specific UGCG expression was observed at both the mRNA and protein levels in pDCs and pDC-like cell lines, including CAL-1 and PMDC05 cell lines. Pharmacological or clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9-mediated genetic inhibition of UGCG did not affect the pDC phenotype as evidenced by the persistent expression of IL-3R and BDCA-2 in pDC-like cell lines. However, UGCG knockout resulted in reduced type I interferon production in pDCs upon CpG activation. In addition, UGCG-knockout pDC-like cell lines exhibited reduced transduction by vesicular stomatitis virus-G pseudo-typed lentiviral vectors, suggesting that low UGCG expression hinders infectivity. Collectively, our findings suggest that pDC-specific UGCG expression is critical for cytokine production and antiviral immune responses in pDCs.


Asunto(s)
Células Dendríticas , Glucosiltransferasas , Interferón Tipo I , Regulación hacia Arriba , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Interferón Tipo I/metabolismo , Línea Celular , Islas de CpG
17.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892317

RESUMEN

The bleomycin-induced scleroderma model is a well-established and dependable method for creating a mouse model of SSc (systemic sclerosis). In the field of skin connective tissue diseases, increasing evidence from clinical and animal experiments suggests that TLRs (Toll-like receptors) play an important role in several diseases. This study aimed to determine the role of TLR7 (Toll-like receptor 7) and TLR9 (Toll-like receptor 9) in the mechanisms of immune abnormalities and fibrosis in SSc. This study used TLR7-KO mice (TLR7-knockout mice with a balb/c background) and TLR9-KO mice (TLR9-knockout mice with a balb/c background) as well as WT mice (wild-type balb/c mice). All three kinds of mice were induced by BLM (bleomycin) in a scleroderma model as the experimental group; meanwhile, WT mice treated with PBS (phosphate-buffered saline) were used as the control group. We analyzed the fibrotic phenotype and the immunological abnormality phenotype of TLR7-deficient and TLR9-deficient mice in the SSc disease model using flow cytometry, RT-PCR (reverse transcription-polymerase chain reaction), a histological examination, and IHC (immunohistochemical staining). In a mouse model of SSc disease, the deletion of TLR7 attenuated skin and lung fibrosis, while the deletion of TLR9 exacerbated skin and lung fibrosis. The deletion of TLR7 resulted in a relative decrease in the infiltration and expression of various pro-inflammatory and fibrotic cells and cytokines in the skin. On the other hand, the deletion of TLR9 resulted in a relative increase in the infiltration and expression of various pro-inflammatory and cytokine-inhibiting cells and cytokines in the skin. Under the influence of pDCs (plasmacytoid dendritic cells), the balances of Beff/Breg (IL-6 + CD19 + B cell/IL-10 + CD19 + B cell), Th17/Treg (IL-17A + CD4 + T cell/Foxp3 + CD25 + CD4 + T cell), M1/M2 (CD86 + macrophage/CD206 + macrophage), and Th1/Th2 (TNFα + CD3 + CD4 + T cell/IL-4 + CD3 + CD4 + T cell) were biased towards the suppression of inflammation and fibrosis as a result of the TLR7 deletion. Comparatively, the balance was biased towards promoting inflammation and fibrosis due to the TLR9 deletion. In the SSc model, TLR7 promoted inflammation and fibrosis progression, while TLR9 played a protective role. These results suggest that TLR7 and TLR9 play opposite roles in triggering SSc to produce immune system abnormalities and skin fibrosis.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Noqueados , Esclerodermia Sistémica , Receptor Toll-Like 7 , Receptor Toll-Like 9 , Animales , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/genética , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/genética , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Ratones , Bleomicina/efectos adversos , Ratones Endogámicos BALB C , Citocinas/metabolismo , Piel/patología , Piel/metabolismo , Piel/inmunología , Fibrosis , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/etiología , Glicoproteínas de Membrana
18.
Clin Immunol ; 251: 109638, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149118

RESUMEN

According to epidemiological research, skin autoimmune diseases are more prevalent among black Americans. We postulated that pigment-producing melanocytes may contribute to local immune regulation in the microenvironment. We examined murine epidermal melanocytes in vitro to determine the role of pigment production in immune responses mediated by dendritic cell (DC) activation. Our study revealed that darkly pigmented melanocytes produce more IL-3 and the pro-inflammatory cytokines, IL-6 and TNF-α, and consequently induce plasmacytoid DC (pDC) maturation. Additionally, we demonstrate that low pigment-associated fibromodulin (FMOD) interferes with cytokine secretion and subsequent pDC maturation.


Asunto(s)
Citocinas , Interleucina-3 , Humanos , Animales , Ratones , Interleucina-3/metabolismo , Interleucina-3/farmacología , Fibromodulina/metabolismo , Citocinas/metabolismo , Pigmentación , Células Dendríticas
19.
Clin Immunol ; 255: 109754, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37678720

RESUMEN

Systemic autoimmune diseases are characterized by increased production of type I interferon (IFN-1) and upregulation of IFN-1-inducible genes, suggesting an important role of the IFN-1 pathway in their pathogenesis. Recent studies have demonstrated increased IFN-1 expression in both primary and secondary antiphospholipid syndrome (APS), along with increased toll-like receptor type 9 activity and plasmacytoid dendritic cell function. The increasing knowledge of the association between IFN-1 and APS pathology may provide a rationale for conducting clinical trials to assess the efficacy of IFN-1-targeting drugs in reducing APS-related complications. In this narrative review, we summarize the current knowledge on the role of IFN-1 in APS pathogenesis, explore its clinical implications, and examine the existing evidence regarding therapeutic options that have been investigated to date.


Asunto(s)
Síndrome Antifosfolípido , Interferón Tipo I , Humanos , Regulación hacia Arriba , Células Dendríticas , Interferones/genética
20.
Br J Haematol ; 200(5): 545-555, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36606610

RESUMEN

In this article, we describe three broad pathologic presentations of plasmacytoid dendritic cells (pDCs) that may be encountered in clinical practice, in which an association between pDCs and myeloid neoplasms is identified: (1) myeloid neoplasms with mature pDC expansion, most commonly seen in chronic myelomonocytic leukaemia (CMML); (2) myeloid neoplasms with pDC differentiation, in which pDCs show a spectrum of maturation from early immature pDCs to mature forms, most commonly seen in acute myeloid leukaemia (AML); (3) myeloid neoplasms associated with blastic plasmacytoid dendritic cell neoplasm (BPDCN), either stemming from the same precursor or representing an independent clonal process. Additionally, we also discuss AML with pDC-like phenotype, in which myeloblasts show immunophenotypic features that may mimic those seen in pDCs. Using these presentations, we provide a diagnostic algorithm for appropriate pathologic classification, while attempting to clarify and homogenize nomenclatures pertaining to different biologic states of pDCs.


Asunto(s)
Leucemia Mielomonocítica Crónica , Trastornos Mieloproliferativos , Humanos , Leucemia Mielomonocítica Crónica/diagnóstico , Leucemia Mielomonocítica Crónica/patología , Fenotipo , Diferenciación Celular , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/patología , Células Dendríticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA