Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(8): e2311522121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38363863

RESUMEN

Symbiosis receptor-like kinase SYMRK is required for root nodule symbiosis between legume plants and nitrogen-fixing bacteria. To understand symbiotic signaling from SYMRK, we determined the crystal structure to 1.95 Å and mapped the phosphorylation sites onto the intracellular domain. We identified four serine residues in a conserved "alpha-I" motif, located on the border between the kinase core domain and the flexible C-terminal tail, that, when phosphorylated, drives organogenesis. Substituting the four serines with alanines abolished symbiotic signaling, while substituting them with phosphorylation-mimicking aspartates induced the formation of spontaneous nodules in the absence of bacteria. These findings show that the signaling pathway controlling root nodule organogenesis is mediated by SYMRK phosphorylation, which may help when engineering this trait into non-legume plants.


Asunto(s)
Fabaceae , Nódulos de las Raíces de las Plantas , Fosforilación , Nódulos de las Raíces de las Plantas/metabolismo , Nodulación de la Raíz de la Planta , Fosfotransferasas/metabolismo , Simbiosis/genética , Fabaceae/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 110(1): 277-291, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35048428

RESUMEN

Heterotrimeric G proteins, comprised of Gα, Gß and Gγ subunits, influence signaling in most eukaryotes. In metazoans, G proteins are activated by G protein-coupled receptor (GPCR)-mediated GDP to GTP exchange on Gα; however, the role(s) of GPCRs in regulating plant G-protein signaling remains equivocal. Mounting evidence suggests the involvement of receptor-like kinases (RLKs) in regulating plant G-protein signaling, but their mechanistic details remain scarce. We have previously shown that during Glycine max (soybean) nodulation, the nod factor receptor 1 (NFR1) interacts with G-protein components and indirectly affects signaling. We explored the direct regulation of G-protein signaling by RLKs using protein-protein interactions, receptor-mediated in vitro phosphorylations and the effects of such phosphorylations on soybean nodule formation. Results presented in this study demonstrate a direct, phosphorylation-based regulation of Gα by symbiosis receptor kinase (SymRK). SymRKs interact with and phosphorylate Gα at multiple residues in vitro, including two in its active site, which abolishes GTP binding. Additionally, phospho-mimetic Gα fails to interact with Gßγ, potentially allowing for constitutive signaling by the freed Gßγ. These results uncover an unusual mechanism of G-protein cycle regulation in plants where the receptor-mediated phosphorylation of Gα not only affects its activity but also influences the availability of its signaling partners, thereby exerting a two-pronged check on signaling.


Asunto(s)
Glycine max , Proteínas de Unión al GTP Heterotriméricas , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Fosforilación , Transducción de Señal , Glycine max/genética , Glycine max/metabolismo , Simbiosis
3.
Plant Cell Physiol ; 64(4): 378-391, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36688592

RESUMEN

Arbuscular mycorrhizal (AM) fungi establish mutualistic symbiosis with a wide range of terrestrial plants, including rice. However, the mechanisms underlying the initiation of AM symbiosis are yet to be elucidated, particularly in nonleguminous plants. We previously demonstrated that chitin elicitor receptor kinase 1 (OsCERK1), a lysin motif receptor-like kinase essential for chitin-triggered immunity, also plays a key role in AM symbiosis in rice. However, the mechanisms underlying the regulation of switching between immunity and symbiosis by OsCERK1 are yet to be fully elucidated. SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK)/DOES NOT MAKE INFECTIONS 2 (DMI2) is a leucine-rich repeat receptor-like kinase associated with both root nodule symbiosis and AM symbiosis in legumes. The homolog of SYMRK in rice, OsSYMRK, has a shorter form than that in legumes because OsSYMRK lacks a malectin-like domain (MLD). The MLD reportedly contributes to symbiosis in Lotus japonicus; however, the contribution of OsSYMRK to AM symbiosis in rice remains unclear. Phylogenetic analyses indicated that the MLD of SYMRK/DMI2 is widely conserved even in mosses and ferns but absent in commelinids, including rice. To understand the function of OsSYMRK, we produced an Ossymrk knockout mutant using genome editing technology. AM colonization was mostly abolished in Ossymrk with a more severe phenotype than Oscerk1. Ca2+ spiking against chitin tetramer was also diminished in Ossymrk. In contrast, comparable defense responses against chitin heptamer to the wild type were observed in Ossymrk. Bimolecular fluorescence complementation studies demonstrating an interaction between OsSYMRK and OsCERK1 indicate that OsSYMRK may play an important role in switching from immunity to symbiosis through the interaction with OsCERK1 in rice.


Asunto(s)
Micorrizas , Oryza , Simbiosis/genética , Oryza/fisiología , Filogenia , Micorrizas/fisiología , Fosfotransferasas/genética , Quitina , Proteínas de Plantas/genética
4.
BMC Plant Biol ; 23(1): 587, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37996841

RESUMEN

BACKGROUND: Nitrogen-fixing nodules occur in ten related taxonomic lineages interspersed with lineages of non-nodulating plant species. Nodules result from an endosymbiosis between plants and diazotrophic bacteria; rhizobia in the case of legumes and Parasponia and Frankia in the case of actinorhizal species. Nodulating plants share a conserved set of symbiosis genes, whereas related non-nodulating sister species show pseudogenization of several key nodulation-specific genes. Signalling and cellular mechanisms critical for nodulation have been co-opted from the more ancient plant-fungal arbuscular endomycorrhizal symbiosis. Studies in legumes and actinorhizal plants uncovered a key component in symbiotic signalling, the LRR-type SYMBIOSIS RECEPTOR KINASE (SYMRK). SYMRK is essential for nodulation and arbuscular endomycorrhizal symbiosis. To our surprise, however, despite its arbuscular endomycorrhizal symbiosis capacities, we observed a seemingly critical mutation in a donor splice site in the SYMRK gene of Trema orientalis, the non-nodulating sister species of Parasponia. This led us to investigate the symbiotic functioning of SYMRK in the Trema-Parasponia lineage and to address the question of to what extent a single nucleotide polymorphism in a donor splice site affects the symbiotic functioning of SYMRK. RESULTS: We show that SYMRK is essential for nodulation and endomycorrhization in Parasponia andersonii. Subsequently, it is revealed that the 5'-intron donor splice site of SYMRK intron 12 is variable and, in most dicotyledon species, doesn't contain the canonical dinucleotide 'GT' signature but the much less common motif 'GC'. Strikingly, in T. orientalis, this motif is converted into a rare non-canonical 5'-intron donor splice site 'GA'. This SYMRK allele, however, is fully functional and spreads in the T. orientalis population of Malaysian Borneo. A further investigation into the occurrence of the non-canonical GA-AG splice sites confirmed that these are extremely rare. CONCLUSION: SYMRK functioning is highly conserved in legumes, actinorhizal plants, and Parasponia. The gene possesses a non-common 5'-intron GC donor splice site in intron 12, which is converted into a GA in T. orientalis accessions of Malaysian Borneo. The discovery of this functional GA-AG splice site in SYMRK highlights a gap in our understanding of splice donor sites.


Asunto(s)
Fabaceae , Rhizobium , Trema , Simbiosis/genética , Trema/metabolismo , Rhizobium/fisiología , Nodulación de la Raíz de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfotransferasas , Fabaceae/metabolismo , Plantas/metabolismo , Fijación del Nitrógeno/genética
5.
Planta ; 257(4): 83, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36928335

RESUMEN

MAIN CONCLUSION: PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis, which rely on the phosphorylation status of T589, the endocytic YXXØ motif and the kinase activity of the receptor. Legume-rhizobia nodulation is a complex developmental process. It initiates when the rhizobia-produced Nod factors are perceived by specific LysM receptors present in the root hair apical membrane. Consequently, SYMRK (Symbiosis Receptor-like Kinase) becomes active in the root hair and triggers an extensive signaling network essential for the infection process and nodule organogenesis. Despite its relevant functions, the underlying cellular mechanisms involved in SYMRK signaling activity remain poorly characterized. In this study, we demonstrated that PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis. We found that in uninoculated roots, PvSYMRK-EGFP is mainly associated with the plasma membrane, although intracellular puncta labelled with PvSymRK-EGFP were also observed in root hair and nonhair-epidermal cells. Inoculation with Rhizobium etli producing Nod factors induces in the root hair a redistribution of PvSYMRK-EGFP from the plasma membrane to intracellular puncta. In accordance, deletion of the endocytic motif YXXØ (YKTL) and treatment with the endocytosis inhibitors ikarugamycin (IKA) and tyrphostin A23 (TyrA23), as well as brefeldin A (BFA), drastically reduced the density of intracellular PvSYMRK-EGFP puncta. A similar effect was observed in the phosphorylation-deficient (T589A) and kinase-dead (K618E) mutants of PvSYMRK-EGFP, implying these structural features are positive regulators of PvSYMRK-EGFP endocytosis. Our findings lead us to postulate that rhizobia-induced endocytosis of SYMRK modulates the duration and amplitude of the SYMRK-dependent signaling pathway.


Asunto(s)
Phaseolus , Rhizobium , Nódulos de las Raíces de las Plantas/metabolismo , Phaseolus/metabolismo , Nodulación de la Raíz de la Planta , Rhizobium/fisiología , Simbiosis , Proteínas Portadoras/metabolismo , Endocitosis , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo
6.
Mol Plant ; 14(11): 1935-1950, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34314895

RESUMEN

An important question in biology is how organisms can associate with different microbes that pose no threat (commensals), pose a severe threat (pathogens), and those that are beneficial (symbionts). The root nodule symbiosis serves as an important model system for addressing such questions in the context of plant-microbe interactions. It is now generally accepted that rhizobia can actively suppress host immune responses during the infection process, analogous to the way in which plant pathogens can evade immune recognition. However, much remains to be learned about the mechanisms by which the host recognizes the rhizobia as pathogens and how, subsequently, these pathways are suppressed to allow establishment of the nitrogen-fixing symbiosis. In this study, we found that SymRK (Symbiosis Receptor-like Kinase) is required for rhizobial suppression of plant innate immunity in Lotus japonicus. SymRK associates with LjBAK1 (BRASSINOSTEROID INSENSITIVE 1-Associated receptor Kinase 1), a well-characterized positive regulator of plant innate immunity, and directly inhibits LjBAK1 kinase activity. Rhizobial inoculation enhances the association between SymRK and LjBAK1 in planta. LjBAK1 is required for the regulation of plant innate immunity and plays a negative role in rhizobial infection in L. japonicus. The data indicate that the SymRK-LjBAK1 protein complex serves as an intersection point between rhizobial symbiotic signaling pathways and innate immunity pathways, and support that rhizobia may actively suppress the host's ability to mount a defense response during the legume-rhizobium symbiosis.


Asunto(s)
Lotus/microbiología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Rhizobium/fisiología , Simbiosis/inmunología , Proteínas de Arabidopsis/química , Lotus/inmunología , Proteínas de Plantas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Rhizobium/inmunología
7.
Front Plant Sci ; 11: 795, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595680

RESUMEN

The symbiosis receptor kinase SymRK plays an essential role in symbiotic signal transduction and nodule organogenesis. Several proteins bind to SymRK, but how the symbiosis signals are transduced from SymRK to downstream components remains elusive. We previously demonstrated that both SymRK interacting protein 1 (SIP1, an ARID-type DNA-binding protein) and SymRK interacting E3 ligase [SIE3, a RING (Really Interesting New Gene)-containing E3 ligase] interact with SymRK to regulate downstream cellular responses in Lotus japonicus during the legume-rhizobia symbiosis. Here, we show that SIE3 interacts with SIP1 in both yeast cells and Nicotiana benthamiana. SIE3 associated with itself and formed a homodimer. The cysteine 266 residue was found to be essential for SIE3 dimerization and for promoting nodulation in transgenic hairy roots of L. japonicus. Our findings provide a foundation for further investigating the regulatory mechanisms of the SymRK-mediated signaling pathway, as well as the biological function of E3 ligase dimerization in nodule organogenesis.

8.
Plant Signal Behav ; 10(9): e1028703, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25893374

RESUMEN

Recently we reported that overexpression of intracellular kinase domain of Symbiosis Receptor Kinase (SYMRK-kd) hyperactivated spontaneous nodulation in Medicago truncatula indicating the importance of SYMRK ectodomain in restricting nodule number. To clarify whether sunn and sickle pathways were overcome by SYMRK-kd for hyperactivation of nodule organogenesis, we overexpressed SYMRK-kd in these mutants and analyzed for spontaneous nodulation in absence of rhizobia. Spontaneous nodulation in skl/SYMRK-kd roots was 2-fold higher than A17/SYMRK-kd roots indicating nodule organogenesis induced by SYMRK-kd to be ethylene sensitive. Intriguingly, sunn/SYMRK-kd roots failed to generate any spontaneous nodule which directly indicate the LRR-RLK SUNN to have a role in SYMRK-kd mediated nodule development under non-symbiotic conditions. We hypothesize a crosstalk between SUNN and SYMRK receptors for activation as well as restriction of nodule development.


Asunto(s)
Medicago truncatula/metabolismo , Organogénesis , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Mutación/genética , Proteínas de Plantas/química , Nodulación de la Raíz de la Planta , Estructura Terciaria de Proteína
9.
FEBS Lett ; 587(18): 2972-9, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23962520

RESUMEN

Plant receptor-like kinases (RLKs) share their evolutionary origin with animal interleukin-1 receptor-associated kinase (IRAK)/Pelle family of soluble kinases and are distinguished by having tyrosine as 'gatekeeper'. This position is adjacent to the hinge region and is hidden in a hydrophobic pocket of the catalytic cleft of protein kinases and is therefore least probable to be a target for any modification. This communication illustrates the accessibility of the gatekeeper site (Y670) towards both autophosphorylation and dephosphorylation in the recombinant cytoplasmic domain of symbiosis receptor kinase from Arachis hypogaea (AhSYMRK). Autophosphorylation on gatekeeper tyrosine was detected prior to extraction but never under in vitro conditions. We hypothesize gatekeeper phosphorylation to be associated with synthesis/maturation of AhSYMRK and this phenomenon may be prevalent among RLKs.


Asunto(s)
Arachis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina/metabolismo , Secuencias de Aminoácidos , Arachis/genética , Dominio Catalítico , Línea Celular , Mutación , Fosforilación , Proteínas de Plantas/genética , Unión Proteica , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Tirosina/genética
10.
Front Plant Sci ; 3: 223, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23060892

RESUMEN

As sessile organisms that cannot evade adverse environmental conditions, plants have evolved various adaptive strategies to cope with environmental stresses. One of the most successful adaptations is the formation of symbiotic associations with beneficial microbes. In these mutualistic interactions the partners exchange essential nutrients and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza (AM) and in root nodule symbiosis (RNS), AM fungi and rhizobia, respectively, penetrate roots and accommodate within the cells of the plant host. In these endosymbiotic associations, both partners keep their plasma membranes intact and use them to control the bidirectional exchange of signaling molecules and nutrients. Intracellular accommodation requires the exchange of symbiotic signals and the reprogramming of both interacting partners. This involves fundamental changes at the level of gene expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic reticulum (ER), and the central vacuole. Symbiotic cells are highly compartmentalized and have a complex membrane system specialized for the diverse functions in molecular communication and nutrient exchange. Here, we discuss the roles of the different cellular membrane systems and their symbiosis-related proteins in AM and RNS, and we review recent progress in the analysis of membrane proteins involved in endosymbiosis.

11.
Plant Signal Behav ; 7(12): 1578-83, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23221680

RESUMEN

Comparison of the expression of 13 genes involved in arbuscular mycorrhizal (AM) symbiosis was performed in a wild type tomato (Solanum lycopersicum cv 76R) and its reduced mycorrhizal colonization mutant rmc in response to colonization with Glomus fasiculatum. Four defense-related genes were induced to a similar extent in the mutant and wild type AM colonized plants, indicating a systemic response to AM colonization. Genes related to nutrient exchange between the symbiont partners showed higher expression in the AM roots of wild type plants than the mutant plants, which correlated with their arbuscular frequency. A symbiosis receptor kinase that is involved in both nodulation and AM symbiosis was not expressed in the rmc mutant. The fact that some colonization was observed in rmc was suggestive of the existence of an alternate colonization signaling pathway for AM symbiosis in this mutant.


Asunto(s)
Glomeromycota/fisiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis/genética , Simbiosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA