Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(34): e2217957120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590409

RESUMEN

To ensure optimal growth, plants actively regulate their growth and development based on environmental changes. Among these, salt stress significantly influences growth and yield. In this study, we demonstrate that the growth of root hairs of salt-stressed Arabidopsis thaliana seedlings is regulated by the SALT OVERLY SENSITIVE 2 (SOS2)-GUANOSINE NUCLEOTIDE DIPHOSPHATE DISSOCIATION INHIBITOR 1 (RhoGDI1)-Rho GTPASE OF PLANTS 2 (ROP2) module. We show here that the kinase SOS2 is activated by salt stress and subsequently phosphorylates RhoGDI1, a root hair regulator, thereby decreasing its stability. This change in RhoGDI1 abundance resulted in a fine-tuning of polar localization of ROP2 and root hair initiation followed by polar growth, demonstrating how SOS2-regulated root hair development is critical for plant growth under salt stress. Our results reveal how a tissue-specific response to salt stress balances the relationship of salt resistance and basic growth.


Asunto(s)
Arabidopsis , Inhibidor alfa de Disociación del Nucleótido Guanina rho , Fosforilación , Guanosina Difosfato , Estrés Salino
2.
Plant J ; 117(1): 92-106, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37738394

RESUMEN

Root hairs are crucial in the uptake of essential nutrients and water in plants. This study showed that a zinc finger protein, GIS3 is involved in root hair growth in Arabidopsis. The loss-of-function gis3 and GIS3 RNAi transgenic line exhibited a significant reduction in root hairs compared to the wild type. The application of 1-aminocyclopropane-1-carboxylic acid (ACC), an exogenous ethylene precursor, and 6-benzyl amino purine (BA), a synthetic cytokinin, significantly restored the percentage of hair cells in the epidermis in gis3 and induced GIS3 expression in the wild type. More importantly, molecular and genetic studies revealed that GIS3 acts upstream of ROOT HAIR DEFECTIVE 2 (RHD2) and RHD4 by binding to their promoters. Furthermore, exogenous ACC and BA application significantly induced the expression of RHD2 and RHD4, while root hair phenotype of rhd2-1, rhd4-1, and rhd4-3 was insensitive to ACC and BA treatment. We can therefore conclude that GIS3 modulates root hair development by directly regulating RHD2 and RHD4 expression through ethylene and cytokinin signals in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inflorescencia/metabolismo , Etilenos/metabolismo , Citocininas/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación
3.
Plant J ; 119(3): 1643-1658, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761168

RESUMEN

Redox changes of pyridine nucleotides in cellular compartments are highly dynamic and their equilibria are under the influence of various reducing and oxidizing reactions. To obtain spatiotemporal data on pyridine nucleotides in living plant cells, typical biochemical approaches require cell destruction. To date, genetically encoded fluorescent biosensors are considered to be the best option to bridge the existing technology gap, as they provide a fast, accurate, and real-time readout. However, the existing pyridine nucleotides genetically encoded fluorescent biosensors are either sensitive to pH change or slow in dissociation rate. Herein, we employed the biosensors which generate readouts that are pH stable for in planta measurement of NADH/NAD+ ratio and NADPH level. We generated transgenic Arabidopsis lines that express these biosensors in plastid stroma and cytosol of whole plants and pollen tubes under the control of CaMV 35S and LAT52 promoters, respectively. These transgenic biosensor lines allow us to monitor real-time dynamic changes in NADH/NAD+ ratio and NADPH level in the plastids and cytosol of various plant tissues, including pollen tubes, root hairs, and mesophyll cells, using a variety of fluorescent instruments. We anticipate that these valuable transgenic lines may allow improvements in plant redox biology studies.


Asunto(s)
Arabidopsis , Técnicas Biosensibles , NADP , NAD , Plantas Modificadas Genéticamente , Técnicas Biosensibles/métodos , Arabidopsis/genética , Arabidopsis/metabolismo , NADP/metabolismo , NAD/metabolismo , Citosol/metabolismo , Oxidación-Reducción , Plastidios/metabolismo , Plastidios/genética , Tubo Polínico/metabolismo , Tubo Polínico/genética , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Concentración de Iones de Hidrógeno
4.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36314989

RESUMEN

Rho of plant (ROP) proteins and the interactor of constitutively active ROP (ICR) family member ICR5/MIDD1 have been implicated to function as signaling modules that regulate metaxylem secondary cell wall patterning. Yet, loss-of-function mutants of ICR5 and its closest homologs have not been studied and, hence, the functions of these ICR family members are not fully established. Here, we studied the functions of ICR2 and its homolog ICR5. We show that ICR2 is a microtubule-associated protein that affects microtubule dynamics. Secondary cell wall pits in the metaxylem of Arabidopsis icr2 and icr5 single mutants and icr2 icr5 double mutants are smaller than those in wild-type Col-0 seedlings; however, they are remarkably denser, implying a complex function of ICRs in secondary cell wall patterning. ICR5 has a unique function in protoxylem secondary cell wall patterning, whereas icr2, but not icr5, mutants develop split root hairs, demonstrating functional diversification. Taken together, our results show that ICR2 and ICR5 have unique and cooperative functions as microtubule-associated proteins and as ROP effectors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo
5.
Plant Physiol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820143

RESUMEN

ELONGATED HYPOCOTYL 5 (HY5) is a major light-associated transcription factor involved in plant growth and development. In Arabidopsis (Arabidopsis thaliana), the role of HY5 is very well-defined in regulating primary root growth and lateral root formation; however, information regarding its role in root hair development is still lacking, and little is known about the genetic pathways regulating this process. In this study, we investigated the role of HY5 and its associated components in root hair development. Detailed analysis of root hair phenotype in wild-type (WT) and light signaling mutants in light and dark conditions revealed the importance of light-dependent HY5-mediated root hair initiation. Altered auxin levels in the root apex of the hy5 mutant and interaction of HY5 with promoters of root hair developmental genes were responsible for differential expression of root hair developmental genes and phenotype in the hy5 mutant. The partial complementation of root hair in the hy5 mutant after external supplementation of auxin and regaining of root hair in PIN-FORMED 2 (pin2) and PIN-FORMED 2 (pin3) mutants after grafting suggested that the auxin-mediated root hair development pathway requires HY5. Furthermore, miR397b overexpression (miR397bOX) and CRISPR/Cas9-based mutants (miR397bCR) indicated miR397b targets genes encoding Reduced Residual Arabinose (RRA1/RRA2), which in turn regulate root hair growth. The regulation of the miR397b- (RRA1/RRA2) module by HY5 demonstrated its indirect role by targeting root hair cell wall genes. Together, this study demonstrated that HY5 controls root hair development by integrating auxin signalling and other miRNA-mediated pathways.

6.
Plant J ; 115(3): 820-832, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37118879

RESUMEN

Ammonium in the soil is converted into nitrate by nitrifying bacteria or archaea. While nitrate is readily available for plants, it is prone to leaching and contributes to eutrophication. In addition, when the soil conditions become anaerobic, nitrate can be reduced to nitrous oxide, a powerful greenhouse gas. Therefore, slowing nitrification in agricultural soil offers some benefits by reducing nitrogen loss and decreasing water and air pollution. Since nitrogen is a limiting nutrient for most ecological niches, many plants have evolved specialized compounds that reduce nitrification. One such compound, sorgoleone, which is secreted from the root hair of sorghum, has been relatively well studied due to its allelopathic function, with most enzymes involved in its biosynthesis elucidated. However, the secretion mechanisms remain unknown. Previous studies reported numerous lipidic vesicles in the sorghum root hair and speculated that they are involved in sorgoleone storage or secretion, but their roles remain unclear. Also, the subcellular organelles that are involved in sorgoleone synthesis have not been identified. In the present study, we found that the expression of sorgoleone biosynthesis enzymes is induced in a specific root zone, indicating that the secretion is developmentally regulated. The accumulation of internal vesicles preceded the peak of sorgoleone biosynthesis and secretion, indicating that the vesicles play a role in precursor storage rather than secretion. Moreover, our data suggest that enzymes that catalyze the first three steps, SbDES2, SbDES3, and SbARS1, interact with each other to form a multi-enzyme complex on the endoplasmic reticulum surface.


Asunto(s)
Nitratos , Sorghum , Nitratos/metabolismo , Lípidos , Benzoquinonas/metabolismo , Suelo , Sorghum/metabolismo
7.
Plant J ; 115(3): 742-757, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37095646

RESUMEN

Root hair length (RHL) is an important character that affects nutrient acquisition in plants. The regulatory network in soybean controlling RHL is yet to be fully understood. In this study, we identified a quantitative trait locus (QTL) regulating RHL. One candidate causal gene in this QTL (GmbHLH113), preferentially expressed in root hairs, was annotated as encoding a basic helix-loop-helix transcription factor. In wild soybeans, the allelic type of GmbHLH113 with a glycine in the 13th residue, which was associated with a reduction in RHL, was shown to localize in the nucleus and activate gene transcription. Another allelic type with a single nucleotide polymorphism that resulted in a glutamate in the 13th residue is fixed in cultivated soybeans, and it lost the ability to localize to the nucleus or negatively regulate RHL. The ectopic expression of GmbHLH113 from W05 in Arabidopsis root hairs resulted in shorter RHL and reduced phosphorus (P) accumulation in shoots. Hence, a loss-of-function allele in cultivated soybeans might have been selected during domestication due to its association with a longer RHL and improved nutrient acquisition.


Asunto(s)
Arabidopsis , Glycine max , Glycine max/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Arabidopsis/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
8.
New Phytol ; 242(2): 507-523, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38362849

RESUMEN

Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.


Asunto(s)
Metilación de ADN , Tetraploidía , Metilación de ADN/genética , Triticum/genética , Epigénesis Genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas
9.
J Exp Bot ; 75(15): 4589-4598, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38833316

RESUMEN

Reactive oxygen species (ROS) are essential signaling molecules that enable cells to respond rapidly to a range of stimuli. The ability of plants to recognize various stressors, incorporate a variety of environmental inputs, and initiate stress-response networks depends on ROS. Plants develop resilience and defensive systems as a result of these processes. Root hairs are central components of root biology since they increase the surface area of the root, anchor it in the soil, increase its ability to absorb water and nutrients, and foster interactions between microorganisms. In this review, we specifically focused on root hair cells and we highlighted the identification of ROS receptors, important new regulatory hubs that connect ROS production, transport, and signaling in the context of two hormonal pathways (auxin and ethylene) and under low temperature environmental input related to nutrients. As ROS play a crucial role in regulating cell elongation rates, root hairs are rapidly gaining traction as a very valuable single plant cell model for investigating ROS homeostasis and signaling. These promising findings might soon facilitate the development of plants and roots that are more resilient to environmental stressors.


Asunto(s)
Raíces de Plantas , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34916289

RESUMEN

The alternating cell specifications of root epidermis to form hair cells or nonhair cells in Arabidopsis are determined by the expression level of GL2, which is activated by an MYB-bHLH-WD40 (WER-GL3-TTG1) transcriptional complex. The phytohormone ethylene (ET) has a unique effect of inducing N-position epidermal cells to form root hairs. However, the molecular mechanisms underlying ET-induced ectopic root hair development remain enigmatic. Here, we show that ET promotes ectopic root hair formation through down-regulation of GL2 expression. ET-activated transcription factors EIN3 and its homolog EIL1 mediate this regulation. Molecular and biochemical analyses further revealed that EIN3 physically interacts with TTG1 and interferes with the interaction between TTG1 and GL3, resulting in reduced activation of GL2 by the WER-GL3-TTG1 complex. Furthermore, we found through genetic analysis that the master regulator of root hair elongation, RSL4, which is directly activated by EIN3, also participates in ET-induced ectopic root hair development. RSL4 negatively regulates the expression of GL2, likely through a mechanism similar to that of EIN3. Therefore, our work reveals that EIN3 may inhibit gene expression by affecting the formation of transcription-activating protein complexes and suggests an unexpected mutual inhibition between the hair elongation factor, RSL4, and the hair specification factor, GL2. Overall, this study provides a molecular framework for the integration of ET signaling and intrinsic root hair development pathway in modulating root epidermal cell specification.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Complejos Multiproteicos , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Unión Proteica , Transducción de Señal
11.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396749

RESUMEN

Tube-like outgrowths from root epidermal cells, known as root hairs, enhance water and nutrient absorption, facilitate microbial interactions, and contribute to plant anchorage by expanding the root surface area. Genetically regulated and strongly influenced by environmental conditions, longer root hairs generally enhance water and nutrient absorption, correlating with increased stress resistance. Wheat, a globally predominant crop pivotal for human nutrition, necessitates the identification of long root hair genotypes and their regulatory genes to enhance nutrient capture and yield potential. This study focused on 261 wheat samples of diverse genotypes during germination, revealing noticeable disparities in the length of the root hair among the genotypes. Notably, two long root hair genotypes (W106 and W136) and two short root hair genotypes (W90 and W100) were identified. Transcriptome sequencing resulted in the development of 12 root cDNA libraries, unveiling 1180 shared differentially expressed genes (DEGs). Further analyses, including GO function annotation, KEGG enrichment, MapMan metabolic pathway analysis, and protein-protein interaction (PPI) network prediction, underscored the upregulation of root hair length regulatory genes in the long root hair genotypes. These included genes are associated with GA and BA hormone signaling pathways, FRS/FRF and bHLH transcription factors, phenylpropanoid, lignin, lignan secondary metabolic pathways, the peroxidase gene for maintaining ROS steady state, and the ankyrin gene with diverse biological functions. This study contributes valuable insights into modulating the length of wheat root hair and identifies candidate genes for the genetic improvement of wheat root traits.


Asunto(s)
Transcriptoma , Triticum , Humanos , Perfilación de la Expresión Génica , Fenotipo , Agua , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética
12.
Plant J ; 110(6): 1636-1650, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388535

RESUMEN

Root hairs are single-cell projections in the root epidermis. The presence of root hairs greatly expands the root surface, which facilitates soil anchorage and the absorption of water and nutrients. Root hairs are also the ideal system to study the mechanism of polar growth. Previous research has identified many important factors that control different stages of root hair development. Using a chemical genetics screen, in this study we report the identification of a steroid molecule, RHP1, which promotes root hair growth at nanomolar concentrations without obvious change of other developmental processes. We further demonstrate that RHP1 specifically affects tip growth with no significant influence on cell fate or planar polarity. We also show that RHP1 promotes root hair tip growth via acting upstream of the RHD6-RSL4-dependent transcriptional pathway and ROP GTPase-guided local signaling. Finally, we demonstrate that RHP1 exhibits a wide range of effects on different plant species in both monocots and dicots. This study of RHP1 will not only help to dissect the mechanism of root hair tip growth, but also provide a new tool to modify root hair growth in different plant species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Raíces de Plantas , Transducción de Señal
13.
Plant Cell Physiol ; 63(12): 1943-1953, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36264202

RESUMEN

Along with the rapidly increasing environmental contamination by heavy metals, the exposure of plants to chromium has also magnified, resulting in a declined productivity. Hexavalent chromium [Cr(VI)], the most toxic form of Cr, brings about changes in plant processes at morpho-physiological and biochemical levels. However, silicon (Si) is known to mitigate the impact of abiotic stresses in plants. Here, we demonstrate Si-mediated alleviation of Cr(VI) toxicity and its effects on root hair formation in rice seedlings. Reduced glutathione (GSH) and indole-3 acetic acid (IAA, an important auxin) were assessed for their involvement in root hair formation after the application of Si to Cr(VI)-stressed plants, and our results confirmed their crucial significance in such developmental processes. The expression analysis of genes involved in GSH biosynthesis (OsGS2) and regeneration (OsGR1), and auxin biosynthesis (OsTAA1 and OsYUCCA1) and transport (OsAUX1 and OsPIN1) corroborated their positive role in Si-mediated root hair formation in Cr(VI)-stressed rice seedlings. Moreover, the results indicated that nitric oxide (NO) seems a probable but not fundamental component in Si-mediated formation of roots in rice during exposure to Cr(VI) stress. In this study, the indispensable role of GSH and IAA, redox homeostasis of GSH and IAA biosynthesis and transport are discussed with regard to Si-mediated formation of root hairs in rice under Cr(VI) stress. The results of the study suggest that Si is a protective agent against Cr(VI) stress in rice, and the findings can be used to develop Cr(VI) stress-tolerant varieties of rice with enhanced productivity.


Asunto(s)
Oryza , Oryza/metabolismo , Silicio/farmacología , Silicio/metabolismo , Cromo/toxicidad , Cromo/metabolismo , Plantones/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo
14.
Plant Cell Physiol ; 64(11): 1289-1300, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37552691

RESUMEN

Plants adapt to periodic environmental changes, such as day and night, by using circadian clocks. Cell division and elongation are primary steps to adjust plant development according to their environments. In Arabidopsis, hypocotyl elongation has been studied as a representative model to understand how the circadian clock regulates cell elongation. However, it remains unknown whether similar phenomena exist in other organs, such as roots, where circadian clocks regulate physiological responses. Here, we show that root hair elongation is controlled by both light and the circadian clock. By developing machine-learning models to automatically analyze the images of root hairs, we found that genes encoding major components of the central oscillator, such as TIMING OF CAB EXPRESSION1 (TOC1) or CIRCADIAN CLOCK ASSOCIATED1 (CCA1), regulate the rhythmicity of root hair length. The partial illumination of light to either shoots or roots suggested that light received in shoots is mainly responsible for the generation of root hair rhythmicity. Furthermore, grafting experiments between wild-type (WT) and toc1 plants demonstrated that TOC1 in shoots is responsible for the generation of root hair rhythmicity. Our results illustrate the combinational effects of long-distance signaling and the circadian clock on the regulation of root hair length.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Relojes Circadianos/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Arabidopsis/fisiología
15.
Development ; 147(8)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32179566

RESUMEN

Reactive oxygen species (ROS) are signaling molecules produced by tissue-specific respiratory burst oxidase homolog (RBOH) enzymes to drive development. In Arabidopsis thaliana, ROS produced by RBOHC was previously reported to drive root hair elongation. We identified a specific role for one ROS, H2O2, in driving root hair initiation and demonstrated that localized synthesis of flavonol antioxidants control the level of H2O2 and root hair formation. Root hairs form from trichoblast cells that express RBOHC and have elevated H2O2 compared with adjacent atrichoblast cells that do not form root hairs. The flavonol-deficient tt4 mutant has elevated ROS in trichoblasts and elevated frequency of root hair formation compared with the wild type. The increases in ROS and root hairs in tt4 are reversed by genetic or chemical complementation. Auxin-induced root hair initiation and ROS accumulation were reduced in an rbohc mutant and increased in tt4, consistent with flavonols modulating ROS and auxin transport. These results support a model in which localized synthesis of RBOHC and flavonol antioxidants establish patterns of ROS accumulation that drive root hair formation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flavonoles/farmacología , Epidermis de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Aciltransferasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Flavanonas/química , Flavanonas/farmacología , Flavonoles/química , Fluorescencia , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Mutación/genética , Fenotipo , Epidermis de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Quercetina/química , Quercetina/farmacología
16.
Development ; 147(19)2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32928908

RESUMEN

Root hairs are able to sense soil composition and play an important role in water and nutrient uptake. In Arabidopsis thaliana, root hairs are distributed in the epidermis in a specific pattern, regularly alternating with non-root hair cells in continuous cell files. This patterning is regulated by internal factors such as a number of hormones, as well as by external factors like nutrient availability. Thus, root hair patterning is an excellent model for studying the plasticity of cell fate determination in response to environmental changes. Here, we report that loss-of-function mutants for the Protein O-fucosyltransferase SPINDLY (SPY) show defects in root hair patterning. Using transcriptional reporters, we show that patterning in spy-22 is affected upstream of GLABRA2 (GL2) and WEREWOLF (WER). O-fucosylation of nuclear and cytosolic proteins is an important post-translational modification that is still not very well understood. So far, SPY is best characterized for its role in gibberellin signaling via fucosylation of the growth-repressing DELLA protein REPRESSOR OF ga1-3 (RGA). Our data suggest that the epidermal patterning defects in spy-22 are independent of RGA and gibberellin signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Raíces de Plantas/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicosilación , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Raíces de Plantas/genética , Proteínas Represoras/genética , Transducción de Señal
17.
Planta ; 257(4): 83, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36928335

RESUMEN

MAIN CONCLUSION: PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis, which rely on the phosphorylation status of T589, the endocytic YXXØ motif and the kinase activity of the receptor. Legume-rhizobia nodulation is a complex developmental process. It initiates when the rhizobia-produced Nod factors are perceived by specific LysM receptors present in the root hair apical membrane. Consequently, SYMRK (Symbiosis Receptor-like Kinase) becomes active in the root hair and triggers an extensive signaling network essential for the infection process and nodule organogenesis. Despite its relevant functions, the underlying cellular mechanisms involved in SYMRK signaling activity remain poorly characterized. In this study, we demonstrated that PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis. We found that in uninoculated roots, PvSYMRK-EGFP is mainly associated with the plasma membrane, although intracellular puncta labelled with PvSymRK-EGFP were also observed in root hair and nonhair-epidermal cells. Inoculation with Rhizobium etli producing Nod factors induces in the root hair a redistribution of PvSYMRK-EGFP from the plasma membrane to intracellular puncta. In accordance, deletion of the endocytic motif YXXØ (YKTL) and treatment with the endocytosis inhibitors ikarugamycin (IKA) and tyrphostin A23 (TyrA23), as well as brefeldin A (BFA), drastically reduced the density of intracellular PvSYMRK-EGFP puncta. A similar effect was observed in the phosphorylation-deficient (T589A) and kinase-dead (K618E) mutants of PvSYMRK-EGFP, implying these structural features are positive regulators of PvSYMRK-EGFP endocytosis. Our findings lead us to postulate that rhizobia-induced endocytosis of SYMRK modulates the duration and amplitude of the SYMRK-dependent signaling pathway.


Asunto(s)
Phaseolus , Rhizobium , Nódulos de las Raíces de las Plantas/metabolismo , Phaseolus/metabolismo , Nodulación de la Raíz de la Planta , Rhizobium/fisiología , Simbiosis , Proteínas Portadoras/metabolismo , Endocitosis , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo
18.
New Phytol ; 238(6): 2410-2426, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36932734

RESUMEN

In superrosid species, root epidermal cells differentiate into root hair cells and nonhair cells. In some superrosids, the root hair cells and nonhair cells are distributed randomly (Type I pattern), and in others, they are arranged in a position-dependent manner (Type III pattern). The model plant Arabidopsis (Arabidopsis thaliana) adopts the Type III pattern, and the gene regulatory network (GRN) that controls this pattern has been defined. However, it is unclear whether the Type III pattern in other species is controlled by a similar GRN as in Arabidopsis, and it is not known how the different patterns evolved. In this study, we analyzed superrosid species Rhodiola rosea, Boehmeria nivea, and Cucumis sativus for their root epidermal cell patterns. Combining phylogenetics, transcriptomics, and cross-species complementation, we analyzed homologs of the Arabidopsis patterning genes from these species. We identified R. rosea and B. nivea as Type III species and C. sativus as Type I species. We discovered substantial similarities in structure, expression, and function of Arabidopsis patterning gene homologs in R. rosea and B. nivea, and major changes in C. sativus. We propose that in superrosids, diverse Type III species inherited the patterning GRN from a common ancestor, whereas Type I species arose by mutations in multiple lineages.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Redes Reguladoras de Genes , Raíces de Plantas/metabolismo , Células Epidérmicas , Regulación de la Expresión Génica de las Plantas
19.
New Phytol ; 240(6): 2386-2403, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37817383

RESUMEN

Root hair is regarded as a pivotal complementary survival tactic for mycorrhizal plant like Abies beshanzuensis when symbiosis is disrupted. Relatively little is known about the mechanism underlying root hair morphogenesis in plant species that are strongly dependent on mycorrhizal symbiosis. Many of these species are endangered, and this knowledge is critical for ensuring their survival. Here, a MYB6/bHLH13-sucrose synthase 2 (AbSUS2) module was newly identified and characterized in A. beshanzuensis using bioinformatics, histochemistry, molecular biology, and transgenesis. Functional, expression pattern, and localization analysis showed that AbSUS2 participated in sucrose synthesis and was involved in root hair initiation in A. beshanzuensis. Additionally, the major enzymatic product of AbSUS2 was found to suppress root hair initiation in vitro. Our data further showed that a complex involving the transcription factors AbMYB6 and AbbHLH13 directly interacted with the promoter of AbSUS2 and strengthened its expression, thereby inhibiting root hair initiation in response to exogenous sucrose. Our findings offer novel insights into how root hair morphogenesis is regulated in mycorrhizal plants and also provide a new strategy for the preservation of endangered mycorrhizal plant species.


Asunto(s)
Abies , Micorrizas , Micorrizas/fisiología , Simbiosis , Sacarosa/metabolismo , Azúcares/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
New Phytol ; 239(5): 1723-1739, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37421201

RESUMEN

Here, we discover a player in root development. Recovered from a forward-genetic screen in Brachypodium distachyon, the buzz mutant initiates root hairs but they fail to elongate. In addition, buzz roots grow twice as fast as wild-type roots. Also, lateral roots show increased sensitivity to nitrate, whereas primary roots are less sensitive to nitrate. Using whole-genome resequencing, we identified the causal single nucleotide polymorphism as occurring in a conserved but previously uncharacterized cyclin-dependent kinase (CDK)-like gene. The buzz mutant phenotypes are rescued by the wild-type B. distachyon BUZZ coding sequence and by an apparent homolog in Arabidopsis thaliana. Moreover, T-DNA mutants in A. thaliana BUZZ have shorter root hairs. BUZZ mRNA localizes to epidermal cells and develops root hairs and, in the latter, partially colocalizes with the NRT1.1A nitrate transporter. Based on qPCR and RNA-Seq, buzz overexpresses ROOT HAIRLESS LIKE SIX-1 and -2 and misregulates genes related to hormone signaling, RNA processing, cytoskeletal, and cell wall organization, and to the assimilation of nitrate. Overall, these data demonstrate that BUZZ is required for tip growth after root hair initiation and root architectural responses to nitrate.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Proteínas de Arabidopsis/metabolismo , Nitratos/metabolismo , Genes Esenciales , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA