Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 49(3): 247-256, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38072749

RESUMEN

In plants, two atypical DNA-dependent RNA polymerases, RNA polymerase IV (Pol IV) and Pol V, and an RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) together produce noncoding RNAs (ncRNAs) to guide the plant-specific RNA-directed DNA methylation (RdDM). Although both Pol IV and Pol V have evolved from the canonical Pol II, they have adapted to different roles in RdDM. The mechanisms of their adaptation are key to understanding plant DNA methylation and the divergent evolution of polymerases. In this review, we summarize insights that have emerged from recent structural studies of Pol IV, Pol V, and RDR2 and discuss their structural features critical for efficient ncRNA production in RdDM.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , ADN de Plantas/metabolismo , Arabidopsis/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN no Traducido/genética , Plantas/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Arabidopsis/metabolismo , ARN Interferente Pequeño/metabolismo
2.
Mol Cell ; 75(3): 576-589.e5, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398324

RESUMEN

In eukaryotes with multiple small RNA pathways, the mechanisms that channel RNAs within specific pathways are unclear. Here, we reveal the reactions that account for channeling in the small interfering RNA (siRNA) biogenesis phase of the Arabidopsis RNA-directed DNA methylation pathway. The process begins with template DNA transcription by NUCLEAR RNA POLYMERASE IV (Pol IV), whose atypical termination mechanism, induced by nontemplate DNA base-pairing, channels transcripts to the associated RNA-dependent RNA polymerase RDR2. RDR2 converts Pol IV transcripts into double-stranded RNAs and then typically adds an extra untemplated 3' terminal nucleotide to the second strands. The dicer endonuclease DCL3 cuts resulting duplexes to generate 24- and 23-nt siRNAs. The 23-nt RNAs bear the untemplated terminal nucleotide of the RDR2 strand and are underrepresented among ARGONAUTE4-associated siRNAs. Collectively, our results provide mechanistic insights into Pol IV termination, Pol IV-RDR2 coupling, and RNA channeling, from template DNA transcription to siRNA strand discrimination.


Asunto(s)
Proteínas de Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasa Dependiente del ARN/genética , Ribonucleasa III/genética , Transcripción Genética , Arabidopsis/genética , Proteínas Argonautas/genética , Metilación de ADN/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , Transducción de Señal
3.
Plant J ; 117(1): 33-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37731059

RESUMEN

Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.


Asunto(s)
Cromatina , Zea mays , Cromatina/genética , Zea mays/genética , Metilación de ADN , Ensamble y Desensamble de Cromatina/genética , Silenciador del Gen , Regulación de la Expresión Génica de las Plantas
4.
BMC Plant Biol ; 24(1): 172, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443837

RESUMEN

BACKGROUND: Plant responses to a wide range of stresses are known to be regulated by epigenetic mechanisms. Pathogen-related investigations, particularly against RNA viruses, are however scarce. It has been demonstrated that Arabidopsis thaliana plants defective in some members of the RNA-directed DNA methylation (RdDM) or histone modification pathways presented differential susceptibility to the turnip mosaic virus. In order to identify genes directly targeted by the RdDM-related RNA Polymerase V (POLV) complex and the histone demethylase protein JUMONJI14 (JMJ14) during infection, the transcriptomes of infected mutant and control plants were obtained and integrated with available chromatin occupancy data for various epigenetic proteins and marks. RESULTS: A comprehensive list of virus-responsive gene candidates to be regulated by the two proteins was obtained. Twelve genes were selected for further characterization, confirming their dynamic regulation during the course of infection. Several epigenetic marks on their promoter sequences were found using in silico data, raising confidence that the identified genes are actually regulated by epigenetic mechanisms. The altered expression of six of these genes in mutants of the methyltransferase gene CURLY LEAF and the histone deacetylase gene HISTONE DEACETYLASE 19 suggests that some virus-responsive genes may be regulated by multiple coordinated epigenetic complexes. A temporally separated multiple plant virus infection experiment in which plants were transiently infected with one virus and then infected by a second one was designed to investigate the possible roles of the identified POLV- and JMJ14-regulated genes in wild-type (WT) plants. Plants that had previously been stimulated with viruses were found to be more resistant to subsequent virus challenge than control plants. Several POLV- and JMJ14-regulated genes were found to be regulated in virus induced resistance in WT plants, with some of them poisoned to be expressed in early infection stages. CONCLUSIONS: A set of confident candidate genes directly regulated by the POLV and JMJ14 proteins during virus infection was identified, with indications that some of them may be regulated by multiple epigenetic modules. A subset of these genes may also play a role in the tolerance of WT plants to repeated, intermittent virus infections.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Virus de Plantas , Virosis , Metilación de ADN , Arabidopsis/genética , Histona Desacetilasas , Histona Demetilasas con Dominio de Jumonji
5.
Plant Cell Rep ; 43(4): 96, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480545

RESUMEN

KEY MESSAGE: Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hordeum/genética , Hordeum/metabolismo , ARN Interferente Pequeño/genética , Nucleótidos/metabolismo , Adenina/metabolismo , Metilación de ADN/genética , ARN de Planta/genética
6.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753485

RESUMEN

In plants, transcription of selfish genetic elements such as transposons and DNA viruses is suppressed by RNA-directed DNA methylation. This process is guided by 24-nt short-interfering RNAs (siRNAs) whose double-stranded precursors are synthesized by DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). Pol IV and RDR2 coimmunoprecipitate, and their activities are tightly coupled, yet the basis for their association is unknown. Here, we show that an interval near the RDR2 active site contacts the Pol IV catalytic subunit, NRPD1, the largest of Pol IV's 12 subunits. Contacts between the catalytic regions of the two enzymes suggests that RDR2 is positioned to rapidly engage the free 3' ends of Pol IV transcripts and convert these single-stranded transcripts into double-stranded RNAs (dsRNAs).


Asunto(s)
Proteínas de Arabidopsis/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Bicatenario/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Dominio Catalítico/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos
7.
Plant J ; 111(3): 748-755, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35635763

RESUMEN

All eukaryotes possess three DNA-dependent RNA polymerases, Pols I-III, while land plants possess two additional polymerases, Pol IV and Pol V. Derived through duplication of Pol II subunits, Pol IV produces 24-nt short interfering RNAs that interact with Pol V transcripts to target de novo DNA methylation and silence transcription of transposons. Members of the grass family encode additional duplicated subunits of Pol IV and V, raising questions regarding the function of each paralog. In this study, we identify a null allele of the putative Pol IV second subunit, NRPD2, and demonstrate that NRPD2 is the sole subunit functioning with NRPD1 in small RNA production and CHH methylation in leaves. Homozygous nrpd2 mutants have neither gametophytic defects nor embryo lethality, although adult plants are dwarf and sterile.


Asunto(s)
Proteínas de Arabidopsis , Oryza , Alelos , Proteínas de Arabidopsis/metabolismo , Metilación de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Oryza/metabolismo , ARN Polimerasa II/metabolismo , ARN de Planta/genética , ARN Interferente Pequeño/genética
8.
Plant J ; 109(4): 873-890, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34807478

RESUMEN

Trichoderma atroviride is a root-colonizing fungus that confers multiple benefits to plants. In plants, small RNA (sRNA)-mediated gene silencing (sRNA-MGS) plays pivotal roles in growth, development, and pathogen attack. Here, we explored the role of core components of Arabidopsis thaliana sRNA-MGS pathways during its interaction with Trichoderma. Upon interaction with Trichoderma, sRNA-MGS-related genes paralleled the expression of Arabidopsis defense-related genes, linked to salicylic acid (SA) and jasmonic acid (JA) pathways. SA- and JA-related genes were primed by Trichoderma in leaves after the application of the well-known pathogen-associated molecular patterns flg22 and chitin, respectively. Defense-related genes were primed in roots as well, but to different extents and behaviors. Phenotypical characterization of mutants in AGO genes and components of the RNA-dependent DNA methylation (RdDM) pathway revealed that different sets of sRNA-MGS-related genes are essential for (i) the induction of systemic acquired resistance against Botrytis cinerea, (ii) the activation of the expression of plant defense-related genes, and (iii) root colonization by Trichoderma. Additionally, plant growth induced by Trichoderma depends on functional RdDM. Profiling of DNA methylation and histone N-tail modification patterns at the Arabidopsis Nitrile-Specifier Protein-4 (NSP4) locus, which is responsive to Trichoderma, showed altered epigenetic modifications in RdDM mutants. Furthermore, NSP4 is required for the induction of systemic acquired resistance against Botrytis and avoidance of enhanced root colonization by Trichoderma. Together, our results indicate that RdDM is essential in Arabidopsis to establish a beneficial relationship with Trichoderma. We propose that DNA methylation and histone modifications are required for plant priming by the beneficial fungus against B. cinerea.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Silenciador del Gen , Hypocreales/genética , Nitrilos/metabolismo , ARN/metabolismo , Proteínas de Arabidopsis/metabolismo , Botrytis , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Hypocreales/metabolismo , Oxilipinas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Raíces de Plantas/metabolismo , Ácido Salicílico/metabolismo , Trichoderma/genética , Trichoderma/metabolismo
9.
BMC Genomics ; 24(1): 36, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36658480

RESUMEN

BACKGROUND: Several studies showed genome-wide DNA methylation during Arabidopsis embryogenesis and germination. Although it has been known that the change of DNA methylation mainly occurs at CHH context mediated by small RNA-directed DNA methylation pathway during seed ripening and germination, the causality of the methylation difference exhibited in natural Arabidopsis ecotypes has not been thoroughly studied. RESULTS: In this study we compared DNA methylation difference using comparative pairwise multi-omics dynamics in Columbia-0 (Col) and Cape Verde Island (Cvi) ecotypes. Arabidopsis genome was divided into two regions, common regions in both ecotypes and Col-specific regions, depending on the reads mapping of whole genome bisulfite sequencing libraries from both ecotypes. Ecotype comparison was conducted within common regions and the levels of DNA methylation on common regions and Col-specific regions were also compared. we confirmed transcriptome were relatively dynamic in stage-wise whereas the DNA methylome and small RNAome were more ecotype-dependent. While the global CG methylation remains steady during maturation and germination, we found genic CG methylation differs the most between the two accessions. We also found that ecotype-specific differentially methylated regions (eDMR) are positively correlated with ecotype-specifically expressed 24-nt small RNA clusters. In addition, we discovered that Col-specific regions enriched with transposable elements (TEs) and structural variants that tend to become hypermethylated, and TEs in Col-specific regions were longer in size, more pericentromeric, and more hypermethylated than those in the common regions. Through the analysis of RdDM machinery mutants, we confirmed methylation on Col-specific region as well as on eDMRs in common region are contributed by RdDM pathway. Lastly, we demonstrated that highly variable sequences between ecotypes (HOT regions) were also affected by RdDM-mediated regulation. CONCLUSIONS: Through ecotype comparison, we revealed differences and similarities of their transcriptome, methylome and small RNAome both in global and local regions. We validated the contribution of RdDM causing differential methylation of common regions. Hypermethylated ecotype-specific regions contributed by RNA-directed DNA methylation pathway largely depend on the presence of TEs and copy-gain structural variations. These ecotype-specific regions are frequently associated with HOT regions, providing evolutionary insights into the epigenome dynamics within a species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Ecotipo , Silenciador del Gen , Metilación de ADN , Proteínas de Arabidopsis/genética , ARN Interferente Pequeño/genética , Regulación de la Expresión Génica de las Plantas
10.
Proc Natl Acad Sci U S A ; 117(26): 15305-15315, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541052

RESUMEN

Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). In Brassica rapa, RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression during B. rapa seed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues.


Asunto(s)
Brassica rapa/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , ARN de Planta , Semillas/crecimiento & desarrollo , Alelos , Arabidopsis/metabolismo , Brassica rapa/genética , Brassica rapa/crecimiento & desarrollo , Brassica rapa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Interferente Pequeño , Semillas/genética , Semillas/metabolismo
11.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958988

RESUMEN

The outbreak of Fusarium head blight (FHB) poses a serious threat to wheat production as it leads to both significant yield losses and accumulation of several mycotoxins including deoxynivalenol (DON) in the grains, which are harmful to human and livestock. To date, hundreds of FHB-resistance-related quantitative trait loci (QTLs) have been reported, but only a few of them have been cloned and used for breeding. Small interfering RNAs (siRNA) have been reported in plants to mediate host defense against pathogens, but they have rarely been reported in wheat-FHB interaction. In order to identify the key siRNAs that can potentially be used in the improvement of resistance to FHB, siRNAs from the spikes of an FHB-resistant variety Sumai 3 and an FHB-susceptible variety of Chinese Spring (CS) were sequenced after F. graminearum infection and mock inoculation, respectively. The expression patterns of the siRNAs of interest were analyzed. A total of 4019 siRNAs of high-confidence were identified, with 131 being CS-specific, 309 Sumai 3-specific and 3071 being common in both varieties. More than 87% of these siRNAs were 24 nt in length. An overall down-regulation trend was found for siRNAs in the spikes of both varieties after being infected with F. graminearum. The expression patterns for Triticum aestivum Dicer-like 3 (TaDCL3) that synthesizes 24 nt siRNAs were validated by qRT-PCR, which were positively correlated with those of the siRNAs. A total of 85% of the differentially expressed genes putatively targeted by the siRNAs were significantly up-regulated after infection, showing a negative correlation with the overall down-regulated expression of siRNAs. Interestingly, the majority of the up-regulated genes are annotated as disease resistance. These results suggested that the inhibition of siRNA by F. graminearum up-regulated the disease resistance genes, which were putatively suppressed by siRNAs through RNA-directed DNA methylation (RdDM). Consequently, the resistant capability to F. graminearum infection was enhanced. This study provides novel clues for investigating the function of siRNA in wheat-F. graminearum interaction.


Asunto(s)
Fusariosis , Fusarium , Humanos , Triticum/genética , Triticum/metabolismo , Resistencia a la Enfermedad/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Fitomejoramiento , Fusarium/genética , Enfermedades de las Plantas/genética
12.
Plant J ; 105(3): 691-707, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33131171

RESUMEN

Plants respond to adverse environmental cues by adjusting a wide variety of processes through highly regulated mechanisms to maintain plant homeostasis for survival. As a result of the sessile nature of plants, their response, adjustment and adaptation to the changing environment is intimately coordinated with their developmental programs through the crosstalk of regulatory networks. Germination is a critical process in the plant life cycle, and thus plants have evolved various strategies to control the timing of germination according to their local environment. The mechanisms involved in these adjustment responses are largely unknown, however. Here, we report that mutations in core elements of canonical RNA-directed DNA methylation (RdDM) affect the germination and post-germination growth of Arabidopsis seeds grown under salinity stress. Transcriptomic and whole-genome bisulfite sequencing (WGBS) analyses support the involvement of this pathway in the control of germination timing and post-germination growth under salinity stress by preventing the transcriptional activation of genes implicated in these processes. Subsequent transcriptional effects on genes that function in relation to these developmental events support this conclusion.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas Argonautas/genética , Metilación de ADN/fisiología , Germinación/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Mutación , Plantas Modificadas Genéticamente , Salinidad , Plantones/crecimiento & desarrollo , Secuenciación Completa del Genoma
13.
Plant J ; 108(2): 347-357, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34314526

RESUMEN

DNA methylation is an important epigenetic mark. In plants, de novo DNA methylation occurs mainly through the RNA-directed DNA methylation (RdDM) pathway. Researchers have previously inferred that a flowering regulator, MULTICOPY SUPPRESSOR OF IRA1 4 (MSI4)/FVE, is involved in non-CG methylation at several RdDM targets, suggesting a role of FVE in RdDM. However, whether and how FVE affects RdDM genome-wide is not known. Here, we report that FVE is required for DNA methylation at thousands of RdDM target regions. In addition, dysfunction of FVE significantly reduces 24-nucleotide siRNA accumulation that is dependent on factors downstream in the RdDM pathway. By using chromatin immunoprecipitation and sequencing (ChIP-seq), we show that FVE directly binds to FVE-dependent 24-nucleotide siRNA cluster regions. Our results also indicate that FVE may function in RdDM by physically interacting with RDM15, a downstream factor in the RdDM pathway. Our study has therefore revealed that FVE, by associating with RDM15, directly regulates DNA methylation and siRNA accumulation at a subset of RdDM targets.


Asunto(s)
Proteínas de Arabidopsis/genética , Metilación de ADN , ARN de Planta/metabolismo , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , ARN Interferente Pequeño/genética , Factores de Transcripción/metabolismo
14.
Biochem Biophys Res Commun ; 609: 1-8, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35405396

RESUMEN

RNA-directed DNA methylation (RdDM) and ROS1-dependent active DNA demethylation pathways are antagonistic processes that dynamically regulate site-specific methylation. In this study, we obtained a mutant with reduced luciferase (LUC) luminescence by genetic screening, which was named rll5-1 (for reduced LUC luminescence 5-1). The rll5-1 mutant showed narrower, frizzled and curly leaves, and the low-LUC-luminescence phenotype in the rll5-1 mutant can be largely restored by DNA methylation inhibitor 5-Aza-2'-deoxycytidine. Map-based cloning coupled with genome resequencing data revealed that a nucleotide substitution of G to A was found at the 124th bp of ORF of At4G10190, leading to an aspartate-to-asparagine change at position 42 in such a protein. Bisulfite sequencing data indicated that DNA methylation of 3' region of the double 35S promoter that drives the LUC expression was appreciably increased. Further analysis revealed that there were 4747 hypo-DMRs and 936 hyper-DMRs found in the rll5-1 genome, and the hypo-DMRs was predominantly distributed on TEs, which appeared to stem from the downregulation of a few RdDM pathway genes and DNA methyltransferase genes. Closer inspection demonstrated that there were 1229 hypo-DMRs commonly shared among rll5-1, nrpd1-3 and nrpe1-11, and a total of 1349 hypo-DMRs were common to rll5-1 and cmt2 mutants. Thus, these studies demonstrate the roles of RLL5 in preventing transgene silencing and in maintaining genome-wide DNA methylation in a direct/indirect or locus-specific manner.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilación de ADN , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN/metabolismo , Transgenes
15.
Biochem Soc Trans ; 50(3): 1215-1225, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35579290

RESUMEN

Plant small RNAs (sRNAs) are short non-coding RNAs that are implicated in various regulatory processes involving post-transcriptional gene silencing and epigenetic gene regulation. In epigenetic regulation, sRNAs are primarily involved in RNA-directed DNA methylation (RdDM) pathways. sRNAs in the RdDM pathways play a role not only in the suppression of transposable element (TE) activity but also in gene expression regulation. Although the major components of the RdDM pathways have been well studied in Arabidopsis, recent studies have revealed that the RdDM pathways in rice have important biological functions in stress response and developmental processes. In this review, we summarize and discuss recent literature on sRNA-mediated epigenetic regulation in rice. First, we describe the RdDM mechanisms in plants. We then introduce recent discoveries on the biological roles of rice genes involved in the RdDM pathway and TE-derived sRNAs working at specific genomic loci for epigenetic control in rice.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/genética , Metilación de ADN , Elementos Transponibles de ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , ARN/metabolismo , ARN Interferente Pequeño/metabolismo
16.
Mol Biol Evol ; 37(7): 1866-1881, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32259238

RESUMEN

Although epigenetic factors may influence the expression of defense genes in plants, their role in antiviral responses and the impact of viral adaptation and evolution in shaping these interactions are still poorly explored. We used two isolates of turnip mosaic potyvirus with varying degrees of adaptation to Arabidopsis thaliana to address these issues. One of the isolates was experimentally evolved in the plant and presented increased load and virulence relative to the ancestral isolate. The magnitude of the transcriptomic responses was larger for the evolved isolate and indicated a role of innate immunity systems triggered by molecular patterns and effectors in the infection process. Several transposable elements located in different chromatin contexts and epigenetic-related genes were also affected. Correspondingly, mutant plants having loss or gain of repressive marks were, respectively, more tolerant and susceptible to turnip mosaic potyvirus, with a more efficient response against the ancestral isolate. In wild-type plants, both isolates induced similar levels of cytosine methylation changes, including in and around transposable elements and stress-related genes. Results collectively suggested that apart from RNA silencing and basal immunity systems, DNA methylation and histone modification pathways may also be required for mounting proper antiviral defenses and that the effectiveness of this type of regulation strongly depends on the degree of viral adaptation to the host.


Asunto(s)
Arabidopsis/virología , Epigénesis Genética , Aptitud Genética , Interacciones Huésped-Patógeno/inmunología , Potyvirus/fisiología , Adaptación Biológica , Arabidopsis/inmunología , Arabidopsis/metabolismo , Evolución Biológica , Metilación de ADN , Transcriptoma
17.
Mol Biol Rep ; 48(1): 823-841, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33394224

RESUMEN

Plant tissue culture techniques have been extensively employed in commercial micropropagation to provide year-round production. Tissue culture regenerants are not always genotypically and phenotypically similar. Due to the changes in the tissue culture microenvironment, plant cells are exposed to additional stress which induces genetic and epigenetic instabilities in the regenerants. These changes lead to tissue culture-induced variations (TCIV) which are also known as somaclonal variations to categorically specify the inducing environment. TCIV includes molecular and phenotypic changes persuaded in the in vitro culture due to continuous sub-culturing and tissue culture-derived stress. Epigenetic variations such as altered DNA methylation pattern are induced due to the above-mentioned factors. Reportedly, alteration in DNA methylation pattern is much more frequent in the plant genome during the tissue culture process. DNA methylation plays an important role in gene expression and regulation of plant development. Variants originated in tissue culture process due to heritable methylation changes, can contribute to intra-species phenotypic variation. Several molecular techniques are available to detect DNA methylation at different stages of in vitro culture. Here, we review the aspects of TCIV with respect to DNA methylation and its effect on crop improvement programs. It is anticipated that a precise and comprehensive knowledge of molecular basis of in vitro-derived DNA methylation will help to design strategies to overcome the bottlenecks of micropropagation system and maintain the clonal fidelity of the regenerants.


Asunto(s)
Medios de Cultivo/farmacología , Metilación de ADN , Epigénesis Genética , Histonas/genética , Proteínas de Plantas/genética , Plantas/genética , Medios de Cultivo/química , Regulación de la Expresión Génica de las Plantas , Genotipo , Histonas/metabolismo , Fenotipo , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Plantas/efectos de los fármacos , Plantas/metabolismo
18.
J Integr Plant Biol ; 63(6): 1091-1096, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33913587

RESUMEN

RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation pathway, which has extensive cross-talk with histone modifications. Here, we report that the maize RdDM regulator SAWADEE HOMEODOMAIN HOMOLOG 2 (SHH2) is an H3K9me1 reader. Our structural studies reveal that H3K9me1 recognition is achieved by recognition of the methyl group via a classic aromatic cage and hydrogen-bonding and salt-bridge interactions with the free protons of the mono-methyllysine. The di- and tri-methylation states disrupt the polar interactions, decreasing the binding affinity. Our study reveals a mono-methyllysine recognition mechanism which potentially links RdDM to H3K9me1 in maize.


Asunto(s)
Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Metilación de ADN/genética , Metilación de ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética/genética , Proteínas de Plantas/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Zea mays/genética
19.
Plant J ; 99(4): 655-672, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31009115

RESUMEN

RNA-based processes play key roles in the regulation of eukaryotic gene expression. This includes both the processing of pre-mRNAs into mature mRNAs ready for translation and RNA-based silencing processes, such as RNA-directed DNA methylation (RdDM). Polyadenylation of pre-mRNAs is one important step in their processing and is carried out by three functionally specialized canonical nuclear poly(A) polymerases in Arabidopsis thaliana. Null mutations in one of these, termed PAPS1, result in a male gametophytic defect. Using a fluorescence-labelling strategy, we have characterized this defect in more detail using RNA and small-RNA sequencing. In addition to global defects in the expression of pollen-differentiation genes, paps1 null-mutant pollen shows a strong overaccumulation of transposable element (TE) transcripts, yet a depletion of 21- and particularly 24-nucleotide-long short interfering RNAs (siRNAs) and microRNAs (miRNAs) targeting the corresponding TEs. Double-mutant analyses support a specific functional interaction between PAPS1 and components of the RdDM pathway, as evident from strong synergistic phenotypes in mutant combinations involving paps1, but not paps2 paps4, mutations. In particular, the double-mutant of paps1 and rna-dependent rna polymerase 6 (rdr6) shows a synergistic developmental phenotype disrupting the formation of the transmitting tract in the female gynoecium. Thus, our findings in A. thaliana uncover a potentially general link between canonical poly(A) polymerases as components of mRNA processing and RdDM, reflecting an analogous interaction in fission yeast.


Asunto(s)
Polinucleotido Adenililtransferasa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilación de ADN/genética , Metilación de ADN/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Polen/metabolismo , Polinucleotido Adenililtransferasa/genética , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo
20.
New Phytol ; 227(1): 38-44, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32159848

RESUMEN

DNA methylation is an epigenetic mark that regulates multiple processes, such as gene expression and genome stability. Mutants and pharmacological treatments have been instrumental in the study of this mark in plants, although their genome-wide effect complicates the direct association between changes in methylation and a particular phenotype. A variety of tools that allow locus-specific manipulation of DNA methylation can be used to assess its direct role in specific processes, as well as to create novel epialleles. Recently, new tools that recruit the methylation machinery directly to target loci through programmable DNA-binding proteins have expanded the tool kit available to researchers. This review provides an overview of DNA methylation in plants and discusses the tools that have recently been developed for its manipulation.


Asunto(s)
Metilación de ADN , Plantas , Metilación de ADN/genética , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA