Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 325(6): H1400-H1411, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37830982

RESUMEN

The SLIT family (SLIT1-3) of highly conserved glycoproteins was originally identified as ligands for the Roundabout (ROBO) family of single-pass transmembrane receptors, serving to provide repulsive axon guidance cues in the nervous system. Intriguingly, studies involving SLIT3 mutant mice suggest that SLIT3 might have crucial biological functions outside the neural context. Although these mutant mice display no noticeable neurological abnormalities, they present pronounced connective tissue defects, including congenital central diaphragmatic hernia, membranous ventricular septal defect, and osteopenia. We recently hypothesized that the phenotype observed in SLIT3-deficient mice may be tied to abnormalities in fibrillar collagen-rich connective tissue. Further research by our group indicates that both SLIT3 and its primary receptor, ROBO1, are expressed in fibrillar collagen-producing cells across various nonneural tissues. Global and constitutive SLIT3 deficiency not only reduces the synthesis and content of fibrillar collagen in various organs but also alleviates pressure overload-induced fibrosis in both the left and right ventricles. This review delves into the known phenotypes of SLIT3 mutants and the debated role of SLIT3 in vasculature and bone. Present evidence hints at SLIT3 acting as an autocrine regulator of fibrillar collagen synthesis, suggesting it as a potential antifibrotic treatment. However, the precise pathway and mechanisms through which SLIT3 regulates fibrillar collagen synthesis remain uncertain, presenting an intriguing avenue for future research.


Asunto(s)
Proteínas del Tejido Nervioso , Receptores Inmunológicos , Animales , Ratones , Colágenos Fibrilares , Fibroblastos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
2.
Cell Commun Signal ; 21(1): 213, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596575

RESUMEN

BACKGROUND: Toll-like receptor 4 (TLR4) conducts a highly regulated inflammatory process by limiting the extent of inflammation to avoid toxicity and tissue damage, even in bone tissues. Thus, it is plausible that strategies for the maintenance of normal bone-immunity to prevent undesirable bone damage by TLR4 activation can exist, but direct evidence is still lacking. METHODS: Osteoclast precursors (OCPs) obtained from WT or Slit3-deficient mice were differentiated into osteoclast (OC) with macrophage colony-stimulating factor (M-CSF), RANK ligand (RANKL) and lipopolysaccharide (LPS) by determining the number of TRAP-positive multinuclear cells (TRAP+ MNCs). To determine the alteration of OCPs population, fluorescence-activated cell sorting (FACS) was conducted in bone marrow cells in mice after LPS injection. The severity of bone loss in LPS injected WT or Slit3-deficient mice was evaluated by micro-CT analysis. RESULT: We demonstrate that TLR4 activation by LPS inhibits OC commitment by inducing the concomitant expression of miR-218-2-3p and its host gene, Slit3, in mouse OCPs. TLR4 activation by LPS induced SLIT3 and its receptor ROBO1 in BMMs, and this SLIT3-ROBO1 axis hinders RANKL-induced OC differentiation by switching the protein levels of C/EBP-ß isoforms. A deficiency of SLIT3 resulted in increased RANKL-induced OC differentiation, and the elevated expression of OC marker genes including Pu.1, Nfatc1, and Ctsk. Notably, Slit3-deficient mice showed expanded OCP populations in the bone marrow. We also found that miR-218-2 was concomitantly induced with SLIT3 expression after LPS treatment, and that this miRNA directly suppressed Tnfrsf11a (RANK) expression at both gene and protein levels, linking it to a decrease in OC differentiation. An endogenous miR-218-2 block rescued the expression of RANK and subsequent OC formation in LPS-stimulated OCPs. Aligned with these results, SLIT3-deficient mice displayed increased OC formation and reduced bone density after LPS challenge. CONCLUSION: Our findings suggest that the TLR4-dependent concomitant induction of Slit3 and miR-218-2 targets RANK in OCPs to restrain OC commitment, thereby avoiding an uncoordinated loss of bone through inflammatory processes. These observations provide a mechanistic explanation for the role of TLR4 in controlling the commitment phase of OC differentiation. Video Abstract.


Asunto(s)
Osteoclastos , Receptor Toll-Like 4 , Animales , Ratones , Proteína beta Potenciadora de Unión a CCAAT , Lipopolisacáridos/farmacología , Macrófagos , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética
3.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686444

RESUMEN

Poor tendon-bone interface (TBI) integration is one of the major causes contributing to unsatisfactory healing quality in patients after anterior cruciate ligament (ACL) reconstruction. Type H vessels have been recently found to closely modulate bone formation via regulation of the osteo-angiogenic crosstalk, so the strategies favoring type H vessel formation may be promising therapeutic approaches for improved graft osteointegration. In this study, we reported for the first time the treatment outcome of slit guidance ligand 3 (slit3), a novel proangiogenic factor favoring type H vessel formation, in TBI healing in mice with ACL reconstruction. The mice (n = 87) were divided into three groups for various treatments: hydrogel microparticles (HMP, control group), slit3@HMP, and slit3 neutralizing antibody@HMP (slit3-AB@HMP). Histological analysis, gait performance, radiographic measurement, and biomechanical testing were performed to assess the TBI healing quality. Increased bony ingrowth and reduced fibrous scar tissue was formed at the TBI in the slit3@HMP group when compared to the HMP group. Meanwhile, the slit3-AB@HMP inhibited the osseous ingrowth and increased fibrous scar tissue formation relative to the HMP group. Compared to the HMP group, the slit3@HMP favored type H vessel formation at the TBI while the slit3-AB@HMP impeded it. According to micro-CT assessment, compared to the HMP group, the slit3@HMP significantly increased the peri-tunnel bone mass while the slit3-AB@HMP significantly reduced the peri-tunnel bone mass. The mice in the slit3@HMP group showed the best gait performance in terms of stance time, stride length, paw print area, and stance pressure. Dynamic laxity measurement and tensile testing showed the slit3@HMP group exhibited significantly reduced laxity displacement and improved failure load and stiffness relative to the other two groups. Collectively, the injection of slit3 could be used to enhance tendon-bone integration, which may be ascribed to modulation of angiogenesis-osteogenesis crosstalk coupled by type H vessels.


Asunto(s)
Cicatriz , Hidrogeles , Animales , Ratones , Ligandos , Huesos/diagnóstico por imagen , Tendones
4.
J Surg Res ; 264: 90-98, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33794389

RESUMEN

BACKGROUND: The Slit-Robo pathway is a key regulator of angiogenesis and cellular function in experimental models. Slit3 proteins exhibit both proangiogenic and antiangiogenic properties, but the exact mechanism remains unclear. It is theorized that Slit3 may be a potential treatment for vascular diseases and cancer. METHODS: Slit3 labeled with I-125 was encapsulated in microbeads composed of low-viscosity alginate of high-glucuronic acid content, first coated with poly-L-ornithine for various durations and finally with low-viscosity high mannuronic acid. Gamma counter was used to measure microbead encapsulation efficiency and Slit3 release. Markers of angiogenesis were assessed with Boyden chamber, scratch wound, and Matrigel tube formation assays using human umbilical vein and mouse endothelial cells. RESULTS: On incubation of Slit3-loaded microbeads, there was an initial burst phase release of Slit3 for the first 24 h followed by sustained release for 6 to 12 d. Microbead composition determined encapsulation efficiency and rate of release; Slit3 encapsulation was most efficient in microbeads with lower low-viscosity alginate of high-glucuronic acid content concentrations (1.5%) and no poly-L-ornithine coating. Compared with controls (media alone), Slit3 microbeads significantly inhibited in vitro cellular migration, endothelial cell migration for wound closure at 24 and 48 h and endothelial tube formation (P < 0.001, respectively). CONCLUSIONS: Slit3 can be effectively encapsulated and delivered via a controlled release pattern using alginate microbeads. Microbead encapsulation reduces in vitro endothelial tube formation and inhibits cellular migration to impair angiogenesis. Thus, Slit3 microparticles may be explored as a therapeutic option to mitigate tumor proliferation.


Asunto(s)
Alginatos/química , Portadores de Fármacos/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Proteínas de la Membrana/administración & dosificación , Neovascularización Patológica/tratamiento farmacológico , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Composición de Medicamentos/métodos , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Proteínas de la Membrana/farmacocinética , Ratones , Microesferas , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacocinética
5.
Oral Dis ; 26(1): 182-192, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31696592

RESUMEN

This study aims to investigate the levels of SLIT3 in gingival crevicular fluid (GCF) of healthy and periodontal disease subjects, and their correlations to periodontal disease. A total of 45 periodontal patients and 45 periodontally healthy volunteers were enrolled. The clinical parameters, radiographic bone loss and the levels of SLIT3, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) in GCF were measured. The prevalences of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in subgingival plaque were also analyzed. The expression of SLIT3 and RANKL was detected in the periodontium of experimental periodontitis in rats and lipopolysaccharide (LPS)-induced mouse macrophage. The total amounts and concentrations of SLIT3 and RANKL were significantly higher in periodontitis than those in healthy, while the level of OPG was significantly lower (p < .05). Significant positive correlations were observed between the level of GCF SLIT3 and clinical attachment level and radiographic bone loss (p < .05). There existed a significant positive correlation between SLIT3 and RANKL (p < .05). Increased expression of SLIT3 and RANKL was observed in the periodontium of periodontal rats. SLIT3 expression was induced by LPS stimulation in macrophages. These results suggest that SLIT3 may act as a diagnostic indicator of periodontal disease and should be further investigated.


Asunto(s)
Líquido del Surco Gingival/química , Proteínas de la Membrana/metabolismo , Periodontitis/metabolismo , Adulto , Animales , Placa Dental/microbiología , Femenino , Humanos , Masculino , Ratones , Osteoprotegerina/metabolismo , Periodoncio/metabolismo , Porphyromonas gingivalis/aislamiento & purificación , Ligando RANK/metabolismo , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Tannerella forsythia/aislamiento & purificación , Treponema denticola/aislamiento & purificación
6.
Biochem Biophys Res Commun ; 506(4): 847-853, 2018 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389141

RESUMEN

Previously, we noted that SLIT3, slit guidance ligand 3, had an osteoprotective role with bone formation stimulation and bone resorption suppression. Additionally, we found that global Slit3 KO mice had smaller long bone. Skeletal staining showed short mineralized length in the newborn KO mice and wide hypertrophic chondrocyte area in the embryo KO mice, suggesting delayed chondrocyte maturation. The recombinant SLIT3 did not cause any change in proliferation of ATDC5 cells, but stimulated expressions of chondrocyte differentiation markers, such as COL2A1, SOX9, COL10A1, VEGF, and MMP13 in the cells. SLIT3 suppressed ß-catenin activity in the cells, and activation of Wnt/ß-catenin signaling by lithium chloride attenuated the SLIT3-stimulated differentiation markers. ATDC5 cells expressed only ROBO2 among their 4 isotypes, and the Robo2 knock-down with its siRNA reversed the SLIT3-stimulated differentiated markers in chondrocytes. Taken together, these indicate that SLIT3/ROBO2 promotes chondrocyte maturation via the inhibition of ß-catenin signaling.


Asunto(s)
Condrocitos/metabolismo , Proteínas de la Membrana/metabolismo , Osteogénesis , beta Catenina/metabolismo , Animales , Animales Recién Nacidos , Huesos/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Proteínas de la Membrana/deficiencia , Ratones Noqueados , Osteogénesis/efectos de los fármacos , Fenotipo , Receptores Inmunológicos/metabolismo , Proteínas Recombinantes/farmacología
7.
BMC Cancer ; 18(1): 621, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859044

RESUMEN

BACKGROUND: It is essential to understand the mechanisms responsible for hepatocellular carcinoma (HCC) progression and chemoresistance in order to identify prognostic biomarkers as well as potential therapeutic avenues. Recent findings have shown that SLIT3 appears to function as a novel tumor suppressor gene in various types of cancers, yet its clinical correlation and role in HCC has not been understood clearly. METHODS: We determined the transcript levels of Slit3 in tumor and adjacent normal tissues within two cohorts (N = 40 and 25) of HCC patients, and correlated the gene expression with the clinicopathological data. Subsequently, the functional effects and underlying molecular mechanisms of Slit3 overexpression and/or repression were studied using cell-line and mouse models. RESULTS: Our results demonstrated a repression in Slit3 expression in nearly 50% of the HCC patients, while the overall expression of Slit3 inversely correlated with the size of the tumor in both cohorts of patients. Stable down-regulation of Slit3 in HCC cell-lines induced cell proliferation in vitro and tumor growth in vivo, while stable Slit3 overexpression repressed these effects. Molecular investigations showed that the stable Slit3 repression-induced cell proliferation was associated with a higher expression of ß-catenin and a repressed GSK3ß activity. Moreover, Slit3-repression induced chemoresistance to sorafenib, oxaliplatin and 5-FU through impairment of ß-catenin degradation and induction of cyclin D3 and survivin levels. The effects induced by stable Slit3-repression were diminished by transient repression of ß-catenin by siRNA approach. CONCLUSION: This study suggests that Slit3 acts as a tumor suppressor in HCC by repressing the tumor growth and thus tumor progression. Low Slit3 level indicates a poor response of HCC cells to chemotherapy. Restoration or overexpression of Slit3 is a potential therapeutic approach to repress the tumor growth and enhance the efficacy of chemotherapeutic agents.


Asunto(s)
Carcinoma Hepatocelular/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , beta Catenina/metabolismo , Adulto , Anciano , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Resistencia a Antineoplásicos/fisiología , Femenino , Genes Supresores de Tumor/fisiología , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Transducción de Señal/fisiología
8.
Am J Respir Crit Care Med ; 195(7): 930-941, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27779452

RESUMEN

RATIONALE: Idiopathic or heritable pulmonary arterial hypertension is characterized by loss and obliteration of lung vasculature. Endothelial cell dysfunction is pivotal to the pathophysiology, but different causal mechanisms may reflect a need for patient-tailored therapies. OBJECTIVES: Endothelial cells differentiated from induced pluripotent stem cells were compared with pulmonary arterial endothelial cells from the same patients with idiopathic or heritable pulmonary arterial hypertension, to determine whether they shared functional abnormalities and altered gene expression patterns that differed from those in unused donor cells. We then investigated whether endothelial cells differentiated from pluripotent cells could serve as surrogates to test emerging therapies. METHODS: Functional changes assessed included adhesion, migration, tube formation, and propensity to apoptosis. Expression of bone morphogenetic protein receptor type 2 (BMPR2) and its target, collagen IV, signaling of the phosphorylated form of the mothers against decapentaplegic proteins (pSMAD1/5), and transcriptomic profiles were also analyzed. MEASUREMENTS AND MAIN RESULTS: Native pulmonary arterial and induced pluripotent stem cell-derived endothelial cells from patients with idiopathic and heritable pulmonary arterial hypertension compared with control subjects showed a similar reduction in adhesion, migration, survival, and tube formation, and decreased BMPR2 and downstream signaling and collagen IV expression. Transcriptomic profiling revealed high kisspeptin 1 (KISS1) related to reduced migration and low carboxylesterase 1 (CES1), to impaired survival in patient cells. A beneficial angiogenic response to potential therapies, FK506 and Elafin, was related to reduced slit guidance ligand 3 (SLIT3), an antimigratory factor. CONCLUSIONS: Despite the site of disease in the lung, our study indicates that induced pluripotent stem cell-derived endothelial cells are useful surrogates to uncover novel features related to disease mechanisms and to better match patients to therapies.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Expresión Génica/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Células Madre Pluripotentes Inducidas , Adolescente , Adulto , Diferenciación Celular/genética , Células Cultivadas , Células Endoteliales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Transducción de Señal/genética
9.
Transl Pediatr ; 13(7): 1201-1209, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39144427

RESUMEN

Background: Sialyllacto-N-tetraose b (LSTb) is a component of human milk oligosaccharides. Due to its low concentration, the impact of LSTb on neurodevelopment remains largely unexplored. It is worth studying whether LSTb should be added to infant formula to simulate breast milk. This study aimed to investigate the effect of LSTb on the development of motor neurons of the central nervous system using a transgenic zebrafish model. Methods: Transgenic (Tg) zebrafish line (Hb9:GFP) was incubated with LSTb, and the axonal growth of caudal primary (CaP) neurons was assessed. Locomotor behavior was evaluated, and RNA sequencing (RNA-seq) was performed to identify the differentially expressed genes (DEGs). The expression of Slit2 and Slit3, genes involved in axon guidance, was further analyzed through real-time polymerase chain reaction (real-time PCR) and whole-mount in situ hybridization. Results: There was a significant increase in the number and length of CaP axon branches, suggesting that LSTb promotes CaP development. Behavioral analysis revealed enhanced locomotor activity in LSTb-treated larvae, indicating improved motor function. RNA-seq analysis identified 5,847 DEGs related to central nervous system neuron differentiation, including Slit2 and Slit3, which are known to contribute to axon guidance. In situ hybridization confirmed increased Slit2 expression in the central nervous system of LSTb-treated larvae. Conclusions: LSTb significantly influences motor neuron development, potentially through the upregulation of Slit2 and Slit3. This research provides valuable insights into the role of LSTb in neurodevelopment.

10.
Bone ; 172: 116761, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37030497

RESUMEN

Often, disorders of impaired bone formation involve not only a cell intrinsic defect in the ability of osteoblasts to form bone, but moreover a broader dysfunction of the skeletal microenvironment that limits osteoblast activity. Developing approaches to osteoanabolic therapy that not only augment osteoblast activity but moreover correct this microenvironmental dysfunction may enable both more effective osteoanabolic therapies and also addressing a broader set of indications where vasculopathy or other forms microenvironment dysfunction feature prominently. We here review evidence that SHN3 acts as a suppressor of not only the cell intrinsic bone formation activity of osteoblasts, but moreover of the creation of a local osteoanabolic microenvironment. Mice lacking Schnurri3 (SHN3, HIVEP3) display a very robust increase in bone formation, that is due to de-repression of ERK pathway signaling in osteoblasts. In addition to loss of SHN3 augmenting the differentiation and bone formation activity of osteoblasts, loss of SHN3 increases secretion of SLIT3 by osteoblasts, which in a skeletal context acts as an angiogenic factor. Through this angiogenic activity, SLIT3 creates an osteoanabolic microenvironment, and accordingly treatment with SLIT3 can increase bone formation and enhance fracture healing. These features both validate vascular endothelial cells as a therapeutic target for disorders of low bone mass alongside the traditionally targeted osteoblasts and osteoclasts and indicate that targeting the SHN3/SLIT3 pathway provides a new mechanism to induce therapeutic osteoanabolic responses.


Asunto(s)
Proteínas de Unión al ADN , Células Endoteliales , Ratones , Animales , Células Endoteliales/metabolismo , Proteínas de Unión al ADN/metabolismo , Osteoclastos/metabolismo , Huesos/metabolismo , Osteoblastos/metabolismo , Osteogénesis/fisiología , Diferenciación Celular , Proteínas de la Membrana/metabolismo
11.
Animals (Basel) ; 13(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003169

RESUMEN

The SLIT3 gene encodes a secreted protein, and the ZNF280B gene is a member of the transcription factor family. Both genes have multiple biological functions. This study was conducted to investigate the association between SLIT3 and ZNF280B gene polymorphisms and wool fiber diameter and to determine potential molecular marker sites for breeding sheep with fine wool. We used Kompetitive Allele-Specific PCR to type the single nucleotide polymorphism (SNP) loci in the SLIT3 and ZNF280B genes within 1081 Alpine Merino sheep and associated these SNPs with wool fiber diameter. The results revealed one SNP in SLIT3 and ZNF280B, which were each related to sheep fiber diameter. The wool fiber diameters of sheep with the CC genotype in SLIT3 g.478807C>G and AA genotype in ZNF280B g.677G>A were the smallest and differed significantly from the diameters of other genotypes (p < 0.05). These results suggest potential molecular marker sites for fine-wool sheep breeding.

12.
Int Immunopharmacol ; 125(Pt A): 111134, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918086

RESUMEN

BACKGROUND: Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have garnered considerable attention as prospective modalities of treatment for liver fibrosis (LF). The inhibition of hepatic stellate cell (HSC) activation underlies the anti-fibrotic effects of hUC-MSCs. However, the precise mechanism by which hUC-MSCs impede HSC activation remains unclarified. We aimed to elucidate the intrinsic mechanisms underlying the therapeutic effects of hUC-MSCs in LF patients. METHODS: Mice with liver cirrhosis induced by carbon tetrachloride (CCl4) were used as experimental models and administered hUC-MSCs via tail-vein injection. The alterations in inflammation and fibrosis were evaluated through histopathological examinations. RNA sequencing (RNA-seq) and bioinformatics analysis were then conducted to investigate the therapeutic mechanism of hUC-MSCs. Finally, an in-vitro experiment involving the co-cultivation of hUC-MSCs or hUC-MSC-derived exosomes (MSC-Exos) with LX2 cells was performed to validate the potential mechanism underlying the hepatoprotective effects of hUC-MSCs in LF patients. RESULTS: hUC-MSC therapy significantly improved liver function and alleviated LF in CCl4-induced mice. High-throughput RNA-Seq analysis identified 1142 differentially expressed genes that were potentially involved in mediating the therapeutic effects of hUC-MSCs. These genes play an important role in regulating the extracellular matrix. miRNA expression data (GSE151098) indicated that the miR-148a-5p level was downregulated in LF samples, but restored following hUC-MSC treatment. miR-148a-5p was delivered to LX2 cells by hUC-MSCs via the exosome pathway, and the upregulated expression of miR-148a-5p significantly suppressed the expression of the activated phenotype of LX2 cells. SLIT3 was identified within the pool of potential target genes regulated by miR-148a-5p. Furthermore, hUC-MSC administration upregulated the expression of miR-148a-5p, which played a crucial role in suppressing the expression of SLIT3, thereby palliating fibrosis. CONCLUSIONS: hUC-MSCs inhibit the activation of HSCs through the miR-148a-5p/SLIT3 pathway and are thus capable of alleviating LF.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Humanos , Ratones , Animales , Estudios Prospectivos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/terapia , MicroARNs/genética , MicroARNs/metabolismo , Fibrosis , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical , Proteínas de la Membrana/metabolismo
13.
J Ethnopharmacol ; 295: 115399, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35649495

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Du-Zhong-Wan (DZW) is a traditional Chinese medicine (TCM) composed of Eucommia ulmoides Oliv. and Dipsacus asper Wall. ex C.B. Clarke in the ratio 1:1. Based on the TCM theory, DZW nourishes the kidney to strengthen the bones. The literature research revealed that DZW possesses anti-fatigue, anti-depressant, and anti-osteoporotic properties. However, the action and mechanism of DZW on osteoporotic fracture remains slightly unclear. AIM OF THE STUDY: To evaluate the pharmacological effect of DZW on ovariectomized mice with an open femoral fracture and reveal the underlying mechanism. MATERIALS AND METHODS: We conducted ovariectomy for 5 weeks, followed by unilateral open transverse femoral fracture for another 3 weeks in C57BL/6 mice; during this process, DZW was administrated. The femur bone and vertebra tissues were collected and analyzed by micro-computed tomography, histomorphometry, mechanical strength testing, immunohistochemistry staining, and qRT-PCR analyses. In addition, alkaline phosphatase (ALP) and Alizarin red S (ARS) staining were performed to determine the extent of osteoblastogenesis from bone marrow mesenchymal stem cells (BMSCs). Western blotting was performed to examine the protein expression. RESULTS: DZW treatment significantly improved the bone histomorphometric parameters in mice undergoing ovariectomy when combined with the femoral fracture, including an increase in the bone volume, trabecular number, and bone formation rate and a decrease in the bone erosion area. Simultaneously, DZW treatment histologically promoted fractured callus formation. Mechanical strength testing revealed significantly higher stiffness and an ultimate load after treatment with DZW. The angiogenesis of H-type vessels was enhanced by DZW, as evidenced by increased levels of CD31 and endomucin (EMCN), the H-type vessel endothelium markers, at the fractured endosteum and metaphysis regions. Relative to the osteoporotic fracture mice, the DZW treatment group showed an increased proangiogenic factor SLIT3 level. The increased level of SLIT3 was also recorded during the process of DZW-stimulated osteoblastogenesis from BMSCs. CONCLUSIONS: For the first time, we demonstrated that DZW promoted osteoporotic fracture healing by enhancing osteoblastogenesis and angiogenesis of the H-type vessels. This enhanced combination of osteoblastogenesis and angiogenesis was possibly related to the production of proangiogenic factor SLIT3 induced by DZW.


Asunto(s)
Eucommiaceae , Fracturas del Fémur , Fracturas Osteoporóticas , Inductores de la Angiogénesis/farmacología , Animales , Medicamentos Herbarios Chinos , Eucommiaceae/química , Femenino , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/tratamiento farmacológico , Curación de Fractura , Humanos , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ovariectomía , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X
14.
J Cachexia Sarcopenia Muscle ; 12(6): 1724-1740, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34423586

RESUMEN

BACKGROUND: Sarcopenia and osteoporosis frequently co-occur in the elderly and have common pathophysiological determinants. Slit guidance ligand 3 (SLIT3) has been recently discovered as a novel therapeutic factor against osteoporosis, and a SLIT3 fragment containing the second leucine-rich repeat domain (LRRD2) had a therapeutic efficacy against osteoporosis. However, a role of SLIT3 in the skeletal muscle is unknown. METHODS: Skeletal muscle mass, strength, and/or physical activity were evaluated in Slit3-/- , ovariectomized, and aged mice, based on the measurements of muscle weight and grip strength, Kondziella's inverted hanging test, and/or wheel-running test. Skeletal muscles were also histologically evaluated by haematoxylin and eosin staining and/or immunofluorescence. The ovariectomized and aged mice were intravenously injected with recombinant SLIT3 LRRD2 for 4 weeks. C2C12 cells were used to know cellular effects of SLIT3, such as in vitro myogenesis, fusion, cell viability, and proliferation, and also used to evaluate its molecular mechanisms by immunocytochemistry, immunoprecipitation, western blotting, real-time PCR, siRNA transfection, and receptor-ligand binding ELISA. RESULTS: Slit3-deficient mice exhibited decreased skeletal muscle mass, muscle strength, and physical activity. The relative masses of gastrocnemius and soleus were lower in the Slit3-/- mice (0.580 ± 0.039% and 0.033 ± 0.003%, respectively) than those in the WT littermates (0.622 ± 0.043% and 0.038 ± 0.003%, respectively) (all, P < 0.05). Gastrocnemius of Slit3-/- mice showed the reduced number of Type I and Type IIa fibres (all, P < 0.05), but not of Type IIb and Type IIx fibres. SLIT3 activated ß-catenin signalling by promoting its release from M-cadherin, thereby increasing myogenin expression to stimulate myoblast differentiation. In vitro experiments involving ROBO2 expression, knockdown, and interaction with SLIT3 indicated that ROBO2 functions as a SLIT3 receptor to aid myoblast differentiation. SLIT3 LRRD2 dissociated M-cadherin-bound ß-catenin and up-regulated myogenin expression to increase myoblast differentiation, in a manner similar to full-length SLIT3. Systemic treatment with SLIT3 LRRD2 increased skeletal muscle mass in both ovariectomized and aged mice (all, P < 0.05). The relative masses of gastrocnemius and soleus were higher in the treated aged mice (0.548 ± 0.045% and 0.033 ± 0.005%, respectively) than in the untreated aged mice (0.508 ± 0.016% and 0.028 ± 0.003%, respectively) (all, P < 0.05). SLIT3 LRRD2 treatment increased the hanging duration of the aged mice by approximately 1.7-fold (P < 0.05). CONCLUSIONS: SLIT3 plays a sarcoprotective role by activating ß-catenin signalling. SLIT3 LRRD2 can potentially be used as a therapeutic agent against muscle loss.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético , Animales , Diferenciación Celular , Proteínas de la Membrana/genética , Ratones , Atrofia Muscular , ARN Interferente Pequeño , Receptores Inmunológicos , Sarcopenia/prevención & control , Transfección
15.
Cancer Manag Res ; 13: 1099-1111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33574707

RESUMEN

BACKGROUND: Celastrol is a potential anti-tumor agent in hepatocellular carcinoma (HCC). Identifying the molecular determinants of the anti-HCC effect of celastrol is still challenging. In this study, we undertook to associate circular RNAs (circRNAs) with the anti-HCC molecular determinants of celastrol. METHODS: Cell colony formation, proliferation, migration, invasion and apoptosis were determined using the colony formation, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTS), transwell and flow cytometry assays, respectively. The levels of circRNA slit guidance ligand 3 (circ_SLIT3), miR-223-3p and C-X-C motif chemokine receptor 4 (CXCR4) were gauged by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Ribonuclease R (RNase R) and actinomycin D assays were performed to assess the stability of circ_SLIT3. Targeted relationships among circ_SLIT3, miR-223-3p and CXCR4 were confirmed by the dual-luciferase reporter assay. In vivo assays were performed to detect the roles of celastrol and circ_SLIT3 on tumor growth in vivo. RESULTS: Celastrol repressed HCC cell proliferation, migration, invasion, and enhanced apoptosis in vitro and suppressed tumor growth in vivo. Celastrol down-regulated circ_SLIT3 expression in HCC cells, and celastrol exerted an anti-tumor effect on HCC in vitro and in vivo by down-regulating circ_SLIT3. Mechanistically, circ_SLIT3 directly interacted with miR-223-3p, and circ_SLIT3 controlled CXCR4 expression by sponging miR-223-3p. Moreover, miR-223-3p was involved in the celastrol/circ_SLIT3-mediated regulation on HCC progression. Furthermore, celastrol exerted the anti-HCC effect in vitro through the miR-223-3p/CXCR4 axis. CONCLUSION: Our present work first identified the circ_SLIT3/miR-223-3p/CXCR4 axis as a novel mechanism of the anti-HCC effect of celastrol, providing a new insight into the involvement of circRNAs in the anti-tumor molecular determinants of celastrol.

16.
Neuroscience ; 449: 9-20, 2020 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-32949671

RESUMEN

The nervous system relies upon correct interconnections to exert its normal function. During vertebrate embryonic development, highly stereotyped scaffolds of axon tracts are formed early in the brain to set the foundation for the neuronal interconnections. During zebrafish early development, anterior dorsal telencephalic (ADt) neurons extend axons along the ipsilateral supraoptic tract (SOT) and the contralateral anterior commissure (AC). Our previous study shows axonal outgrowths along the AC/SOT tracts are coordinated by the guidance molecules Dcc-Netrin and Robo2-Slit, but it is not known how the expressions of these guidance molecules are regulated in the forebrain tissues. Here we show ectopic activation of Wnt signaling abolishes the ipsilateral SOT originating from the ADt neurons. Further mechanistic studies show ectopic activation of Wnt signaling significantly reduces Slits' expression, whilst mis-expression of Slit3 rescues SOT outgrowth. Together, our findings indicate Wnt signaling controls the ipsilateral axonal outgrowth through the regulation of slits' expression in the zebrafish forebrain.


Asunto(s)
Vía de Señalización Wnt , Pez Cebra , Animales , Axones/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Prosencéfalo/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Stem Cells Transl Med ; 9(9): 1102-1113, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32470195

RESUMEN

Although mesenchymal stem/stromal cells (MSCs) are being explored in numerous clinical trials as proangiogenic and proregenerative agents, the influence of tissue origin on the therapeutic qualities of these cells is poorly understood. Complicating the functional comparison of different types of MSCs are the confounding effects of donor age, genetic background, and health status of the donor. Leveraging a clinical setting where MSCs can be simultaneously isolated from discarded but healthy bone and thymus tissues from the same neonatal patients, thereby controlling for these confounding factors, we performed an in vitro and in vivo paired comparison of these cells. We found that both neonatal thymus (nt)MSCs and neonatal bone (nb)MSCs expressed different pericytic surface marker profiles. Further, ntMSCs were more potent in promoting angiogenesis in vitro and in vivo and they were also more motile and efficient at invading ECM in vitro. These functional differences were in part mediated by an increased ntMSC expression of SLIT3, a factor known to activate endothelial cells. Further, we discovered that SLIT3 stimulated MSC motility and fibrin gel invasion via ROBO1 in an autocrine fashion. Consistent with our findings in human MSCs, we found that SLIT3 and ROBO1 were expressed in the perivascular cells of the neonatal murine thymus gland and that global SLIT3 or ROBO1 deficiency resulted in decreased neonatal murine thymus gland vascular density. In conclusion, ntMSCs possess increased proangiogenic and invasive behaviors, which are in part mediated by the paracrine and autocrine effects of SLIT3.


Asunto(s)
Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/metabolismo , Timo/citología , Animales , Animales Recién Nacidos , Humanos , Recién Nacido , Ratones Endogámicos NOD , Ratones SCID , Especificidad de Órganos , Pericitos/metabolismo , Proteínas Roundabout
18.
Elife ; 92020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32209227

RESUMEN

To facilitate smoking genetics research we determined whether a screen of mutagenized zebrafish for nicotine preference could predict loci affecting smoking behaviour. From 30 screened F3 sibling groups, where each was derived from an individual ethyl-nitrosurea mutagenized F0 fish, two showed increased or decreased nicotine preference. Out of 25 inactivating mutations carried by the F3 fish, one in the slit3 gene segregated with increased nicotine preference in heterozygous individuals. Focussed SNP analysis of the human SLIT3 locus in cohorts from UK (n=863) and Finland (n=1715) identified two variants associated with cigarette consumption and likelihood of cessation. Characterisation of slit3 mutant larvae and adult fish revealed decreased sensitivity to the dopaminergic and serotonergic antagonist amisulpride, known to affect startle reflex that is correlated with addiction in humans, and increased htr1aa mRNA expression in mutant larvae. No effect on neuronal pathfinding was detected. These findings reveal a role for SLIT3 in development of pathways affecting responses to nicotine in zebrafish and smoking in humans.


Asunto(s)
Condicionamiento Clásico/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Nicotina/administración & dosificación , Fumar Tabaco/genética , Proteínas de Pez Cebra/genética , Amisulprida/farmacología , Animales , Bupropión/farmacología , Conducta de Elección , Condicionamiento Clásico/efectos de los fármacos , Femenino , Sitios Genéticos , Humanos , Masculino , Mutación , Polimorfismo de Nucleótido Simple , Receptor de Serotonina 5-HT1A/fisiología , Pez Cebra
19.
J Bone Miner Res ; 35(4): 789-800, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31880824

RESUMEN

The Rac1-specific guanosine triphosphatase (GTPase)-activating protein Slit-Robo GAP2 (Srgap2) is dramatically upregulated during RANKL-induced osteoclastogenesis. Srgap2 interacts with the cell membrane to locally inhibit activity of Rac1. In this study, we determined the role of Srgap2 in the myeloid lineage on bone homeostasis and the osteoclastic response to TNFα treatment. The bone phenotype of mice specifically lacking Srgap2 in the myeloid lineage (Srgap2 f/f :LysM-Cre; Srgap2 conditional knockout [cKO]) was investigated using histomorphometric analysis, in vitro cultures and Western blot analysis. Similar methods were used to determine the impact of TNFα challenge on osteoclast formation in Srgap2 cKO mice. Bone parameters in male Srgap2 cKO mice were unaffected. However, female cKO mice displayed higher trabecular bone volume due to increased osteoblast surface and bone formation rate, whereas osteoclastic parameters were unaltered. In vitro, cells from Srgap2 cKO had strongly enhanced Rac1 activation, but RANKL-induced osteoclast formation was unaffected. In contrast, conditioned medium from Srgap2 cKO osteoclasts promoted osteoblast differentiation and had increased levels of the bone anabolic clastokine SLIT3, providing a possible mechanism for increased bone formation in vivo. Rac1 is rapidly activated by the inflammatory cytokine TNFα. Supracalvarial injection of TNFα caused an augmented osteoclastic response in Srgap2 cKO mice. In vitro, cells from Srgap2 cKO mice displayed increased osteoclast formation in response to TNFα. We conclude that Srgap2 plays a prominent role in limiting osteoclastogenesis during inflammation through Rac1, and restricts expression of the paracrine clastokine SLIT3, a positive regulator of bone formation. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Resorción Ósea , Proteínas Activadoras de GTPasa , Osteogénesis , Animales , Huesos , Diferenciación Celular , Femenino , Proteínas Activadoras de GTPasa/fisiología , Masculino , Proteínas de la Membrana , Ratones , Neuropéptidos , Osteoclastos , Ligando RANK , Proteína de Unión al GTP rac1
20.
Neural Regen Res ; 15(5): 948-958, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31719262

RESUMEN

The Slit family of axon guidance cues act as repulsive molecules for precise axon pathfinding and neuronal migration during nervous system development through interactions with specific Robo receptors. Although we previously reported that Slit1-3 and their receptors Robo1 and Robo2 are highly expressed in the adult mouse peripheral nervous system, how this expression changes after injury has not been well studied. Herein, we constructed a peripheral nerve injury mouse model by transecting the right sciatic nerve. At 14 days after injury, quantitative real-time polymerase chain reaction was used to detect mRNA expression of Slit1-3 and Robo1-2 in L4-5 spinal cord and dorsal root ganglia, as well as the sciatic nerve. Immunohistochemical analysis was performed to examine Slit1-3, Robo1-2, neurofilament heavy chain, F4/80, and vimentin in L4-5 spinal cord, L4 dorsal root ganglia, and the sciatic nerve. Co-expression of Slit1-3 and Robo1-2 in L4 dorsal root ganglia was detected by in situ hybridization. In addition, Slit1-3 and Robo1-2 protein expression in L4-5 spinal cord, L4 dorsal root ganglia, and sciatic nerve were detected by western blot assay. The results showed no significant changes of Slit1-3 or Robo1-2 mRNA expression in the spinal cord within 14 days after injury. In the dorsal root ganglion, Slit1-3 and Robo1-2 mRNA expression were initially downregulated within 4 days after injury; however, Robo1-2 mRNA expression returned to the control level, while Slit1-3 mRNA expression remained upregulated during regeneration from 4-14 days after injury. In the sciatic nerve, Slit1-3 and their receptors Robo1-2 were all expressed in the proximal nerve stump; however, Slit1, Slit2, and Robo2 were barely detectable in the nerve bridge and distal nerve stump within 14 days after injury. Slit3 was highly ex-pressed in macrophages surrounding the nerve bridge and slightly downregulated in the distal nerve stump within 14 days after injury. Robo1 was upregulated in vimentin-positive cells and migrating Schwann cells inside the nerve bridge. Robo1 was also upregulated in Schwann cells of the distal nerve stump within 14 days after injury. Our findings indicate that Slit3 is the major ligand expressed in the nerve bridge and distal nerve stump during peripheral nerve regeneration, and Slit3/Robo signaling could play a key role in peripheral nerve repair after injury. This study was approved by Plymouth University Animal Welfare Ethical Review Board (approval No. 30/3203) on April 12, 2014.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA