Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Transl Med ; 21(1): 843, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996891

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease. This is due to its aggressive course, late diagnosis and its intrinsic drugs resistance. The complexity of the tumor, in terms of cell components and heterogeneity, has led to the approval of few therapies with limited efficacy. The study of the early stages of carcinogenesis provides the opportunity for the identification of actionable pathways that underpin therapeutic resistance. METHODS: We analyzed 43 Intraductal papillary mucinous neoplasms (IPMN) (12 Low-grade and 31 High-grade) by Spatial Transcriptomics. Mouse and human pancreatic cancer organoids and T cells interaction platforms were established to test the role of mucins expression on T cells activity. Syngeneic mouse model of PDAC was used to explore the impact of mucins downregulation on standard therapy efficacy. RESULTS: Spatial transcriptomics showed that mucin O-glycosylation pathway is increased in the progression from low-grade to high-grade IPMN. We identified GCNT3, a master regulator of mucins expression, as an actionable target of this pathway by talniflumate. We showed that talniflumate impaired mucins expression increasing T cell activation and recognition using both mouse and human organoid interaction platforms. In vivo experiments showed that talniflumate was able to increase the efficacy of the chemotherapy by boosting immune infiltration. CONCLUSIONS: Finally, we demonstrated that combination of talniflumate, an anti-inflammatory drug, with chemotherapy effectively improves anti-tumor effect in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Mucinas , Gemcitabina , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología
2.
Exp Biol Med (Maywood) ; 245(9): 805-814, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32252554

RESUMEN

IMPACT STATEMENT: Alternative agents that will increase the effectiveness of cisplatin, which are widely used in the advanced stage and metastatic bladder cancer, are being investigated. In previous studies, Cucurbitacin B (CuB), which is a natural compound from the Cucurbitaceae family has been shown to inhibit the proliferation of tumor cells and create synergistic effects with cisplatin. In this study, we investigated the synergistic effect of CuB with cisplatin for the first time in bladder cancer in vitro and in vivo models. Our findings showed that CuB treatment with cisplatin reduced cell proliferation, and reduced tumor development through activating apoptosis and autophagy via PI3K/AKT/mTOR signaling pathway. Our results showed that CuB may be a new agent that can support conventional treatment in bladder cancer. Our study is important in terms of enlightening new pathways and developing new treatment methods in the treatment of bladder cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Cisplatino/farmacología , Triterpenos/farmacología , Neoplasias de la Vejiga Urinaria/patología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria
3.
Cell Rep ; 25(6): 1458-1468.e4, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404002

RESUMEN

Tumor ecosystems are composed of multiple cell types that communicate by ligand-receptor interactions. Targeting ligand-receptor interactions (for instance, with immune checkpoint inhibitors) can provide significant benefits for patients. However, our knowledge of which interactions occur in a tumor and how these interactions affect outcome is still limited. We present an approach to characterize communication by ligand-receptor interactions across all cell types in a microenvironment using single-cell RNA sequencing. We apply this approach to identify and compare the ligand-receptor interactions present in six syngeneic mouse tumor models. To identify interactions potentially associated with outcome, we regress interactions against phenotypic measurements of tumor growth rate. In addition, we quantify ligand-receptor interactions between T cell subsets and their relation to immune infiltration using a publicly available human melanoma dataset. Overall, this approach provides a tool for studying cell-cell interactions, their variability across tumors, and their relationship to outcome.


Asunto(s)
Comunicación Celular , Neoplasias/patología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ligandos , Melanoma/patología , Ratones , Metástasis de la Neoplasia , Fenotipo , Receptores de Superficie Celular/metabolismo , Microambiente Tumoral
4.
Cancers (Basel) ; 7(4): 2397-414, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26690220

RESUMEN

Many carcinogen- and human papilloma virus (HPV)-associated head and neck cancers (HNSCC) display a hematopoietic cell infiltrate indicative of a T-cell inflamed phenotype and an underlying anti-tumor immune response. However, by definition, these tumors have escaped immune elimination and formed a clinically significant malignancy. A number of both genetic and environmental mechanisms may allow such immune escape, including selection of poorly antigenic cancer cell subsets, tumor produced proinflammatory and immunosuppressive cytokines, recruitment of immunosuppressive immune cell subsets into the tumor and expression of checkpoint pathway components that limit T-cell responses. Here, we explore concepts of antigenicity and immunogenicity in solid tumors, summarize the scientific and clinical data that supports the use of immunotherapeutic approaches in patients with head and neck cancer, and discuss immune-based treatment approaches currently in clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA