Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Comput Struct Biotechnol J ; 21: 688-701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36659928

RESUMEN

The use of computer-aided methods have continued to propel accelerated drug discovery across various disease models, interestingly allowing the specific inhibition of pathogenic targets. Chloride Intracellular Channel Protein 4 (CLIC4) is a novel class of intracellular ion channel highly implicated in tumor and vascular biology. It regulates cell proliferation, apoptosis and angiogenesis; and is involved in multiple pathologic signaling pathways. Absence of specific inhibitors however impedes its advancement to translational research. Here, we integrate structural bioinformatics and experimental research approaches for the discovery and validation of small-molecule inhibitors of CLIC4. High-affinity allosteric binders were identified from a library of 1615 Food and Drug Administration (FDA)-approved drugs via a high-performance computing-powered blind-docking approach, resulting in the selection of amphotericin B and rapamycin. NMR assays confirmed the binding and conformational disruptive effects of both drugs while they also reversed stress-induced membrane translocation of CLIC4 and inhibited endothelial cell migration. Structural and dynamics simulation studies further revealed that the inhibitory mechanisms of these compounds were hinged on the allosteric modulation of the catalytic glutathione (GSH)-like site loop and the extended catalytic ß loop which may elicit interference with the catalytic activities of CLIC4. Structure-based insights from this study provide the basis for the selective targeting of CLIC4 to treat the associated pathologies.

2.
Cancer Biol Ther ; 16(3): 466-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25778879

RESUMEN

Glucocorticoid (GC) resistance remains a major obstacle to successful treatment of lymphoid malignancies. Till now, the precise mechanism of GC resistance remains unclear. In the present study, dexamethasone (Dex) inhibited cell proliferation, arrested cell cycle in G0/G1-phase, and induced apoptosis in Dex-sensitive acute lymphoblastic leukemia cells. However, Dex failed to cause cell death in Dex-resistant lymphoid malignant cells. Intriguingly, we found that autophagy was induced by Dex in resistant cells, as indicated by autophagosomes formation, LC3-I to LC3-II conversion, p62 degradation, and formation of acidic autophagic vacuoles. Moreover, the results showed that Dex reduced the activity of mTOR pathway, as determined by decreased phosphorylation levels of mTOR, Akt, P70S6K and 4E-BP1 in resistant cells. Inhibition of autophagy by either chloroquine (CQ) or 3-methyladenine (3-MA) overcame Dex-resistance in lymphoid malignant cells by increasing apoptotic cell death in vitro. Consistently, inhibition of autophagy by stably knockdown of Beclin1 sensitized Dex-resistant lymphoid malignant cells to induction of apoptosis in vivo. Thus, inhibition of autophagy has the potential to improve lymphoid malignancy treatment by overcoming GC resistance.


Asunto(s)
Autofagia/efectos de los fármacos , Dexametasona/administración & dosificación , Glucocorticoides/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Autofagia/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
3.
Autophagy ; 11(7): 1161-78, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26043024

RESUMEN

Multiple myeloma (MM) is the paradigmatic proteasome inhibitor (PI) responsive cancer, but many patients fail to respond. An attractive target to enhance sensitivity is (macro)autophagy, recently found essential to bone marrow plasma cells, the normal counterpart of MM. Here, integrating proteomics with hypothesis-driven strategies, we identified the autophagic cargo receptor and adapter protein, SQSTM1/p62 as an essential component of an autophagic reserve that not only synergizes with the proteasome to maintain proteostasis, but also mediates a plastic adaptive response to PIs, and faithfully reports on inherent PI sensitivity. Lentiviral engineering revealed that SQSTM1 is essential for MM cell survival and affords specific PI protection. Under basal conditions, SQSTM1-dependent autophagy alleviates the degradative burden on the proteasome by constitutively disposing of substantial amounts of ubiquitinated proteins. Indeed, its inhibition or stimulation greatly sensitized to, or protected from, PI-induced protein aggregation and cell death. Moreover, under proteasome stress, myeloma cells selectively enhanced SQSTM1 de novo expression and reset its vast endogenous interactome, diverting SQSTM1 from signaling partners to maximize its association with ubiquitinated proteins. Saturation of such autophagic reserve, as indicated by intracellular accumulation of undigested SQSTM1-positive aggregates, specifically discriminated patient-derived myelomas inherently susceptible to PIs from primarily resistant ones. These aggregates correlated with accumulation of the endoplasmic reticulum, which comparative proteomics identified as the main cell compartment targeted by autophagy in MM. Altogether, the data integrate autophagy into our previously established proteasome load-versus-capacity model, and reveal SQSTM1 aggregation as a faithful marker of defective proteostasis, defining a novel prognostic and therapeutic framework for MM.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/efectos de los fármacos , Homeostasis/efectos de los fármacos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Inhibidores de Proteasoma/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteína Sequestosoma-1 , Proteínas Ubiquitinadas/metabolismo
4.
Autophagy ; 11(7): 1099-113, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25701485

RESUMEN

Autophagy and senescence have been described as central features of cell biology, but the interplay between these mechanisms remains obscure. Using a therapeutically relevant model of DNA damage-induced senescence in human glioma cells, we demonstrated that acute treatment with temozolomide induces DNA damage, a transitory activation of PRKAA/AMPK-ULK1 and MAPK14/p38 and the sustained inhibition of AKT-MTOR. This produced a transient induction of autophagy, which was followed by senescence. However, at the single cell level, this coordinated transition was not observed, and autophagy and senescence were triggered in a very heterogeneous manner. Indeed, at a population level, autophagy was highly negatively correlated with senescence markers, while in single cells this correlation did not exist. The inhibition of autophagy triggered apoptosis and decreased senescence, while its activation increased temozolomide-induced senescence, showing that DNA damage-induced autophagy acts by suppressing apoptosis.


Asunto(s)
Autofagia , Senescencia Celular , Daño del ADN , Análisis de la Célula Individual/métodos , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Senescencia Celular/efectos de los fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Activación Enzimática/efectos de los fármacos , Glioma/enzimología , Glioma/patología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Temozolomida , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Autophagy ; 11(4): 607-16, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25906314

RESUMEN

Primary cilium is an organelle that plays significant roles in a number of cellular functions ranging from cell mechanosensation, proliferation, and differentiation to apoptosis. Autophagy is an evolutionarily conserved cellular function in biology and indispensable for cellular homeostasis. Both cilia and autophagy have been linked to different types of genetic and acquired human diseases. Their interaction has been suggested very recently, but the underlying mechanisms are still not fully understood. We examined autophagy in cells with suppressed cilia and measured cilium length in autophagy-activated or -suppressed cells. It was found that autophagy was repressed in cells with short cilia. Further investigation showed that MTOR activation was enhanced in cilia-suppressed cells and the MTOR inhibitor rapamycin could largely reverse autophagy suppression. In human kidney proximal tubular cells (HK2), autophagy induction was associated with cilium elongation. Conversely, autophagy inhibition by 3-methyladenine (3-MA) and chloroquine (CQ) as well as bafilomycin A1 (Baf) led to short cilia. Cilia were also shorter in cultured atg5-knockout (KO) cells and in atg7-KO kidney proximal tubular cells in mice. MG132, an inhibitor of the proteasome, could significantly restore cilium length in atg5-KO cells, being concomitant with the proteasome activity. Together, the results suggest that cilia and autophagy regulate reciprocally through the MTOR signaling pathway and ubiquitin-proteasome system.


Asunto(s)
Autofagia/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina/metabolismo , Animales , Autofagia/genética , Línea Celular , Cilios/genética , Humanos , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/genética , Transducción de Señal/fisiología
6.
Autophagy ; 11(5): 833-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25945953

RESUMEN

Mitochondrial autophagy, also known as mitophagy, is an autophagosome-based mitochondrial degradation process that eliminates unwanted or damaged mitochondria after cell stress. Most studies dealing with mitophagy rely on the analysis by fluorescence microscopy of mitochondrial-autophagosome colocalization. However, given the fundamental role of mitophagy in the physiology and pathology of organisms, there is an urgent need for novel quantitative methods with which to study this process. Here, we describe a flow cytometry-based approach to determine mitophagy by using MitoTracker Deep Red, a widely used mitochondria-selective probe. Used in combination with selective inhibitors it may allow for the determination of mitophagy flux. Here, we test the validity of the use of this method in cell lines and in primary cell and tissue cultures.


Asunto(s)
Citometría de Flujo/métodos , Mitofagia , Aminoácidos/deficiencia , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Flavonoides/farmacología , Flavonoles , Células HeLa , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Niacinamida/farmacología , Retina/efectos de los fármacos , Retina/metabolismo , Retinitis Pigmentosa/patología
7.
Cell Cycle ; 13(17): 2752-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486362

RESUMEN

Autophagy is important for cell renewing for its contribution to the degradation of bulk cytoplasm, long-lived proteins, and entire organelles and its role in embryonic development is largely unknown. In our study, we investigated the function of autophagy in gastrulation of the chick embryo using both in vivo and in vitro approaches, especially in the EMT process, and we found that autophagy gene Atg7 was expressed on the apical side of the ectoderm and endoderm. Over-expression of Atg7 could enhance the expression of Atg8 and the E-cadherin, the latter of which is a crucial marker of the EMT process. We also found that the disturbance of autophagy could retard the development of chick embryos in HH4 with shorter primitive steak than that in the control group, which is a newly formed structure during EMT process. So we assumed that autophagy could affect EMT process by adhesion molecule expression. Moreover, more molecules, such as slug, chordin, shh et., which were all involved in EMT process, were detected to address the mechanism of this phenomena. We established that the inhibition of autophagy could cause developmental delay by affecting EMT process in gastrulation of chick embryos.


Asunto(s)
Autofagia , Transición Epitelial-Mesenquimal , Gastrulación , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Embrión de Pollo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Gástrula/citología , Gástrula/efectos de los fármacos , Gástrula/metabolismo , Gastrulación/efectos de los fármacos , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Estratos Germinativos/citología , Estratos Germinativos/efectos de los fármacos , Estratos Germinativos/metabolismo , Células HCT116 , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Sirolimus/farmacología
8.
Autophagy ; 10(11): 1937-52, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483963

RESUMEN

Lipopolysaccharide (LPS)-induced activation of TLR4 (toll-like receptor 4) is followed by a subsequent overwhelming inflammatory response, a hallmark of the first phase of sepsis. Therefore, counteracting excessive innate immunity by autophagy is important to contribute to the termination of inflammation. However, the exact molecular details of this interplay are only poorly understood. Here, we show that PELI3/Pellino3 (pellino E3 ubiquitin protein ligase family member 3), which is an E3 ubiquitin ligase and scaffold protein in TLR4-signaling, is impacted by autophagy in macrophages (MΦ) after LPS stimulation. We noticed an attenuated mRNA expression of proinflammatory Il1b (interleukin 1, ß) in Peli3 knockdown murine MΦ in response to LPS treatment. The autophagy adaptor protein SQSTM1/p62 (sequestosome 1) emerged as a potential PELI3 binding partner in TLR4-signaling. siRNA targeting Sqstm1 and Atg7 (autophagy related 7), pharmacological inhibition of autophagy by wortmannin as well as blocking the lysosomal vacuolar-type H(+)-ATPase by bafilomycin A1 augmented PELI3 protein levels, while inhibition of the proteasome had no effect. Consistently, treatment to induce autophagy by MTOR (mechanistic target of rapamycin (serine/threonine kinase)) inhibition or starvation enhanced PELI3 degradation and reduced proinflammatory Il1b expression. PELI3 was found to be ubiquitinated upon LPS stimulation and point mutation of PELI3-lysine residue 316 (Lys316Arg) attenuated Torin2-dependent degradation of PELI3. Immunofluorescence analysis revealed that PELI3 colocalized with the typical autophagy markers MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 ß) and LAMP2 (lysosomal-associated membrane protein 2). Our observations suggest that autophagy causes PELI3 degradation during TLR4-signaling, thereby impairing the hyperinflammatory phase during sepsis.


Asunto(s)
Autofagia , Interleucina-1beta/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Citocinas/metabolismo , Inmunidad Innata , Inflamación , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Ratones , Naftiridinas/metabolismo , Mutación Puntual , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Sepsis/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA