Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.352
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Neurosci ; 45: 561-580, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35440141

RESUMEN

Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.


Asunto(s)
Sistema Nervioso Periférico , Células de Schwann , Axones/metabolismo , Sistema Nervioso Central/fisiología , Neuroglía/fisiología , Sistema Nervioso Periférico/fisiología , Células de Schwann/metabolismo
2.
Genes Dev ; 36(3-4): 133-148, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086862

RESUMEN

The regeneration of peripheral nerves is guided by regeneration tracks formed through an interplay of many cell types, but the underlying signaling pathways remain unclear. Here, we demonstrate that macrophages are mobilized ahead of Schwann cells in the nerve bridge after transection injury to participate in building regeneration tracks. This requires the function of guidance receptor Plexin-B2, which is robustly up-regulated in infiltrating macrophages in injured nerves. Conditional deletion of Plexin-B2 in myeloid lineage resulted in not only macrophage misalignment but also matrix disarray and Schwann cell disorganization, leading to misguided axons and delayed functional recovery. Plexin-B2 is not required for macrophage recruitment or activation but enables macrophages to steer clear of colliding axons, in particular the growth cones at the tip of regenerating axons, leading to parallel alignment postcollision. Together, our studies unveil a novel reparative function of macrophages and the importance of Plexin-B2-mediated collision-dependent contact avoidance between macrophages and regenerating axons in forming regeneration tracks during peripheral nerve regeneration.


Asunto(s)
Regeneración Nerviosa , Nervios Periféricos , Axones/fisiología , Moléculas de Adhesión Celular , Macrófagos/metabolismo , Regeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nervios Periféricos/metabolismo , Células de Schwann/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(4): e2216941120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669102

RESUMEN

In inflammatory neuropathies, oxidative stress results in neuronal and Schwann cell (SC) death promoting early neurodegeneration and clinical disability. Treatment with the short-chain fatty acid propionate showed a significant immunoregulatory and neuroprotective effect in multiple sclerosis patients. Similar effects have been described for patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Therefore, Schwann cell's survival and dorsal root ganglia (DRG) outgrowth were evaluated in vitro after propionate treatment and application of H2O2 or S-nitroso-N-acetyl-D-L-penicillamine (SNAP) to evaluate neuroprotection. In addition, DRG resistance was evaluated by the application of oxidative stress by SNAP ex vivo after in vivo propionate treatment. Propionate treatment secondary to SNAP application on DRG served as a neuroregeneration model. Histone acetylation as well as expression of the free fatty acid receptor (FFAR) 2 and 3, histone deacetylases, neuroregeneration markers, and antioxidative mediators were investigated. ß-hydroxybutyrate was used as a second FFAR3 ligand, and pertussis toxin was used as an FFAR3 antagonist. FFAR3, but not FFAR2, expression was evident on SC and DRG. Propionate-mediated activation of FFAR3 and histone 3 hyperacetylation resulted in increased catalase expression and increased resistance to oxidative stress. In addition, propionate treatment resulted in enhanced neuroregeneration with concomitant growth-associated protein 43 expression. We were able to demonstrate an antioxidative and neuroregenerative effect of propionate on SC and DRG mediated by FFAR3-induced histone acetylases expression. Our results describe a pathway to achieve neuroprotection/neuroregeneration relevant for patients with immune-mediated neuropathies.


Asunto(s)
Histonas , Propionatos , Humanos , Propionatos/farmacología , Histonas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neuroprotección , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Ganglios Espinales/metabolismo
4.
Hum Mol Genet ; 32(10): 1698-1710, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36645183

RESUMEN

Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the developed world. Vision loss in the advanced stages of the disease is caused by atrophy of retinal photoreceptors, overlying retinal pigment epithelium (RPE) and choroidal endothelial cells. The molecular events that underline the development of these cell types from in utero to adult as well as the progression to intermediate and advanced stages AMD are not yet fully understood. We performed single-cell RNA-sequencing (RNA-Seq) of human fetal and adult RPE-choroidal tissues, profiling in detail all the cell types and elucidating cell type-specific proliferation, differentiation and immunomodulation events that occur up to midgestation. Our data demonstrate that progression from the fetal to adult state is characterized by an increase in expression of genes involved in the oxidative stress response and detoxification from heavy metals, suggesting a better defence against oxidative stress in the adult RPE-choroid tissue. Single-cell comparative transcriptional analysis between a patient with intermediate AMD and an unaffected subject revealed a reduction in the number of RPE cells and melanocytes in the macular region of the AMD patient. Together these findings may suggest a macular loss of RPE cells and melanocytes in the AMD patients, but given the complex processing of tissues required for single-cell RNA-Seq that is prone to technical artefacts, these findings need to be validated by additional techniques in a larger number of AMD patients and controls.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Humanos , Adulto , Epitelio Pigmentado de la Retina/metabolismo , Células Endoteliales/metabolismo , Coroides/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Desarrollo Fetal , Análisis de Secuencia de ARN
5.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743588

RESUMEN

Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited peripheral neuropathy caused by a 1.5 megabase tandem duplication of chromosome 17 harboring the PMP22 gene. This dose-dependent overexpression of PMP22 results in disrupted Schwann cell myelination of peripheral nerves. To get better insights into the underlying pathogenic mechanisms in CMT1A, we investigated the role of PMP22 duplication on cellular homeostasis in CMT1A mouse models and in patient-derived induced pluripotent stem cells differentiated into Schwann cell precursors (iPSC-SCPs). We performed lipidomic profiling and bulk RNA sequencing on sciatic nerves of two developing CMT1A mouse models and on CMT1A patient derived iPSC-SCPs. For the sciatic nerves of the CMT1A mice, cholesterol and lipid metabolism was dose-dependently downregulated throughout development. For the CMT1A iPSC-SCPs, transcriptional analysis unveiled a strong suppression of genes related to autophagy and lipid metabolism. Gene ontology enrichment analysis identified disturbances in pathways related to plasma membrane components and cell receptor signaling. Lipidomic analysis confirmed the severe dysregulation in plasma membrane lipids, particularly sphingolipids, in CMT1A iPSC-SCPs. Furthermore, we identified reduced lipid raft dynamics, disturbed plasma membrane fluidity, and impaired cholesterol incorporation and storage, all of which could result from altered lipid storage homeostasis in the patient-derived CMT1A iPSC-SCPs. Importantly, this phenotype could be rescued by stimulating autophagy and lipolysis. We conclude that PMP22 duplication disturbs intracellular lipid storage and leads to a more disordered plasma membrane due to an alteration in the lipid composition, which ultimately may lead to impaired axo-glial interactions. Moreover, targeting lipid handling and metabolism could hold promise for the treatment of CMT1A patients.

6.
Exp Cell Res ; 438(1): 114049, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642790

RESUMEN

BACKGROUND: Acellular nerve allografts (ANAs) have been successfully applied to bridge facial nerve defects, and transplantation of stem cells may enhance the regenerative results. Up to now, application of hair follicle epidermal neural crest stem cell-derived Schwann cell-like cells (EPI-NCSC-SCLCs) combined with ANAs for bridging facial nerve defects has not been reported. METHODS: The effect of ANAs laden with green fluorescent protein (GFP)-labeled EPI-NCSC-SCLCs (ANA + cells) on bridging rat facial nerve trunk defects (5-mm-long) was detected by functional and morphological examination, as compared with autografts and ANAs, respectively. RESULTS: (1) EPI-NCSC-SCLCs had good compatibility with ANAs in vitro. (2) In the ANA + cells group, the GFP signals were observed by in vivo imaging system for small animals within 8 weeks, and GFP-labeled EPI-NCSC-SCLCs were detected in the tissue slices at 16 weeks postoperatively. (3) The facial symmetry at rest after surgery in the ANA + cells group was better than that in the ANA group (p < 0.05), and similar to that in the autograft group (p > 0.05). The initial recovery time of vibrissal and eyelid movement in the ANA group was 2 weeks later than that in the other two groups. (4) The myelinated fibers, myelin sheath thickness and diameter of the axons of the buccal branches in the ANA group were significantly worse than those in the other two groups (P < 0.05), and the results in the ANA + cells group were similar to those in the autograft group (p > 0.05). CONCLUSIONS: EPI-NCSC-SCLCs could promote functional and morphological recovery of rat facial nerve defects, and GFP labeling could track the transplanted EPI-NCSC-SCLCs in vivo for a certain period of time. These may provide a novel choice for clinical treatment of peripheral nerve defects.


Asunto(s)
Aloinjertos , Nervio Facial , Proteínas Fluorescentes Verdes , Folículo Piloso , Regeneración Nerviosa , Cresta Neural , Células de Schwann , Animales , Células de Schwann/trasplante , Folículo Piloso/trasplante , Folículo Piloso/citología , Cresta Neural/citología , Cresta Neural/trasplante , Ratas , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Regeneración Nerviosa/fisiología , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Ratas Sprague-Dawley , Traumatismos del Nervio Facial/terapia , Traumatismos del Nervio Facial/patología , Traumatismos del Nervio Facial/cirugía , Masculino
7.
Cell Mol Life Sci ; 81(1): 47, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236305

RESUMEN

Type 2 diabetes mellitus is a global epidemic that due to its increasing prevalence worldwide will likely become the most common debilitating health condition. Even if diabetes is primarily a metabolic disorder, it is now well established that key aspects of the pathogenesis of diabetes are associated with nervous system alterations, including deleterious chronic inflammation of neural tissues, referred here as neuroinflammation, along with different detrimental glial cell responses to stress conditions and neurodegenerative features. Moreover, diabetes resembles accelerated aging, further increasing the risk of developing age-linked neurodegenerative disorders. As such, the most common and disabling diabetic comorbidities, namely diabetic retinopathy, peripheral neuropathy, and cognitive decline, are intimately associated with neurodegeneration. As described in aging and other neurological disorders, glial cell alterations such as microglial, astrocyte, and Müller cell increased reactivity and dysfunctionality, myelin loss and Schwann cell alterations have been broadly described in diabetes in both human and animal models, where they are key contributors to chronic noxious inflammation of neural tissues within the PNS and CNS. In this review, we aim to describe in-depth the common and unique aspects underlying glial cell changes observed across the three main diabetic complications, with the goal of uncovering shared glial cells alterations and common pathological mechanisms that will enable the discovery of potential targets to limit neuroinflammation and prevent neurodegeneration in all three diabetic complications. Diabetes and its complications are already a public health concern due to its rapidly increasing incidence, and thus its health and economic impact. Hence, understanding the key role that glial cells play in the pathogenesis underlying peripheral neuropathy, retinopathy, and cognitive decline in diabetes will provide us with novel therapeutic approaches to tackle diabetic-associated neurodegeneration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Enfermedades del Sistema Nervioso Periférico , Animales , Humanos , Enfermedades Neuroinflamatorias , Neuroglía , Inflamación
8.
Glia ; 72(4): 692-707, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38192185

RESUMEN

Schwann cells (SCs), the primary glial cells of the peripheral nervous system, which have been identified in many solid tumors, play an important role in cancer development and progression by shaping the tumor immunoenvironment and supporting the development of metastases. Using different cellular, molecular, and genetic approaches with integrated bioinformatics analysis and functional assays, we revealed the role of human SC-derived exosomal miRNAs in lung cancer progression in vitro and in vivo. We found that exosomal miRNA-21 from SCs up-regulated the proliferation, motility, and invasiveness of human lung cancer cells in vitro, which requires functional Rab small GTPases Rab27A and Rab27B in SCs for exosome release. We also revealed that SC exosomal miRNA-21-5p regulated the functional activation of tumor cells by targeting metalloprotease inhibitor RECK in tumor cells. Integrated bioinformatic analyses showed that hsa-miRNA-21-5p is associated with poor prognosis in patients with lung adenocarcinoma and can promote lung cancer progression through multiple signaling pathways including the MAPK, PI3K/Akt, and TNF signaling. Furthermore, in mouse xenograft models, SC exosomes and SC exosomal hsa-miRNA-21-5p augmented human lung cancer cell growth and lymph node metastasis in vivo. Together our data revealed, for the first time, that SC-secreted exosomes and exosomal miRNA-21-5p promoted the proliferation, motility, and spreading of human lung cancer cells in vitro and in vivo. Thus, exosomal miRNA-21 may play an oncogenic role in SC-accelerated progression of lung cancer and this pathway may serve as a new therapeutic target for further evaluation.


Asunto(s)
Exosomas , Neoplasias Pulmonares , MicroARNs , Humanos , Ratones , Animales , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Exosomas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células de Schwann/metabolismo , Modelos Animales de Enfermedad , Proliferación Celular/genética , Proteínas Ligadas a GPI/metabolismo
9.
Glia ; 72(5): 916-937, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372375

RESUMEN

Schwann cells (SCs) undergo phenotypic transformation and then orchestrate nerve repair following PNS injury. The ligands and receptors that activate and sustain SC transformation remain incompletely understood. Proteins released by injured axons represent important candidates for activating the SC Repair Program. The low-density lipoprotein receptor-related protein-1 (LRP1) is acutely up-regulated in SCs in response to injury, activating c-Jun, and promoting SC survival. To identify novel LRP1 ligands released in PNS injury, we applied a discovery-based approach in which extracellular proteins in the injured nerve were captured using Fc-fusion proteins containing the ligand-binding motifs of LRP1 (CCR2 and CCR4). An intracellular neuron-specific protein, Protein Kinase C and Casein Kinase Substrate in Neurons (PACSIN1) was identified and validated as an LRP1 ligand. Recombinant PACSIN1 activated c-Jun and ERK1/2 in cultured SCs. Silencing Lrp1 or inhibiting the LRP1 cell-signaling co-receptor, the NMDA-R, blocked the effects of PACSIN1 on c-Jun and ERK1/2 phosphorylation. Intraneural injection of PACSIN1 into crush-injured sciatic nerves activated c-Jun in wild-type mice, but not in mice in which Lrp1 is conditionally deleted in SCs. Transcriptome profiling of SCs revealed that PACSIN1 mediates gene expression events consistent with transformation to the repair phenotype. PACSIN1 promoted SC migration and viability following the TNFα challenge. When Src family kinases were pharmacologically inhibited or the receptor tyrosine kinase, TrkC, was genetically silenced or pharmacologically inhibited, PACSIN1 failed to induce cell signaling and prevent SC death. Collectively, these studies demonstrate that PACSIN1 is a novel axon-derived LRP1 ligand that activates SC repair signaling by transactivating TrkC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Axones , Células de Schwann , Animales , Ratones , Ratas , Supervivencia Celular , Células Cultivadas , Ligandos , Ratas Sprague-Dawley , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células de Schwann/metabolismo , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/farmacología , Proteínas Recombinantes
10.
Glia ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961612

RESUMEN

The peripheral nervous system is a key regulator of cancer progression. In pancreatic ductal adenocarcinoma (PDAC), the sympathetic branch of the autonomic nervous system inhibits cancer development. This inhibition is associated with extensive sympathetic nerve sprouting in early pancreatic cancer precursor lesions. However, the underlying mechanisms behind this process remain unclear. This study aimed to investigate the roles of pancreatic Schwann cells in the structural plasticity of sympathetic neurons. We examined the changes in the number and distribution of Schwann cells in a transgenic mouse model of PDAC and in a model of metaplastic pancreatic lesions induced by chronic inflammation. Schwann cells proliferated and expanded simultaneously with new sympathetic nerve sprouts in metaplastic/neoplastic pancreatic lesions. Sparse genetic labeling showed that individual Schwann cells in these lesions had a more elongated and branched structure than those under physiological conditions. Schwann cells overexpressed neurotrophic factors, including glial cell-derived neurotrophic factor (GDNF). Sympathetic neurons upregulated the GDNF receptors and exhibited enhanced neurite growth in response to GDNF in vitro. Selective genetic deletion of Gdnf in Schwann cells completely blocked sympathetic nerve sprouting in metaplastic pancreatic lesions in vivo. This study demonstrated that pancreatic Schwann cells underwent adaptive reprogramming during early cancer development, supporting a protective antitumor neuronal response. These finding could help to develop new strategies to modulate cancer associated neural plasticity.

11.
J Neurochem ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38894552

RESUMEN

During myelination, large quantities of proteins are synthesized and transported from the endoplasmic reticulum (ER)-trans-Golgi network (TGN) to their appropriate locations within the intracellular region and/or plasma membrane. It is widely believed that oligodendrocytes uptake neuronal signals from neurons to regulate the endocytosis- and exocytosis-mediated intracellular trafficking of major myelin proteins such as myelin-associated glycoprotein (MAG) and proteolipid protein 1 (PLP1). The small GTPases of the adenosine diphosphate (ADP) ribosylation factor (Arf) family constitute a large group of signal transduction molecules that act as regulators for intracellular signaling, vesicle sorting, or membrane trafficking in cells. Studies on mice deficient in Schwann cell-specific Arfs-related genes have revealed abnormal myelination formation in peripheral nerves, indicating that Arfs-mediated signaling transduction is required for myelination in Schwann cells. However, the complex roles in these events remain poorly understood. This review aims to provide an update on signal transduction, focusing on Arf and its activator ArfGEF (guanine nucleotide exchange factor for Arf) in oligodendrocytes and Schwann cells. Future studies are expected to provide important information regarding the cellular and physiological processes underlying the myelination of oligodendrocytes and Schwann cells and their function in modulating neural activity.

12.
Cancer Sci ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676373

RESUMEN

Doublecortin (DCX)-positive neural progenitor-like cells are purported components of the cancer microenvironment. The number of DCX-positive cells in tissues reportedly correlates with cancer progression; however, little is known about the mechanism by which these cells affect cancer progression. Here we demonstrated that DCX-positive cells, which are found in all major histological subtypes of lung cancer, are cancer-associated Schwann cells (CAS) and contribute to the chemoresistance of lung cancer cells by establishing an adrenergic microenvironment. Mechanistically, the activation of the Hippo transducer YAP/TAZ was involved in the acquisition of new traits of CAS and DCX positivity. We further revealed that CAS express catecholamine-synthesizing enzymes and synthesize adrenaline, which potentiates the chemoresistance of lung cancer cells through the activation of YAP/TAZ. Our findings shed light on CAS, which drive the formation of an adrenergic microenvironment by the reciprocal regulation of YAP/TAZ in lung cancer tissues.

13.
Eur J Neurosci ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951719

RESUMEN

Myelin sheath plays important roles in information conduction and nerve injury repair in the peripheral nerve system (PNS). Enhancing comprehension of the structure and components of the myelin sheath in the PNS during development would contribute to a more comprehensive understanding of the developmental and regenerative processes. In this research, the structure of sciatic nerve myelin sheath in C57BL/6 mice from embryonic day 14 (E14) to postnatal 12 months (12M) was observed with transmission electron microscopy. Myelin structure appeared in the sciatic nerve as early as E14, and the number and thickness of myelin lamellar gradually increased with the development until 12M. Transcriptome analysis was performed to show the expressions of myelin-associated genes and transcriptional factors involved in myelin formation. The genes encoding myelin proteins (Mag, Pmp22, Mpz, Mbp, Cnp and Prx) showed the same expression pattern, peaking at postnatal day 7 (P7) and P28 after birth, whereas the negative regulators of myelination (c-Jun, Tgfb1, Tnc, Cyr61, Ngf, Egr1, Hgf and Bcl11a) showed an opposite expression pattern. In addition, the expression of myelin-associated proteins and transcriptional factors was measured by Western blot and immunofluorescence staining. The protein expressions of MAG, PMP22, MPZ, CNPase and PRX increased from E20 to P14. The key transcriptional factor c-Jun co-localized with the Schwann cells Marker S100ß and decreased after birth, whereas Krox20/Egr2 increased during development. Our data characterized the structure and components of myelin sheath during the early developmental stages, providing insights for further understanding of PNS development.

14.
J Neuroinflammation ; 21(1): 100, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632654

RESUMEN

BACKGROUND: Multifocal motor neuropathy (MMN) is a rare, chronic immune-mediated polyneuropathy characterized by asymmetric distal limb weakness. An important feature of MMN is the presence of IgM antibodies against gangliosides, in particular GM1 and less often GM2. Antibodies against GM1 bind to motor neurons (MNs) and cause damage through complement activation. The involvement of Schwann cells (SCs), expressing GM1 and GM2, in the pathogenesis of MMN is unknown. METHODS: Combining the data of our 2007 and 2015 combined cross-sectional and follow-up studies in Dutch patients with MMN, we evaluated the presence of IgM antibodies against GM1 and GM2 in serum from 124 patients with MMN and investigated their binding to SCs and complement-activating properties. We also assessed the relation of IgM binding and complement deposition with clinical characteristics. RESULTS: Thirteen out of 124 patients (10%) had a positive ELISA titer for IgM anti-GM2. Age at onset of symptoms was significantly lower in MMN patients with anti-GM2 IgM. IgM binding to SCs correlated with IgM anti-GM2 titers. We found no correlation between IgM anti-GM2 titers and MN binding or with IgM anti-GM1 titers. IgM binding to SCs decreased upon pre-incubation of serum with soluble GM2, but not with soluble GM1. IgM anti-GM2 binding to SCs correlated with complement activation, as reflected by increased C3 fixation on SCs and C5a formation in the supernatant. CONCLUSION: Circulating IgM anti-GM2 antibodies define a subgroup of patients with MMN that has an earlier onset of disease. These antibodies probably target SCs specifically and activate complement, similarly as IgM anti-GM1 on MNs. Our data indicate that complement activation by IgM antibodies bound to SCs and MNs underlies MMN pathology.


Asunto(s)
Gangliósido G(M1) , Polineuropatías , Humanos , Estudios Transversales , Gangliósido G(M2) , Inmunoglobulina M , Proteínas del Sistema Complemento , Células de Schwann
15.
J Neuroinflammation ; 21(1): 23, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233858

RESUMEN

BACKGROUND: Complex regional pain syndrome (CRPS) develops after injury and is characterized by disproportionate pain, oedema, and functional loss. CRPS has clinical signs of neuropathy as well as neurogenic inflammation. Here, we asked whether skin biopsies could be used to differentiate the contribution of these two systems to ultimately guide therapy. To this end, the cutaneous sensory system including nerve fibres and the recently described nociceptive Schwann cells as well as the cutaneous immune system were analysed. METHODS: We systematically deep-phenotyped CRPS patients and immunolabelled glabrous skin biopsies from the affected ipsilateral and non-affected contralateral finger of 19 acute (< 12 months) and 6 chronic (> 12 months after trauma) CRPS patients as well as 25 sex- and age-matched healthy controls (HC). Murine foot pads harvested one week after sham or chronic constriction injury were immunolabelled to assess intraepidermal Schwann cells. RESULTS: Intraepidermal Schwann cells were detected in human skin of the finger-but their density was much lower compared to mice. Acute and chronic CRPS patients suffered from moderate to severe CRPS symptoms and corresponding pain. Most patients had CRPS type I in the warm category. Their cutaneous neuroglial complex was completely unaffected despite sensory plus signs, e.g. allodynia and hyperalgesia. Cutaneous innate sentinel immune cells, e.g. mast cells and Langerhans cells, infiltrated or proliferated ipsilaterally independently of each other-but only in acute CRPS. No additional adaptive immune cells, e.g. T cells and plasma cells, infiltrated the skin. CONCLUSIONS: Diagnostic skin punch biopsies could be used to diagnose individual pathophysiology in a very heterogenous disease like acute CRPS to guide tailored treatment in the future. Since numbers of inflammatory cells and pain did not necessarily correlate, more in-depth analysis of individual patients is necessary.


Asunto(s)
Síndromes de Dolor Regional Complejo , Distrofia Simpática Refleja , Humanos , Animales , Ratones , Síndromes de Dolor Regional Complejo/patología , Piel/patología , Hiperalgesia/etiología , Hiperalgesia/patología , Dolor/patología , Células de Schwann/patología
16.
J Transl Med ; 22(1): 194, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388913

RESUMEN

BACKGROUND: Peripheral nerve injury (PNI) is commonly observed in clinical practice, yet the underlying mechanisms remain unclear. This study investigated the correlation between the expression of a Ras-related protein Rab32 and pyroptosis in rats following PNI, and potential mechanisms have been explored by which Rab32 may influence Schwann cells pyroptosis and ultimately peripheral nerve regeneration (PNR) through the regulation of Reactive oxygen species (ROS) levels. METHODS: The authors investigated the induction of Schwann cell pyroptosis and the elevated expression of Rab32 in a rat model of PNI. In vitro experiments revealed an upregulation of Rab32 during Schwann cell pyroptosis. Furthermore, the effect of Rab32 on the level of ROS in mitochondria in pyroptosis model has also been studied. Finally, the effects of knocking down the Rab32 gene on PNR were assessed, morphology, sensory and motor functions of sciatic nerves, electrophysiology and immunohistochemical analysis were conducted to assess the therapeutic efficacy. RESULTS: Silencing Rab32 attenuated PNI-induced Schwann cell pyroptosis and promoted peripheral nerve regeneration. Furthermore, our findings demonstrated that Rab32 induces significant oxidative stress by damaging the mitochondria of Schwann cells in the pyroptosis model in vitro. CONCLUSION: Rab32 exacerbated Schwann cell pyroptosis in PNI model, leading to delayed peripheral nerve regeneration. Rab32 can be a potential target for future therapeutic strategy in the treatment of peripheral nerve injuries.


Asunto(s)
Traumatismos de los Nervios Periféricos , Ratas , Animales , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/terapia , Especies Reactivas de Oxígeno/metabolismo , Piroptosis , Ratas Sprague-Dawley , Proliferación Celular , Células de Schwann/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Regeneración Nerviosa/fisiología
17.
FASEB J ; 37(9): e23126, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37594040

RESUMEN

The involvement of innate immune mediators to the Zika virus (ZIKV)-induced neuroinflammation is not yet well known. Here, we investigated whether neutrophil extracellular traps (NETs), which are scaffolds of DNA associated with proteins, have the potential to injure peripheral nervous. The tissue lesions were evaluated after adding NETs to dorsal root ganglia (DRG) explants and to DRG constituent cells or injecting them into mouse sciatic nerves. Identification of NET harmful components was achieved by pharmacological inhibition of NET constituents. We found that ZIKV inoculation into sciatic nerves recruited neutrophils and elicited the production of the cytokines CXCL1 and IL-1ß, classical NET inducers, but did not trigger NET formation. ZIKV blocked PMA- and CXCL8-induced NET release, but, in contrast, the ZIKV nonstructural protein (NS)-1 induced NET formation. NET-enriched supernatants were toxic to DRG explants, decreasing neurite area, length, and arborization. NETs were toxic to DRG constituent cells and affected myelinating cells. Myeloperoxidase (MPO) and histones were identified as the harmful component of NETs. NS1 injection into mouse sciatic nerves recruited neutrophils and triggered NET release and caspase-3 activation, events that were also elicited by the injection of purified MPO. In summary, we found that ZIKV NS1 protein induces NET formation, which causes nervous tissue damages. Our findings reveal new mechanisms leading to neuroinflammation by ZIKV.


Asunto(s)
Trampas Extracelulares , Infección por el Virus Zika , Virus Zika , Animales , Ratones , Enfermedades Neuroinflamatorias , Nervio Ciático
18.
Cell Commun Signal ; 22(1): 93, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302971

RESUMEN

BACKGROUND: Physical exercise directly stretching the peripheral nerve promotes nerve regeneration; however, its action mechanism remains elusive. Our present study aimed to investigate the effects of mechanosensitive channel of large conductance (MscL) activated by mechanical stretching on the cultured Schwann cells (SCs) and explore the possible mechanism. METHODS: Primary SCs from neonatal mice at 3-5 days of age were derived and transfected with the lentivirus vector expressing a mutant version of MscL, MscL-G22S. We first detected the cell viability and calcium ion (Ca2+) influx in the MscL-G22S-expressing SCs with low-intensity mechanical stretching and the controls. Proteomic and energy metabolomics analyses were performed to investigate the comprehensive effects of MscL-G22S activation on SCs. Measurement of glycolysis- and oxidative phosphorylation-related molecules and ATP production were respectively performed to further validate the effects of MscL-G22S activation on SCs. Finally, the roles of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in the mechanism of energy metabolism modulation of SCs by MscL-G22S activation was investigated. RESULTS: Mechanical stretching-induced MscL-G22S activation significantly increased the cell viability and Ca2+ influx into the SCs. Both the proteomic and targeted energy metabolomics analysis indicated the upregulation of energy metabolism as the main action mechanism of MscL-G22S-activation on SCs. MscL-G22S-activated SCs showed significant upregulation of glycolysis and oxidative phosphorylation when SCs with stretching alone had only mild upregulation of energy metabolism than those without stimuli. MscL-G22S activation caused significant phosphorylation of the PI3K/AKT/mTOR signaling pathway and upregulation of HIF-1α/c-Myc. Inhibition of PI3K abolished the MscL-G22S activation-induced upregulation of HIF-1α/c-Myc signaling in SCs and reduced the levels of glycolysis- and oxidative phosphorylation-related substrates and mitochondrial activity. CONCLUSION: Mechanical stretching activates MscL-G22S to significantly promote the energy metabolism of SCs and the production of energic substrates, which may be applied to enhance nerve regeneration via the glia-axonal metabolic coupling.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Regulación hacia Arriba , Proteómica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Glucólisis , Células de Schwann/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Estrés Oxidativo , Mamíferos/metabolismo
19.
Brain ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079473

RESUMEN

Myelination enables electrical impulses to propagate on axons at the highest speed, encoding essential life functions. The Rho family GTPases, RAC1 and CDC42, have been shown to critically regulate Schwann cell myelination. P21-activated kinase 2 (PAK2) is an effector of RAC1/CDC42, but its specific role in myelination remains undetermined. We produced a Schwann cell-specific knockout mouse of Pak2 (scPak2-/-) to evaluate PAK2's role in myelination. Deletion of Pak2 specifically in mouse Schwann cells resulted in severe hypomyelination, slowed nerve conduction velocity, and behavior dysfunctions in the scPak2-/- peripheral nerve. Many Schwann cells in scPak2-/-sciatic nerves were arrested at the stage of axonal sorting. These abnormalities were rescued by reintroducing Pak2, but not the kinase-dead mutation of Pak2, via lentivirus delivery to scPak2-/- Schwann cells in vivo. Moreover, ablation of Pak2 in Schwann cells blocked the promyelinating effect driven by neuregulin-1, prion protein, and inactivated RAC1/CDC42. Conversely, the ablation of Pak2 in neurons exhibited no phenotype. Such PAK2 activity can also be either enhanced or inhibited by different myelin lipids. We have identified a novel promyelinating factor, PAK2, that acts as a critical convergence point for multiple promyelinating signaling pathways. The promyelination by PAK2 is Schwann cell-autonomous. Myelin lipids, identified as inhibitors or activators of PAK2, may be utilized to develop therapies for repairing abnormal myelin in peripheral neuropathies.

20.
Brain ; 146(7): 2885-2896, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36511878

RESUMEN

Charcot-Marie-Tooth disease is the most common inherited disorder of the PNS. CMT1A accounts for 40-50% of all cases and is caused by a duplication of the PMP22 gene on chromosome 17, leading to dysmyelination in the PNS. Patient-derived models to study such myelination defects are lacking as the in vitro generation of human myelinating Schwann cells has proved to be particularly challenging. Here, we present an induced pluripotent stem cell-derived organoid culture, containing various cell types of the PNS, including myelinating human Schwann cells, which mimics the human PNS. Single-cell analysis confirmed the PNS-like cellular composition and provides insight into the developmental trajectory. We used this organoid model to study disease signatures of CMT1A, revealing early ultrastructural myelin alterations, including increased myelin periodic line distance and hypermyelination of small axons. Furthermore, we observed the presence of onion-bulb-like formations in a later developmental stage. These hallmarks were not present in the CMT1A-corrected isogenic line or in a CMT2A iPSC line, supporting the notion that these alterations are specific to CMT1A. Downregulation of PMP22 expression using short-hairpin RNAs or a combinatorial drug consisting of baclofen, naltrexone hydrochloride and D-sorbitol was able to ameliorate the myelin defects in CMT1A-organoids. In summary, this self-organizing organoid model can capture biologically meaningful features of the disease and capture the physiological complexity, forms an excellent model for studying demyelinating diseases and supports the therapeutic approach of reducing PMP22 expression.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células Madre Pluripotentes Inducidas , Humanos , Vaina de Mielina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Regulación hacia Abajo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Organoides/metabolismo , Células de Schwann
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA