Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.156
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Physiol ; 83: 551-576, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33566674

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by impaired regulation of pulmonary hemodynamics and vascular growth. Alterations of metabolism and bioenergetics are increasingly recognized as universal hallmarks of PAH, as metabolic abnormalities are identified in lungs and hearts of patients, animal models of the disease, and cells derived from lungs of patients. Mitochondria are the primary organelle critically mediating the complex and integrative metabolic pathways in bioenergetics, biosynthetic pathways, and cell signaling. Here, we review the alterations in metabolic pathways that are linked to the pathologic vascular phenotype of PAH, including abnormalities in glycolysis and glucose oxidation, fatty acid oxidation, glutaminolysis, arginine metabolism, one-carbon metabolism, the reducing and oxidizing cell environment, and the tricarboxylic acid cycle, as well as the effects of PAH-associated nuclear and mitochondrial mutations on metabolism. Understanding of the metabolic mechanisms underlying PAH provides important knowledge for the design of new therapeutics for treatment of patients.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Redes y Vías Metabólicas/fisiología , Animales , Glucólisis/fisiología , Humanos , Mitocondrias/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-39163574

RESUMEN

Right ventricular (RV) fibrosis is associated with RV dysfunction in a variety of RV pressure-loading conditions where RV mechanical stress is increased, but the underlying mechanisms driving RV fibrosis are incompletely understood. In pulmonary and cardiovascular diseases characterized by elevated mechanical stress and transforming growth factor - beta-1 (TGF-ß1) signaling, myocardin-related transcription factor A (MRTF-A) is a mechanosensitive protein critical to driving myofibroblast transition and fibrosis. Here we investigated whether MRTF-A inhibition improves RV pro-fibrotic remodeling and function in response to a pulmonary artery banding (PAB) model of RV pressure-loading. Rats were assigned into either 1) sham or 2) PAB groups. MRTF-A inhibitor CCG-1423 was administered daily at 0.75mg/kg in a subset of PAB animals. Echocardiography and pressure-volume hemodynamics were obtained at a terminal experiment 6-weeks later. RV myocardial samples were analyzed for fibrosis, cardiomyocyte hypertrophy, and pro-fibrotic signaling. MRTF-A inhibition slightly reduced systolic dysfunction in PAB rats reflected by increased lateral tricuspid annulus peak systolic velocity, while diastolic function parameters were not significantly improved. RV remodeling was attenuated in PAB rats with MRTF-A inhibition, displaying reduced fibrosis. This was accompanied with a reduction in PAB-induced upregulation of yes-associated protein (YAP) and its paralog transcriptional co-activator with PDZ-binding motif (TAZ). We also confirmed using a second-generation MRTF-A inhibitor CCG-203971 that MRTF-A is critical in driving RV fibroblast expression of TAZ and markers of myofibroblast transition in response to TGF-ß1 stress and RhoA activation. These studies identify RhoA, MRTF-A, and YAP/TAZ as interconnected regulators of pro-fibrotic signaling in RV pressure-loading, and as potential targets to improve RV pro-fibrotic remodeling.

3.
J Proteome Res ; 23(1): 264-276, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015796

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease that affects both the lungs and heart. Right ventricle (RV) hypertrophy is a primary pathological feature of PAH; however, its underlying molecular mechanisms remain insufficiently studied. In this study, we employed tandem mass tag (TMT)-based quantitative proteomics for the integrative analysis of the proteome and phosphoproteome of the RV derived from monocrotaline-induced PAH model rats. Compared with control samples, 564 significantly upregulated proteins, 616 downregulated proteins, 622 downregulated phosphopeptides, and 683 upregulated phosphopeptides were identified (P < 0.05, abs (log2 (fold change)) > log2 1.2) in the MCT samples. The quantitative real-time polymerase chain reaction (qRT-PCR) validated the expression levels of top 20 significantly altered proteins, including Nppa (natriuretic peptides A), latent TGF-ß binding protein 2 (Ltbp2), periostin, connective tissue growth factor 2 (Ccn2), Ncam1 (neural cell adhesion molecule), quinone reductase 2 (Nqo2), and tropomodulin 4 (Tmod4). Western blotting confirmed the upregulation of Ncam1 and downregulation of Nqo2 and Tmod4 in both MCT-induced and hypoxia-induced PH rat models. Pathway enrichment analyses indicated that the altered proteins are associated with pathways, such as vesicle-mediated transport, actin cytoskeleton organization, TCA cycle, and respiratory electron transport. These significantly changed phosphoproteins were enriched in pathways such as diabetic cardiomyopathy, hypertrophic cardiomyopathy, glycolysis/gluconeogenesis, and cardiac muscle contraction. In summary, this study provides an initial analysis of the RV proteome and phosphoproteome in the progression of PAH, highlighting several RV dysfunction-associated proteins and pathways.


Asunto(s)
Hipertensión Pulmonar , Ratas , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Hipertrofia Ventricular Derecha/metabolismo , Proteoma/genética , Fosfopéptidos , Proteómica
4.
J Physiol ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409819

RESUMEN

Acute hypoxia increases pulmonary arterial (PA) pressures, though its effect on right ventricular (RV) function is controversial. The objective of this study was to characterize exertional RV performance during acute hypoxia. Ten healthy participants (34 ± 10 years, 7 males) completed three visits: visits 1 and 2 included non-invasive normoxic (fraction of inspired oxygen ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) = 0.21) and isobaric hypoxic ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12) cardiopulmonary exercise testing (CPET) to determine normoxic/hypoxic maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ). Visit 3 involved invasive haemodynamic assessments where participants were randomized 1:1 to either Swan-Ganz or conductance catheterization to quantify RV performance via pressure-volume analysis. Arterial oxygen saturation was determined by blood gas analysis from radial arterial catheterization. During visit 3, participants completed invasive submaximal CPET testing at 50% normoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ and again at 50% hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12). Median (interquartile range) values for non-invasive V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ values during normoxic and hypoxic testing were 2.98 (2.43, 3.66) l/min and 1.84 (1.62, 2.25) l/min, respectively (P < 0.0001). Mean PA pressure increased significantly when transitioning from rest to submaximal exercise during normoxic and hypoxic conditions (P = 0.0014). Metrics of RV contractility including preload recruitable stroke work, dP/dtmax , and end-systolic pressure increased significantly during the transition from rest to exercise under normoxic and hypoxic conditions. Ventricular-arterial coupling was maintained during normoxic exercise at 50% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ . During submaximal exercise at 50% of hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , ventricular-arterial coupling declined but remained within normal limits. In conclusion, resting and exertional RV functions are preserved in response to acute exposure to hypoxia at an F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12 and the associated increase in PA pressures. KEY POINTS: The healthy right ventricle augments contractility, lusitropy and energetics during periods of increased metabolic demand (e.g. exercise) in acute hypoxic conditions. During submaximal exercise, ventricular-arterial coupling decreases but remains within normal limits, ensuring that cardiac output and systemic perfusion are maintained. These data describe right ventricular physiological responses during submaximal exercise under conditions of acute hypoxia, such as occurs during exposure to high altitude and/or acute hypoxic respiratory failure.

5.
Basic Res Cardiol ; 119(3): 419-433, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38536505

RESUMEN

Right ventricular (RV) failure remains the strongest determinant of survival in pulmonary hypertension (PH). We aimed to identify relevant mechanisms, beyond pressure overload, associated with maladaptive RV hypertrophy in PH. To separate the effect of pressure overload from other potential mechanisms, we developed in pigs two experimental models of PH (M1, by pulmonary vein banding and M2, by aorto-pulmonary shunting) and compared them with a model of pure pressure overload (M3, pulmonary artery banding) and a sham-operated group. Animals were assessed at 1 and 8 months by right heart catheterization, cardiac magnetic resonance and blood sampling, and myocardial tissue was analyzed. Plasma unbiased proteomic and metabolomic data were compared among groups and integrated by an interaction network analysis. A total of 33 pigs completed follow-up (M1, n = 8; M2, n = 6; M3, n = 10; and M0, n = 9). M1 and M2 animals developed PH and reduced RV systolic function, whereas animals in M3 showed increased RV systolic pressure but maintained normal function. Significant plasma arginine and histidine deficiency and complement system activation were observed in both PH models (M1&M2), with additional alterations to taurine and purine pathways in M2. Changes in lipid metabolism were very remarkable, particularly the elevation of free fatty acids in M2. In the integrative analysis, arginine-histidine-purines deficiency, complement activation, and fatty acid accumulation were significantly associated with maladaptive RV hypertrophy. Our study integrating imaging and omics in large-animal experimental models demonstrates that, beyond pressure overload, metabolic alterations play a relevant role in RV dysfunction in PH.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión Pulmonar , Hipertrofia Ventricular Derecha , Metabolómica , Proteómica , Animales , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/diagnóstico por imagen , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipertrofia Ventricular Derecha/diagnóstico por imagen , Función Ventricular Derecha , Remodelación Ventricular , Sus scrofa , Porcinos , Masculino
6.
J Pediatr ; 266: 113864, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38052293

RESUMEN

OBJECTIVES: To characterize pulmonary artery Doppler flow profile (PAFP) patterns among infants receiving care in neonatal intensive care units and to examine the association of PAFP patterns with pulmonary and right ventricular (RV) hemodynamics. STUDY DESIGN: This is a retrospective study at 2 tertiary intensive care units over 4 years that included neonates who demonstrated a complete tricuspid regurgitation envelope on targeted neonatal echocardiography. Separate personnel reviewed TNEs to characterize PAFP patterns, divide cohort into PAFP groups, and measure quantitative indices of RV hemodynamics (RV systolic pressure, pulmonary artery acceleration time and its ratio with RV ejection time, tricuspid annular plane systolic excursion, and RV output), for intergroup comparisons. RESULTS: We evaluated TNEs from 186 neonates with median gestational age of 28.5 weeks (IQR, 25.9-35.9 weeks). Four distinct PAFP patterns were identified (A) near-isosceles triangle (22%), (B) right-angled triangle (29%), (C) notching (40%), and (D) low peak velocity (<0.4 m/s; 9%). Groups A-C demonstrated a stepwise worsening in all indices of PH, whereas pattern D was associated with lower tricuspid annular plane systolic excursion and RV output. Using common definitions of pulmonary hypertension (PH), pattern A performed best to rule out PH (sensitivity range, 81%-90%) and pattern C for diagnosing PH (specificity range, 63%-78%). CONCLUSIONS: Inspection of PAFP is a simple bedside echocardiography measure that provides clinically meaningful information on underlying RV hemodynamics and may aid in screening and monitoring of patients for PH in intensive care units.


Asunto(s)
Hipertensión Pulmonar , Arteria Pulmonar , Lactante , Recién Nacido , Humanos , Arteria Pulmonar/diagnóstico por imagen , Estudios Retrospectivos , Hipertensión Pulmonar/diagnóstico por imagen , Hemodinámica , Unidades de Cuidado Intensivo Neonatal
7.
Rheumatology (Oxford) ; 63(10): 2678-2683, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38759116

RESUMEN

OBJECTIVES: Measures of right heart size and function are prognostic in systemic sclerosis-associated pulmonary hypertension (SSc-PH), but the importance of myocardial tissue characterisation remains unclear. We aimed to investigate the predictive potential and interaction of cardiovascular magnetic resonance (CMR) myocardial tissue characterisation and right heart size and function in SSc-PH. METHODS: A retrospective, single-centre, observational study of 148 SSc-PH patients confirmed by right heart catheterization who underwent clinically indicated CMR including native myocardial T1 and T2 mapping from 2016 to 2023 was performed. RESULTS: Sixty-six (45%) patients died during follow-up (median 3.5 years, range 0.1-7.3). Patients who died were older (65 vs 60 years, P = 0.035) with more dilated (P < 0.001), hypertrophied (P = 0.013) and impaired (P < 0.001) right ventricles, more dilated right atria (P = 0.043) and higher native myocardial T1 (P < 0.001).After adjustment for age, indexed right ventricular end-systolic volume (RVESVi, P = 0.0023) and native T1 (P = 0.0024) were independent predictors of all-cause mortality. Both RVESVi and native T1 remained independently predictive after adjusting for age and PH subtype (RVESVi P < 0.001, T1 P = 0.0056). Optimal prognostic thresholds for RVESVi and native T1 were ≤38 mL/m2 and ≤1119 ms, respectively (P < 0.001). Patients with RVESVi ≤ 38 mL/m2 and native T1 ≤ 1119 ms had significantly better outcomes than all other combinations (P < 0.001). Furthermore, patients with RVESVi > 38mL/m2 and native T1 ≤ 1119 ms had significantly better survival than patients with RVESVi > 38mL/m2 and native T1 > 1119ms (P = 0.017). CONCLUSION: We identified prognostically relevant CMR metrics and thresholds for patients with SSc-PH. Assessing myocardial tissue characterisation alongside right ventricular function confers added value in SSc-PH and may represent an additional treatment target.


Asunto(s)
Ventrículos Cardíacos , Hipertensión Pulmonar , Esclerodermia Sistémica , Humanos , Persona de Mediana Edad , Femenino , Masculino , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/diagnóstico por imagen , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/diagnóstico por imagen , Estudios Retrospectivos , Anciano , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/patología , Imagen por Resonancia Cinemagnética/métodos , Pronóstico , Miocardio/patología , Imagen por Resonancia Magnética , Función Ventricular Derecha/fisiología , Valor Predictivo de las Pruebas
8.
Cardiovasc Diabetol ; 23(1): 294, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118075

RESUMEN

BACKGROUND: Patients with concomitant type 2 diabetes mellitus (T2DM) and aortic regurgitation (AR) can present with right ventricular (RV) dysfunction. The current study aimed to evaluate the impact of AR on RV impairment and the importance of ventricular interdependence using cardiac magnetic resonance feature tracking (CMR­FT) in patients with T2DM. METHODS: This study included 229 patients with T2DM (AR-), 88 patients with T2DM (AR+), and 122 healthy controls. The biventricular global radial strain (GRS), global circumferential strain (GCS), and global longitudinal peak strain (GLS) were calculated with CMR­FT and compared among the healthy control, T2DM (AR-), and T2DM (AR+) groups. The RV regional strains at the basal, mid, and apical cavities between the T2DM (AR+) group and subgroups with different AR degrees were compared. Backward stepwise multivariate linear regression analyses were performed to determine the effects of AR and left ventricular (LV) strains on RV strains. RESULTS: The RV GLS, LV GRS, LV GCS, LV GLS, interventricular septal (IVS) GRS and IVS GCS were decreased gradually from the controls through the T2DM (AR-) group to the T2DM (AR+) group. The IVS GLS of the T2DM (AR-) and T2DM (AR+) groups was lower than that of the control group. AR was independently associated with LV GRS, LV GCS, LV GLS, RV GCS, and RV GLS. If AR and LV GLSs were included in the regression analyses, AR and LV GLS were independently associated with RV GLS. CONCLUSION: AR can exacerbate RV dysfunction in patients with T2DM, which may be associated with the superimposed strain injury of the left ventricle and interventricular septum. The RV longitudinal and circumferential strains are important indicators of cardiac injury in T2DM and AR. The unfavorable LV-RV interdependence supports that while focusing on improving LV function, RV dysfunction should be monitored and treated in order to slow the progression of the disease and the onset of adverse outcomes.


Asunto(s)
Insuficiencia de la Válvula Aórtica , Diabetes Mellitus Tipo 2 , Imagen por Resonancia Cinemagnética , Valor Predictivo de las Pruebas , Disfunción Ventricular Derecha , Función Ventricular Izquierda , Función Ventricular Derecha , Humanos , Masculino , Insuficiencia de la Válvula Aórtica/fisiopatología , Insuficiencia de la Válvula Aórtica/diagnóstico por imagen , Femenino , Persona de Mediana Edad , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/diagnóstico por imagen , Disfunción Ventricular Derecha/etiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/diagnóstico , Anciano , Estudios Retrospectivos , Adulto , Estudios de Casos y Controles , Factores de Riesgo , Fenómenos Biomecánicos
9.
Microvasc Res ; 151: 104618, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37884172

RESUMEN

BACKGROUND AND AIMS: Obesity is a risk factor of cardiopulmonary disorders including left and right ventricular dysfunction and pulmonary hypertension (PH), and PH is associated with right ventricular (RV) hypertrophy and failure. Here, we tested the hypothesis that alterations of the RV capillary network under PH induced by chronic hypoxia are aggravated by alimentary obesity, thereby representing a predisposition for subsequent RV dysfunction. METHODS AND RESULTS: Male, 6-week-old C57BL/6N mice were assigned to one of the following groups: control diet (CD), CD/hypoxia (CD-Hyp), high-fat diet (HFD), HFD/hypoxia (HFD-Hyp). Mice were fed CD or HFD for 30 weeks, CD-Hyp and HFD-Hyp mice were exposed to normobaric hypoxia (13 % O2) during the last 3 weeks of the experiments. Hearts were prepared for light and electron microscopy and right atria and RVs were analyzed by design-based stereology. HFD and hypoxia independently increased RV and cardiomyocyte volume. These changes were further enhanced in HFD-Hyp. The ratio between RV and body weights was similar in CD and HFD but enhanced in both hypoxia groups to a similar extent. The total length of capillaries was elevated in proportion with the RV hypertrophy, thus the area of myocardium supplied by an average capillary was similar in all groups. Similarly, the thickness of the capillary endothelium was not altered by HFD or hypoxia. CONCLUSION: In conclusion, in experimental PH capillaries of the RV myocardium showed similar adaptations in lean and obese mice. Thus, under chronic hypoxic conditions, obesity had no adverse effect on the capillarization of the right ventricle.


Asunto(s)
Ventrículos Cardíacos , Hipertensión Pulmonar , Ratones , Masculino , Animales , Ratones Endogámicos C57BL , Miocardio , Hipertrofia Ventricular Derecha/etiología , Obesidad/complicaciones , Hipertensión Pulmonar/etiología , Enfermedad Crónica , Hipoxia/complicaciones
10.
Rev Cardiovasc Med ; 25(5): 180, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076464

RESUMEN

Tricuspid regurgitation, once considered a relatively benign condition, has now gathered significant attention due to new evidence showing its impact on both short- and long-term follow-up. While surgical intervention remains the established standard approach for treating severe tricuspid regurgitation, current guidelines provide Class I indication for intervention in only a limited set of scenarios. This review delves into the present and future perspectives of surgical tricuspid regurgitation management, examining aspects such as disease prognosis, surgical indications, outcomes, and a comprehensive overview of past and upcoming clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA