RESUMEN
Tissue immunity and responses to injury depend on the coordinated action and communication among physiological systems. Here, we show that, upon injury, adaptive responses to the microbiota directly promote sensory neuron regeneration. At homeostasis, tissue-resident commensal-specific T cells colocalize with sensory nerve fibers within the dermis, express a transcriptional program associated with neuronal interaction and repair, and promote axon growth and local nerve regeneration following injury. Mechanistically, our data reveal that the cytokine interleukin-17A (IL-17A) released by commensal-specific Th17 cells upon injury directly signals to sensory neurons via IL-17 receptor A, the transcription of which is specifically upregulated in injured neurons. Collectively, our work reveals that in the context of tissue damage, preemptive immunity to the microbiota can rapidly bridge biological systems by directly promoting neuronal repair, while also identifying IL-17A as a major determinant of this fundamental process.
Asunto(s)
Interleucina-17 , Microbiota , Regeneración Nerviosa , Células Th17 , Axones , Regeneración Nerviosa/fisiología , Células Receptoras Sensoriales , Animales , Ratones , Células Th17/citologíaRESUMEN
Cutaneous mast cells mediate numerous skin inflammatory processes and have anatomical and functional associations with sensory afferent neurons. We reveal that epidermal nerve endings from a subset of sensory nonpeptidergic neurons expressing MrgprD are reduced by the absence of Langerhans cells. Loss of epidermal innervation or ablation of MrgprD-expressing neurons increased expression of a mast cell gene module, including the activating receptor, Mrgprb2, resulting in increased mast cell degranulation and cutaneous inflammation in multiple disease models. Agonism of MrgprD-expressing neurons reduced expression of module genes and suppressed mast cell responses. MrgprD-expressing neurons released glutamate which was increased by MrgprD agonism. Inhibiting glutamate release or glutamate receptor binding yielded hyperresponsive mast cells with a genomic state similar to that in mice lacking MrgprD-expressing neurons. These data demonstrate that MrgprD-expressing neurons suppress mast cell hyperresponsiveness and skin inflammation via glutamate release, thereby revealing an unexpected neuroimmune mechanism maintaining cutaneous immune homeostasis.
Asunto(s)
Ácido Glutámico/metabolismo , Mastocitos/metabolismo , Neuronas/metabolismo , Piel/metabolismo , Animales , Células Cultivadas , Dermatitis/metabolismo , Dermatitis/patología , Toxina Diftérica/farmacología , Modelos Animales de Enfermedad , Femenino , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Células de Langerhans/citología , Células de Langerhans/efectos de los fármacos , Células de Langerhans/metabolismo , Mastocitos/citología , Mastocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Piel/patología , beta-Alanina/química , beta-Alanina/metabolismo , beta-Alanina/farmacologíaRESUMEN
Cutaneous TRPV1+ neurons directly sense noxious stimuli, inflammatory cytokines, and pathogen-associated molecules and are required for innate immunity against some skin pathogens. Important unanswered questions are whether TRPV1+ neuron activation in isolation is sufficient to initiate innate immune responses and what is the biological function for TRPV1+ neuron-initiated immune responses. We used TRPV1-Ai32 optogenetic mice and cutaneous light stimulation to activate cutaneous neurons in the absence of tissue damage or pathogen-associated products. We found that TRPV1+ neuron activation was sufficient to elicit a local type 17 immune response that augmented host defense to C. albicans and S. aureus. Moreover, local neuron activation elicited type 17 responses and augmented host defense at adjacent, unstimulated skin through a nerve reflex arc. These data show the sufficiency of TRPV1+ neuron activation for host defense and demonstrate the existence of functional anticipatory innate immunity at sites adjacent to infection that depends on antidromic neuron activation.
Asunto(s)
Inmunidad Innata/inmunología , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Células Receptoras Sensoriales/inmunología , Piel/inmunología , Canales Catiónicos TRPV/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Candida albicans/inmunología , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/métodos , Piel/microbiología , Staphylococcus aureus/inmunología , Canales Catiónicos TRPV/genéticaRESUMEN
Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection.
Asunto(s)
Infecciones Bacterianas/inmunología , Plaquetas/inmunología , Animales , Bacterias/clasificación , Plaquetas/citología , Vasos Sanguíneos/lesiones , Vasos Sanguíneos/patología , Calcio/metabolismo , Movimiento Celular , Polaridad Celular , Humanos , Inflamación/inmunología , Integrinas/metabolismo , Ratones , Miosinas/metabolismo , Neutrófilos/citologíaRESUMEN
Developing an effective Staphylococcus aureus (S. aureus) vaccine has been a challenging endeavor, as demonstrated by numerous failed clinical trials over the years. In this study, we formulated a vaccine containing a highly conserved moonlighting protein, the pyruvate dehydrogenase complex E2 subunit (PDHC), and showed that it induced strong protective immunity against epidemiologically relevant staphylococcal strains in various murine disease models. While antibody responses contributed to bacterial control, they were not essential for protective immunity in the bloodstream infection model. Conversely, vaccine-induced systemic immunity relied on γδ T cells. It has been suggested that prior S. aureus exposure may contribute to the reduction of vaccine efficacy. However, PDHC-induced protective immunity still facilitated bacterial clearance in mice previously exposed to S. aureus. Collectively, our findings indicate that PDHC is a promising serotype-independent vaccine candidate effective against both methicillin-sensitive and methicillin-resistant S. aureus isolates.
Asunto(s)
Infecciones Estafilocócicas , Vacunas Estafilocócicas , Staphylococcus aureus , Animales , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Ratones , Staphylococcus aureus/inmunología , Staphylococcus aureus/enzimología , Vacunas Estafilocócicas/inmunología , Complejo Piruvato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/inmunología , Femenino , Anticuerpos Antibacterianos/inmunología , Modelos Animales de Enfermedad , Humanos , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Ratones Endogámicos C57BL , Staphylococcus aureus Resistente a Meticilina/inmunología , Piruvato Deshidrogenasa (Lipoamida)/inmunología , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Piruvato Deshidrogenasa (Lipoamida)/genéticaRESUMEN
Biofilm-protected pathogenic Staphylococcus aureus causes chronic infections that are difficult to treat. An essential building block of these biofilms are functional amyloid fibrils that assemble from phenol-soluble modulins (PSMs). PSMα1 cross-seeds other PSMs into cross-ß amyloid folds and is therefore a key element in initiating biofilm formation. However, the paucity of high-resolution structures hinders efforts to prevent amyloid assembly and biofilm formation. Here, we present a 3.5 Å resolution density map of the major PSMα1 fibril form revealing a left-handed cross-ß fibril composed of two C2-symmetric U-shaped protofilaments whose subunits are unusually tilted out-of-plane. Monomeric α-helical PSMα1 is extremely cytotoxic to cells, despite the moderate toxicity of the cross-ß fibril. We suggest mechanistic insights into the PSM functional amyloid formation and conformation transformation on the path from monomer-to-fibril formation. Details of PSMα1 assembly and fibril polymorphism suggest how S. aureus utilizes functional amyloids to form biofilms and establish a framework for developing therapeutics against infection and antimicrobial resistance.
Asunto(s)
Amiloide , Biopelículas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiología , Biopelículas/crecimiento & desarrollo , Amiloide/metabolismo , Amiloide/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Conformación Proteica , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Modelos MolecularesRESUMEN
Staphylococcus aureus poses a significant threat in both community and hospital settings due to its infective and pathogenic nature combined with its ability to resist the action of chemotherapeutic agents. Methicillin-resistant S. aureus (MRSA) represents a critical challenge. Metal-chelating thiosemicarbazones (TSCs) have shown promise in combating MRSA and while previous studies hinted at the antimicrobial potential of TSCs, their mechanisms of action against MRSA are still under investigation. We screened a chemical library for anti-staphylococcal compounds and identified a potent molecule named R91 that contained the NNSN structural motif found within TSCs. We identified that R91 and several structural analogs exhibited antimicrobial activity against numerous S. aureus isolates as well as other Gram-positive bacteria. RNAseq analysis revealed that R91 induces copper and oxidative stress responses. Checkerboard assays demonstrated synergy of R91 with copper, nickel, and zinc. Mutation of the SrrAB two-component regulatory system sensitizes S. aureus to R91 killing, further linking the oxidative stress response to R91 resistance. Moreover, R91 was found to induce hydrogen peroxide production, which contributed to its antimicrobial activity. Remarkably, no mutants with elevated R91 resistance were identified, despite extensive attempts. We further demonstrate that R91 can be used to effectively treat an intracellular reservoir of S. aureus in cell culture and can reduce bacterial burdens in a murine skin infection model. Combined, these data position R91 as a potent TSC effective against MRSA and other Gram-positive bacteria, with implications for future therapeutic development.
Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Tiosemicarbazonas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Humanos , Estrés Oxidativo/efectos de los fármacos , Cobre/química , Cobre/farmacología , Femenino , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genéticaRESUMEN
Gram-positive bacteria utilize a Fatty Acid Kinase (FAK) complex to harvest fatty acids from the environment. This complex consists of the fatty acid kinase, FakA, and an acyl carrier protein, FakB, and is known to impact virulence and disease outcomes. Despite some recent studies, there remains many outstanding questions as to the enzymatic mechanism and structure of FAK . To better address this gap in knowledge, we used a combination of modeling, biochemical, and cell-based approaches to build on prior proposed models and identify critical details of FAK activity. Using bio-layer interferometry, we demonstrated nanomolar affinity between FakA and FakB that also indicates that FakA is dimer when binding FakB. Additionally, targeted mutagenesis of the FakA Middle domain demonstrates it possesses a metal binding pocket that is critical for FakA dimer stability and FAK function in vitro and in vivo. Lastly, we solved structures of the apo and ligand-bound FakA kinase domain to capture the molecular changes in the protein following ATP binding and hydrolysis. Together, these data provide critical insight into the structure and function of the FAK complex which is essential for understanding its mechanism.
RESUMEN
Staphylococcus aureus is a prevalent pathogen in pneumonia and harbors glycolipids, which may serve as molecular patterns in Mincle (macrophage-inducible C-type lectin)-dependent pathogen recognition. We examined the role of Mincle in lung defense against S aureus in wild-type (WT), Mincle knockout (KO), and Mincle transgenic (tg) mice. Two glycolipids, glucosyl-diacylglycerol (Glc-DAG) and diglucosyl-diacylglycerol (Glc2-DAG), were purified, of which only Glc-DAG triggered Mincle reporter cell activation and professional phagocyte responses. Proteomic profiling revealed that Glc2-DAG blocked Glc-DAG-induced cytokine responses, thereby acting as inhibitor of Glc-DAG/Mincle signaling. WT mice responded to S aureus with a similar lung pathology as Mincle KO mice, most likely due to Glc2-DAG-dependent inhibition of Glc-DAG/Mincle signaling. In contrast, ectopic Mincle expression caused severe lung pathology in S aureus-infected mice, characterized by bacterial outgrowth and fatal pneumonia. Collectively, Glc2-DAG inhibits Glc-DAG/Mincle-dependent responses in WT mice, whereas sustained Mincle expression overrides Glc2-DAG-mediated inhibitory effects, conferring increased host susceptibility to S aureus.
Asunto(s)
Lectinas Tipo C , Proteínas de la Membrana , Ratones Noqueados , Neumonía Estafilocócica , Staphylococcus aureus , Animales , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Neumonía Estafilocócica/microbiología , Neumonía Estafilocócica/inmunología , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pulmón/microbiología , Pulmón/patología , Ratones Transgénicos , Ratones Endogámicos C57BL , Transducción de Señal , Susceptibilidad a Enfermedades , Citocinas/metabolismoRESUMEN
Immune activation is essential for lung control of viral and bacterial infection, but an overwhelming inflammatory response often leads to the onset of acute respiratory distress syndrome. IL-10 plays a crucial role in regulating the balance between antimicrobial immunity and immunopathology. In the present study, we investigated the role of IL-10 in acute lung injury induced by influenza A virus and methicillin-resistant Staphylococcus aureus coinfection. This unique coinfection model resembles patients with acute pneumonia undergoing appropriate antibiotic therapies. Using global IL-10 and IL-10 receptor gene-deficient mice, as well as in vivo neutralizing antibodies, we show that IL-10 deficiency promotes IFN-γ-dominant cytokine responses and triggers acute animal death. Interestingly, this extreme susceptibility is fully preventable by IFN-γ neutralization during coinfection. Further studies using mice with Il10ra deletion in selective myeloid subsets reveal that IL-10 primarily acts on mononuclear phagocytes to prevent IFN-γ/TNF-α hyperproduction and acute mortality. Importantly, this antiinflammatory IL-10 signaling is independent of its inhibitory effect on antiviral and antibacterial defense. Collectively, our results demonstrate a key mechanism of IL-10 in preventing hypercytokinemia and acute respiratory distress syndrome pathogenesis by counteracting the IFN-γ response.
Asunto(s)
Lesión Pulmonar Aguda , Modelos Animales de Enfermedad , Interferón gamma , Interleucina-10 , Sobreinfección , Animales , Interleucina-10/metabolismo , Interleucina-10/inmunología , Lesión Pulmonar Aguda/virología , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/microbiología , Interferón gamma/metabolismo , Sobreinfección/inmunología , Sobreinfección/virología , Ratones , Ratones Endogámicos C57BL , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Coinfección/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/virología , Infecciones Estafilocócicas/inmunología , Ratones Noqueados , Virus de la Influenza A/inmunología , Pulmón/virología , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismoRESUMEN
Staphylococcus aureus (S. aureus) is a serious global pathogen that causes a diverse range of invasive diseases. S. aureus utilizes a family of pore-forming toxins, known as bi-component leukocidins, to evade the host immune response and promote infection. Among these is LukAB (leukocidin A/leukocidin B), a toxin that assembles into an octameric ß-barrel pore in the target cell membrane, resulting in host cell death. The established cellular receptor for LukAB is CD11b of the Mac-1 complex. Here, we show that hydrogen voltage-gated channel 1 is also required for the cytotoxicity of all major LukAB variants. We demonstrate that while each receptor is sufficient to recruit LukAB to the plasma membrane, both receptors are required for maximal lytic activity. Why LukAB requires two receptors, and how each of these receptors contributes to pore-formation remains unknown. To begin to resolve this, we performed an alanine scanning mutagenesis screen to identify mutations that allow LukAB to maintain cytotoxicity without CD11b. We discovered 30 mutations primarily localized in the stem domains of LukA and LukB that enable LukAB to exhibit full cytotoxicity in the absence of CD11b. Using crosslinking, electron microscopy, and hydroxyl radical protein footprinting, we show these mutations increase the solvent accessibility of the stem domain, priming LukAB for oligomerization. Together, our data support a model in which CD11b binding unlatches the membrane penetrating stem domains of LukAB, and this change in flexibility promotes toxin oligomerization.
Asunto(s)
Proteínas Bacterianas , Leucocidinas , Staphylococcus aureus , Toxinas Biológicas , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Leucocidinas/genética , Leucocidinas/metabolismo , Leucocidinas/toxicidad , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Toxinas Biológicas/metabolismo , Mutación , Unión Proteica/genética , Dominios Proteicos , Línea Celular , Células CHO , Cricetulus , AnimalesRESUMEN
Staphylococcus aureus is a leading cause of medical device-associated biofilm infections. This is influenced by the ability of S. aureus biofilm to evade the host immune response, which is partially driven by the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that treatment of human monocyte-derived macrophages (HMDMs) with IL-10 enhanced biofilm formation, suggesting that macrophage anti-inflammatory programming likely plays an important role during the transition from planktonic to biofilm growth. To identify S. aureus genes that were important for intracellular survival in HMDMs and how this was affected by IL-10, transposon sequencing was performed. The size of the S. aureus essential genome was similar between unstimulated HMDMs and the outgrowth control (18.5% vs 18.4%, respectively, with 54.4% overlap) but increased to 22.5% in IL-10-treated macrophages, suggesting that macrophage polarization status exerts differential pressure on S. aureus. Essential genes for S. aureus survival within IL-10-polarized HMDMs were dominated by negative regulatory pathways, including nitrogen and RNA metabolism, whereas S. aureus essential genes within untreated HMDMs were enriched in biosynthetic pathways such as purine and pyrimidine biosynthesis. To explore how IL-10 altered the macrophage intracellular metabolome, targeted metabolomics was performed on HMDMs from six individual donors. IL-10 treatment led to conserved alterations in distinct metabolites that were increased (dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, and acetyl-CoA) or reduced (fructose-6-phosphate, aspartic acid, and ornithine) across donors, whereas other metabolites were variable. Collectively, these findings highlight an important aspect of population-level heterogeneity in human macrophage responsiveness that should be considered when translating results to a patient population.IMPORTANCEOne mechanism that Staphylococcus aureus biofilm elicits in the host to facilitate infection persistence is the production of the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that exposure of human monocyte-derived macrophages (HMDMs) to IL-10 promotes S. aureus biofilm formation and programs intracellular bacteria to favor catabolic pathways. Examination of intracellular metabolites in HMDMs revealed heterogeneity between donors that may explain the observed variability in essential genes for S. aureus survival based on nutrient availability for bacteria within the intracellular compartment. Collectively, these studies provide novel insights into how IL-10 polarization affects S. aureus intracellular survival in HMDMs and the importance of considering macrophage heterogeneity between human donors as a variable when examining effector mechanisms.
Asunto(s)
Interleucina-10 , Infecciones Estafilocócicas , Humanos , Interleucina-10/genética , Staphylococcus aureus/metabolismo , Macrófagos , Citocinas/metabolismo , Antiinflamatorios , Infecciones Estafilocócicas/microbiología , BiopelículasRESUMEN
BACKGROUND: Novel treatments are needed for Staphylococcus aureus bacteremia, particularly for methicillin-resistant S. aureus (MRSA). Exebacase is a first-in-class antistaphylococcal lysin that is rapidly bactericidal and synergizes with antibiotics. METHODS: In Direct Lysis of Staph Aureus Resistant Pathogen Trial of Exebacase (DISRUPT), a superiority-design phase 3 study, patients with S. aureus bacteremia/endocarditis were randomly assigned to receive a single dose of intravenous exebacase or placebo in addition to standard-of-care antibiotics. The primary efficacy outcome was clinical response at day 14 in the MRSA population. RESULTS: A total of 259 patients were randomized before the study was stopped for futility based on the recommendation of the unblinded Data Safety Monitoring Board. Clinical response rates at day 14 in the MRSA population (n = 97) were 50.0% (exebacase + antibiotics; 32/64) versus 60.6% (antibiotics alone; 20/33) (P = .392). Overall, rates of adverse events were similar across groups. No adverse events of hypersensitivity related to exebacase were reported. CONCLUSIONS: Exebacase + antibiotics failed to improve clinical response at day 14 in patients with MRSA bacteremia/endocarditis. This result was unexpected based on phase 2 data that established proof-of-concept for exebacase + antibiotics in patients with MRSA bacteremia/endocarditis. In the antibiotics-alone group, the clinical response rate was higher than that seen in phase 2. Heterogeneity within the study population and a relatively small sample size in either the phase 2 or phase 3 studies may have increased the probability of imbalances in the multiple components of day 14 clinical outcome. This study provides lessons for future superiority studies in S. aureus bacteremia/endocarditis. Clinical Trials Registration.NCT04160468.
Asunto(s)
Antibacterianos , Bacteriemia , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Masculino , Femenino , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Persona de Mediana Edad , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Anciano , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Adulto , Endocarditis Bacteriana/tratamiento farmacológico , Endocarditis Bacteriana/microbiología , Resultado del Tratamiento , Nivel de Atención , Quimioterapia Combinada , Staphylococcus aureus/efectos de los fármacosRESUMEN
Staphylococcus aureus mucosal biofilms are associated with recalcitrant chronic rhinosinusitis (CRS). However, S. aureus colonisation of sinus mucosa is frequent in the absence of mucosal inflammation. This questions the relevance of S. aureus biofilms in CRS etiopathogenesis. This study aimed to investigate whether strain-level variation in in vitro-grown S. aureus biofilm properties relates to CRS disease severity, in vitro toxicity, and immune B cell responses in sinonasal tissue from CRS patients and non-CRS controls. S. aureus clinical isolates, tissue samples, and matched clinical datasets were collected from CRS patients with nasal polyps (CRSwNP), CRS without nasal polyps (CRSsNP), and controls. B cell responses in tissue samples were characterised by FACS. S. aureus biofilms were established in vitro, followed by measuring their properties of metabolic activity, biomass, colony-forming units, and exoprotein production. S. aureus virulence was evaluated using whole-genome sequencing, mass spectrometry and application of S. aureus biofilm exoproteins to air-liquid interface cultures of primary human nasal epithelial cells (HNEC-ALI). In vitro S. aureus biofilm properties were correlated with increased CRS severity scores, infiltration of antibody-secreting cells and loss of regulatory B cells in tissue samples. Biofilm exoproteins from S. aureus with high biofilm metabolic activity had enriched virulence genes and proteins, and negatively affected the barrier function of HNEC-ALI cultures. These findings support the notion of strain-level variation in S. aureus biofilms to be critical in the pathophysiology of CRS.
Asunto(s)
Biopelículas , Rinosinusitis , Infecciones Estafilocócicas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linfocitos B/inmunología , Enfermedad Crónica , Mucosa Nasal/inmunología , Mucosa Nasal/microbiología , Pólipos Nasales/inmunología , Pólipos Nasales/microbiología , Rinosinusitis/inmunología , Rinosinusitis/microbiología , Índice de Severidad de la Enfermedad , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunologíaRESUMEN
As methicillin-resistant Staphylococcus aureus (MRSA) exhibits formidable resistance to many drugs, the imperative for alternative therapeutic strategies becomes increasingly evident. At the heart of our study is the identification of a novel inhibitor through fluorescence anisotropy assays, specifically targeting the crucial multiple gene regulator A (MgrA) regulatory network in S. aureus. Isorhapontigenin (Iso), a natural compound, exhibits outstanding inhibitory efficacy, modulating bacterial virulence pathways without exerting direct bactericidal activity. This suggests a paradigm shift toward attenuating virulence instead of purely focusing on bacterial elimination. Through comprehensive in vitro and in vivo evaluations, we elucidated the complex interplay between Iso and MgrA, leading to reduced S. aureus adhesion, and overall virulence. At the cellular level, Iso offers significant protection to A549 cells infected with S. aureus, reducing cellular damage. Importantly, Iso augments the chemotaxis of neutrophils, curtailing the immune evasion capabilities of S. aureus. Furthermore, in vivo investigations highlight the notable effectiveness of Iso against MRSA-induced pneumonia and within the Galleria mellonella infection model, underscoring its pivotal role in the evolving realm of antibacterial drug discovery. Significantly, when Iso is used in combination with vancomycin, it outperforms its solo application, indicating a more pronounced therapeutic impact. This seminal research emphasizes Iso's potential as a primary defense against the surge of multidrug-resistant pathogens, heralding new prospects in antimicrobial therapy.
Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Estilbenos , Animales , Humanos , Ratones , Células A549 , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Redes Reguladoras de Genes/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Pruebas de Sensibilidad Microbiana , Neutrófilos/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Virulencia/efectos de los fármacos , Estilbenos/farmacologíaRESUMEN
Endogenous transporters protect Staphylococcus aureus against antibiotics and also contribute to bacterial defense from environmental toxins. We evaluated the effect of overexpression of four efflux pumps, NorA, NorB, NorC, and Tet38, on S. aureus survival following exposure to pyocyanin (PYO) of Pseudomonas aeruginosa, using a well diffusion assay. We measured the PYO-created inhibition zone and found that only an overexpression of NorA reduced S. aureus susceptibility to pyocyanin killing. The MICPYO of the NorA overexpressor increased threefold compared to that of wild-type RN6390 and was reduced 2.5-fold with reserpine, suggesting that increased NorA efflux caused PYO resistance. The PYO-created inhibition zone of a ΔnorA mutant was consistently larger than that of a plasmid-borne NorA overexpressor. PYO also produced a modest increase in norA expression (1.8-fold at 0.25 µg/mL PYO) that gradually decreased with increasing PYO concentrations. Well diffusion assays carried out using P. aeruginosa showed that ΔnorA mutant was less susceptible to killing by PYO-deficient mutants PA14phzM and PA14phzS than to killing by PA14. NorA overexpression led to reduced killing by all tested P. aeruginosa. We evaluated the NorA-PYO interaction using a collection of 22 clinical isolates from adult and pediatric cystic fibrosis (CF) patients, which included both S. aureus (CF-SA) and P. aeruginosa (CF-PA). We found that when isolated alone, CF-PA and CF-SA expressed varying levels of PYO and norA transcripts, but all four CF-PA/CF-SA pairs isolated concurrently from CF patients produced a low level of PYO and low norA transcript levels, respectively, suggesting a partial adaptation of the two bacteria in circumstances of persistent co-colonization.
Asunto(s)
Infecciones por Pseudomonas , Infecciones Estafilocócicas , Humanos , Niño , Staphylococcus aureus , Pseudomonas aeruginosa/metabolismo , Piocianina/farmacología , Proteínas Bacterianas/metabolismo , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Pruebas de Sensibilidad MicrobianaRESUMEN
Osteomyelitis caused by Staphylococcus aureus can involve the persistent infection of osteocytes. We sought to determine if current clinically utilized antibiotics were capable of clearing an intracellular osteocyte S. aureus infection. Rifampicin, vancomycin, levofloxacin, ofloxacin, amoxicillin, oxacillin, doxycycline, linezolid, gentamicin, and tigecycline were assessed for their minimum inhibitory concentration (MIC) and minimum bactericidal concentrations against 12 S. aureus strains, at pH 5.0 and 7.2 to mimic lysosomal and cytoplasmic environments, respectively. Those antibiotics whose bone estimated achievable concentration was commonly above their respective MIC for the strains tested were further assayed in a human osteocyte infection model under acute and chronic conditions. Osteocyte-like cells were treated at 1×, 4×, and 10× the MIC for 1 and 7 days following infection (acute model), or at 15 and 21 days of infection (chronic model). The intracellular effectivity of each antibiotic was measured in terms of CFU reduction, small colony variant formation, and bacterial mRNA expression change. Only rifampicin, levofloxacin, and linezolid reduced intracellular CFU numbers significantly in the acute model. Consistent with the transition to a non-culturable state, few if any CFU could be recovered from the chronic model. However, no treatment in either model reduced the quantity of bacterial mRNA or prevented non-culturable bacteria from returning to a culturable state. These findings indicate that S. aureus adapts phenotypically during intracellular infection of osteocytes, adopting a reversible quiescent state that is protected against antibiotics, even at 10× their MIC. Thus, new therapeutic approaches are necessary to cure S. aureus intracellular infections in osteomyelitis.
Asunto(s)
Antibacterianos , Gentamicinas , Levofloxacino , Linezolid , Pruebas de Sensibilidad Microbiana , Osteocitos , Osteomielitis , Rifampin , Infecciones Estafilocócicas , Staphylococcus aureus , Vancomicina , Antibacterianos/farmacología , Osteomielitis/tratamiento farmacológico , Osteomielitis/microbiología , Staphylococcus aureus/efectos de los fármacos , Humanos , Osteocitos/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Levofloxacino/farmacología , Rifampin/farmacología , Rifampin/uso terapéutico , Vancomicina/farmacología , Linezolid/farmacología , Gentamicinas/farmacología , Tigeciclina/farmacología , Ofloxacino/farmacología , Doxiciclina/farmacología , Amoxicilina/farmacología , Oxacilina/farmacologíaRESUMEN
We evaluated the role of Staphylococcus aureus AbcA transporter in bacterial persistence and survival following exposure to the bactericidal agents nafcillin and oxacillin at both the population and single-cell levels. We show that AbcA overexpression resulted in resistance to nafcillin but not oxacillin. Using distinct fluorescent reporters of cell viability and AbcA expression, we found that over 6-14 hours of persistence formation, the proportion of AbcA reporter-expressing cells assessed by confocal microscopy increased sixfold as cell viability reporters decreased. Similarly, single-cell analysis in a high-throughput microfluidic system found a strong correspondence between antibiotic exposure and AbcA reporter expression. Persister cells grown in the absence of antibiotics showed neither an increase in nafcillin MIC nor in abcA transcript levels, indicating that survival was not associated with stable mutational resistance or abcA overexpression. Furthermore, persister cell levels on exposure to 1×MIC and 25×MIC of nafcillin decreased in an abcA knockout mutant. Survivors of nafcillin and oxacillin treatment overexpressed transporter AbcA, contributing to an enrichment of the number of persisters during treatment with pump-substrate nafcillin but not with pump-non-substrate oxacillin, indicating that efflux pump expression can contribute selectively to the survival of a persister population.
Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Nafcilina , beta-Lactamas/metabolismo , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Oxacilina/farmacología , Oxacilina/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismoRESUMEN
In this study, we showed that phenazine-1 carboxylic acid (PCA) of Pseudomonas aeruginosa induced the expression of Tet38 efflux pump triggering Staphylococcus aureus resistance to tetracycline and phenazines. Exposure of S. aureus RN6390 to supernatants of P. aeruginosa PA14 and its pyocyanin (PYO)-deficient mutants showed that P. aeruginosa non-PYO phenazines could induce the expression of Tet38 efflux pump. Direct exposure of RN6390 to PCA compound at 0.25× MIC led to a five-fold increase in tet38 transcripts. Expression of Tet38 protein was identified through confocal microscopy using RN6390(pRN-tet38p-yfp) that expressed YFP under control of the tet38 promoter by PCA at 0.25× MIC. The MICs of PCA of a Tet38-overexpressor and a Δtet38 mutant showed a three-fold increase and a two-fold decrease, respectively, compared with that of wild-type. Pre-exposure of RN6390 to PCA (0.25× MIC) for 1 hour prior to addition of tetracycline (1× or 10× MIC) improved bacteria viability of 1.5-fold and 2.6-fold, respectively, but addition of NaCl 7% together with tetracycline at 10× MIC reduced the number of viable PCA-exposed RN6390 of a 2.0-log10 CFU/mL. The transcript levels of tetR21, a repressor of tet38, decreased and increased two-fold in the presence of PCA and NaCl, respectively, suggesting that the effects of PCA and NaCl on tet38 production occurred through TetR21 expression. These data suggest that PCA-induced Tet38 protects S. aureus against tetracycline during coinfection with P. aeruginosa; however, induced tet38-mediated S. aureus resistance to tetracycline is reversed by NaCl 7%, a nebulized treatment used to enhance sputum mobilization in CF patients.
Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Fenazinas , Pseudomonas aeruginosa , Staphylococcus aureus , Fenazinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Tetraciclina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismoRESUMEN
There is increasing interest in the antimicrobial activity of mannosylerythritol lipids-B (MEL-B) against Gram-positive bacteria such as Staphylococcus aureus (S. aureus). However, the specific molecules involved in MEL-B's antimicrobial action against S. aureus have not been identified. This study utilized the Nebraska transposon mutant library (NTML), which contains 1920 mutants, each lacking three-quarters of the genes found in S. aureus. The NTML was screened to identify mutants resistant to MEL-B. Four mutants (Accession Number: SAUSA300_0904, SAUSA300_0752, SAUSA300_0387, and SAUSA300_2311) largely unaffected by incubation with MEL-B, indicating MEL-B resistance. Despite the strong binding of MEL-B to these mutants, the four molecules encoded by the deleted genes (yjbI, clpP, pbuX, or brpS) in each mutant were not directly recognized by MEL-B. Given that these molecules are not localized on the outer surface of S. aureus and that the antibacterial activity of MEL-B against S. aureus is facilitated by the effective transfer of two antibacterial fatty acids (caprylic acid and myristoleic acid) to S. aureus via ME, the deletion of each of the four molecules may alter the peptidoglycan structure, potentially inhibiting the effective transfer of these antimicrobial fatty acids into S. aureus.